Overview of FFT-based homogenization techniques from the Galerkin point of view (slides)
Sébastien Brisard

To cite this version:
Sébastien Brisard. Overview of FFT-based homogenization techniques from the Galerkin point of view (slides). Conférence Internationale de Géotechnique, des Ouvrages et Structures (CIGOS 2015), 2015, Cachan, France. hal-01194695

HAL Id: hal-01194695
https://hal-enpc.archives-ouvertes.fr/hal-01194695
Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Overview of FFT-based homogenization techniques from the Galerkin point of view

Sébastien Brisard

Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR

Acknowledgements: V.P. Tran, L. Dormieux, F. Legoll, L. Chamoin
Homogenization requires the solution to the so-called “corrector problem”

Traditional numerical methods (e.g. FEM) can be costly

- Conforming mesh
- Large linear system

Grid-based methods are handy in such situations!

FFT-based methods first introduced by Moulinec and Suquet (1994)

Since about 2010, regain of interest for these methods

Present talk: overview, biased towards a variational point of view

- Brief recap on homogenization
- The Lippmann-Schwinger equation (LS): strong and weak forms
- Galerkin discretization of LS: consistent and asymptotically consistent discretizations
- 3D application
Homogenization in a nutshell

\[\text{div} \left(C : \varepsilon \right) + B = 0 \]
\[\varepsilon = \text{sym grad} \ u \]
+ Boundary Conditions

Homogenization

Separation of scales \(a \ll R \ll L \)

Initial problem

Homogenized problem

\[\text{div} \left(C^{\text{eff}} : \varepsilon \right) + B = 0 \]
\[\varepsilon = \text{sym grad} \ u \]
+ Boundary Conditions
Computation of the homogenized stiffness

Elastic equilibrium of RVE
- \(\text{div} \left(C : \varepsilon \right) = 0 \)
- \(\varepsilon = \text{sym grad} \ u \)

Boundary conditions
- Ensure that average strain is \(E \)
- Hilll's lemma must hold

Example: periodic BCs
- \(u \left(x \right) = E \cdot x + u_{\text{per}} \left(x \right) \)

Macroscopic stress
- \(\Sigma = \overline{\sigma} = C^{\text{eff}} : \varepsilon = C^{\text{eff}} : E \)

Well-suited to numerical homogenization

Can be complex!
The Lippmann-Schwinger equation (LS)

Reference material
- Arbitrary, homogeneous stiffness: \mathbf{C}_0
- Interesting additional properties if reference material stiffer/softer than all phases

Hashin and Shtrikman (1962), *J Mech Phys Sol* 10, 335-342

The Green operator for strains
$$\text{div} \left(\mathbf{C}_0 : \varepsilon + \varpi \right) = 0$$
$$\varepsilon = \text{sym grad} \, \mathbf{u}^{\text{per}}$$

def.

$$\varepsilon = - \Gamma_0 \ast \varpi$$

The Lippmann-Schwinger equation
$$\text{div} \left(\mathbf{C} : \varepsilon \right) = 0$$
$$\varepsilon = \mathbf{E} + \text{sym grad} \, \mathbf{u}^{\text{per}}$$

$$\left(\mathbf{C} - \mathbf{C}_0 \right)^{-1} : \boldsymbol{\tau} + \Gamma_0 \ast \boldsymbol{\tau} = \mathbf{E}$$
$$\boldsymbol{\tau} = \left(\mathbf{C} - \mathbf{C}_0 \right) : \varepsilon$$

Korringa (1973), *J Math Phys* 14, 509-513
Nemat-Nasser et al. (1982), *Mech Mat* 15, 163-181
Zeller and Dederichs (1973), *Physica Status Solidi (B)* 55, 831-842
LS as a variational problem

Strong form

\[(C - C_0)^{-1} \cdot \tau + \Gamma_0 \ast \tau = E\]

Weak form: find \(\tau \in V \) such that

\[a(\tau, \varpi) = f(\varpi) \text{ for all } \varpi \in V\]

V: space of square integrable, second order, symmetric tensors.

The linear form:

\[f(\varpi) = E : \int \varpi\]

The bilinear form

\[a(\tau, \varpi) = a_{\text{diag}}(\tau, \varpi) + a_{\text{circ}}(\tau, \varpi)\]

\[a_{\text{diag}}(\tau, \varpi) = \int \varpi(x) : [C(x) - C_0]^{-1} : \tau(x) \, dx\]

\[a_{\text{circ}}(\tau, \varpi) = \iint \varpi(x) : \Gamma_0(x - y) : \tau(y) \, dx \, dy\]
Galerkin discretization of the LS equation

Find \(\tau \in V \) such that \(a_{\text{diag}}(\tau, \varpi) + \circ a(\tau, \varpi) = f(\varpi) \) for all \(\varpi \in V \)

Consistent discretization

Find \(\tau^h \in V^h \) such that \(a_{\text{diag}}^h(\tau^h, \varpi^h) + \circ a^h(\tau^h, \varpi^h) = f(\varpi^h) \) for all \(\varpi^h \in V^h \)

Evaluation over \(V^h \) remains difficult!

Asymptotically consistent discretization: exact evaluation is not necessary!

Find \(\tau^h \in V^h \) such that \(a_{\text{diag}}^h(\tau^h, \varpi^h) + \circ a^h(\tau^h, \varpi^h) = f(\varpi^h) \) for all \(\varpi^h \in V^h \)

Space of cell-wise constant polarization fields

Brisard and Dormieux (2010), *Comp Mat Sci* **49**, 663-671

Asymptotically consistent approximation
Asymptotically consistent approximations

- Periodic Green operator for strains is in fact given by an infinite Fourier series
- Various estimates of this series for cell-wise constant functions
 - Exact (up to round-off errors): Brisard and Dormieux (2010)
 - Filtering of high frequencies: Brisard and Dormieux (2012)
 - Finite elements approximation: Yvonnet (2012)
- All these approximations can be fitted in the general framework introduced here!
- If appropriately implemented, they can be switched on-the-fly in a simulation.

Moulinec and Suquet (1994), *CR Acad Sci II* 318, 1417-1423
Brisard and Dormieux (2010), *Comp Mat Sci* 49, 663-671
Brisard and Dormieux (2012), *Comp Meth Appl Mech Eng* 217-220, 197-212
Yvonnet (2012), *Int J Num Meth Eng* 92, 178-205
Willot et al. (2014), *Int J Num Meth Eng* 98, 518-533
Willot (2015), *CR Acad Sci Mec* 343, 232-245
Discrete variational problem results in a linear system

\[
(A_{\text{diag}} + A_{\text{circ}}) \mathbf{x} = \mathbf{b}
\]

Solving the linear system

- Matrix is not sparse: matrix-free approach
- Use iterative linear solvers
 - Augmented-Lagrangian: Michel et al. (2001)
 - Conjugate Gradient: Brisard and Dormieux (2010)
- Use FFT to compute matrix-vector products (Moulinec and Suquet, 1994, 1998)

Moulinec and Suquet (1994), *CR Acad Sci II* 318, 1417-1423

Michel et al. (2001), *Int J Num Meth Eng* 52, 139-160

Brisard and Dormieux (2010), *Comp Mat Sci* 49, 663-671
Example: 3D microstructure (1/2)

Microstructural parameters
- Flat spheroids (1/8 aspect ratio)
- Dense packing (60%)
- Large model (10000 particles)
- Moderate contrast (inclusions 100 times stiffer than matrix)

The simulation
- Home-made code
 - Python + Cython + FFTW + MPI
 - Very flexible implementation
 - Soon to be open-sourced (contact me!)
- Simulations run on two servers
 - Intel Xeon X5690, 3.47GHz, 192 Go
 - Intel Xeon E5-2643, 3.30GHz, 762 Go
- Most simulations run on 16 cores
Example: 3D microstructure (2/2)

256^3

512^3

1024^3 (approx. $6 \cdot 10^9$ dofs)
Conclusion and outlook

- **Summary**
 - **General, unified** framework for FFT-based homogenization techniques
 - All avatars of this method (Moulinec & Suquet; Michel, Moulinec and Suquet; Yvonnet; Willot; Monchiet; …) fit into this unified framework
 - Clear distinction between **discretization** and iterative **solution** of the discretized problem: any discrete Green operator can be combined with any iterative linear solver

- **Work in progress**
 - **A priori** error estimates: with F. Legoll (Navier Laboratory, Ecole des Ponts ParisTech)
 - **A posteriori** error estimates: with L. Chamoin (LMT, ENS Cachan)

- **Open questions**
 - Matrix-free preconditioners
 - What is the “best” discrete Green operator?
 - What is the “best” reference material?
Thank you for your attention!

sebastien.brisard@ifstttar.fr