M. Beran, Statistical Continuum Theories, 1968.

N. Bilger, F. Auslender, M. Bornert, J. Michel, H. Moulinec et al., Effect of a non uniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis, Int. J. Solids Struct, vol.42, pp.517-538, 2005.

M. Bornert, Homogénéisation en mécanique des matériaux 1: Matériaux aléatoires élastiques et milieux périodiques, pp.133-221, 2001.

M. Bornert, C. Stolz, and A. Zaoui, Morphologically representative pattern-based bounding in elasticity, J. Mech. Phys. Solids, vol.44, pp.307-331, 1996.

G. Casella and R. Berger, Statistical Inference. Duxbury, United States. CEA, 2001.

R. M. Christensen and K. H. Lo, Solution for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids, vol.27, pp.315-330, 1979.

M. Danielsson, D. Parks, and M. Boyce, Micromechanics, macromechanics and constitutive modeling of the elasto-viscoplastic deformation of rubbertoughened glassy polymers, J. Mech. Phys. Solids, vol.55, pp.533-561, 2007.

I. Doghri, L. Adam, and N. Bilger, Mean-field homogenization of elastoviscoplastic composites based on a general incrementally affine linearization method, Int. J. Plast, vol.26, pp.219-238, 2010.

J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A A421, pp.376-396, 1957.

I. Gitman, H. Askes, and L. Sluys, Representative volume: existence and size determination, Eng. Fracture Mech, vol.74, pp.2518-2534, 2007.

A. Gusev, Representative volume element size for elastic composites: a numerical study, J. Mech. Phys. Solids, vol.45, issue.9, pp.1449-1459, 1997.

Z. Hashin, The elastic moduli of heterogeneous materials, J. Appl. Mech, vol.29, pp.143-150, 1962.

Z. Hashin and B. W. Rosen, The elastic moduli of fiber-reinforced materials, J. Appl. Mech, vol.31, pp.223-232, 1964.

Z. Hashin and S. Shtrikman, A variational approach to the theorie of the elastic behavior of multiphase material, J. Mech. Phys. Solids, vol.11, pp.127-140, 1963.

C. Huet, Application of variational concepts to size effects in elastic heterogeneous bodies, J. Mech. Phys. Solids, vol.38, pp.813-841, 1990.

M. Jiang, K. Alzebdeh, I. Jasiuk, and M. Ostoja-starzewski, Scale and boundary conditions effects in elastic properties of random composites, Acta Mech, vol.148, issue.1-4, pp.63-78, 2001.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct, vol.40, pp.3647-3679, 2003.

E. Kroner, Berechnung der elastischen konstanten des vielkrilstalls aus den konstanten des einkristalls, Z. Phys, vol.151, pp.504-518, 1958.

N. Lahellec and P. Suquet, Nonlinear composites: a linearization procedure, exact to second-order in contrast and for which the strain-energy and affine formulations coincide, C.R. Mec, vol.332, pp.693-700, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00088254

N. Lahellec and P. Suquet, On the effective behavior of nonlinear inelastic composites: I Incremental variational principles, J. Mech. Phys. Solids, vol.55, pp.1932-1963, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00214209

R. Masson and A. Zaoui, Self-consistent estimates for the rate-dependent elastoplastic behaviour of polycrystalline materials, J. Mech. Phys. Solids, vol.47, pp.1543-1568, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00111618

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall, vol.21, pp.597-629, 1973.

S. Nemat-nasser and M. Hori, Micromechanics: overall Properties of Heterogenous Materials, 1993.

M. Ostoja-starzewski, Random field models of heterogeneous materials, Int. J. Solids Struct, vol.35, pp.2429-2455, 1998.

M. Ostoja-starzewski, Material spatial randomness: from statistical to representative volume element, Prob. Eng. Mech, vol.21, pp.112-132, 2006.

G. Papanicolaou and S. Varadhan, Boundary Value Problems with Rapidly Oscillating Random Coefficients, pp.835-873, 1978.

C. Pelissou, J. Baccou, Y. Monerie, and F. Perales, Determination of the size of the representative volume element for random quasi-brittle composites, Int. J. Sol. Struct, vol.46, pp.2842-2855, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02095427

P. Castañeda and P. , Second-order homogeneisation estimates for nonlinear composites incorporating field fluctuations: I-theory, J. Mech. Phys. Solids, vol.50, pp.737-757, 2002.

P. Castañeda, P. Suquet, and P. , Nonlinear composites, Advances in Applied Mechanics, vol.34, pp.213-302, 1997.

P. Castañeda, P. Willis, and J. , The effect of spatial distribution on the effective behavior of composite materials and cracked media, J. Mech. Phys. Solids, vol.43, issue.12, pp.1919-1951, 1995.

S. Ranganathan and M. Ostoja-starzewski, Scaling function, anisotropy and the size of RVE in elastic random polycrystals, J. Mech. Phys. Solids, vol.56, pp.2773-2791, 2008.

A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of mono-crystals, Z. Angew. Math. Mech, vol.9, pp.49-58, 1929.

M. Rintoul and S. Torquato, Reconstruction of the structure of dispersions, J. Colloid Interface Sci, vol.186, issue.2, pp.467-476, 1997.

K. Sab, On the homogenization and the simulation of random materials, Eur. J. Mech. A/Solids, vol.11, pp.585-607, 1992.

M. Salmi, Homogénéisation des composites linéaires: étude de la variabilité des comportements, 2011.

M. Salmi, F. Auslender, M. Bornert, and M. Fogli, Various estimates of representative volume element sizes based on a statistical analysis of the apparent behavior of random linear composites, Comptes Rendus Mécanique, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01157361

E. Sanchez-palencia, , vol.272, 1987.

J. Schoberl, H. Gerstmayr, and R. Gaisbauer, Netgen -Automatic mesh generator, 2003.

C. Stolz and A. Zaoui, Analyse morphologique et approches variationnelles du comportement d'un milieu élastique hétérogène, C.R. Acad. Sci, vol.312, pp.143-150, 1991.

W. Voigt, 1889. über die beziehung zwischen den beiden elasticitätsconstanten isotroper körper, Ann. Phys. (Leipzig), vol.38, pp.573-587

L. Walpole, Elastic Behavior of Composite Materials: Theoretical Foundations, vol.21, pp.160-242, 1981.

J. Willis, Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, vol.25, pp.185-202, 1977.

J. Willis, Variational and related methods for the overall properties of composites, Adv. Appl. Mech, vol.21, pp.1-78, 1981.

F. Willot and . Jeulin, Elastic behavior of composites containing boolean random sets of inhomogeneities, Int. J. Eng. Sci, vol.47, pp.313-324, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00426398

F. Willot, Y. Pellegrini, and P. Ponte-castañeda, Localization of elastic deformation in strongly anisotropic, porous, linear materials with periodic microstructures: exact solutions and dilute expansions, J. Mech. Phys. Solids, vol.56, issue.4, pp.1245-1268, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00412543