R. W. Barnard, K. Pearce, and A. Y. Solynin, An isoperimetric inequality for logarithmic capacity, Annales Academiae Scientiarum Fennicae, Mathematica, vol.27, p.419436, 2002.

G. Bonnet, A. Corfdir, and M. T. Nguyen, On the solution of exterior plane problems by the boundary element method: A physical point of view, Engineering Analysis with Boundary Elements, vol.38, p.4048, 2014.
DOI : 10.1016/j.enganabound.2013.10.005

URL : https://hal.archives-ouvertes.fr/hal-00922608

J. T. Chen, S. R. Kuo, and J. H. Lin, Analytical study and numerical experiments for degenerate scale problems in the boundary element method for two-dimensional elasticity, International Journal for Numerical Methods in Engineering, vol.12, issue.12, p.16691681, 2002.
DOI : 10.1002/nme.476

Y. Z. Chen, Numerical solution for degenerate scale problem arising from multiple rigid lines in plane elasticity, Applied Mathematics and Computation, vol.218, issue.1, p.96106, 2011.
DOI : 10.1016/j.amc.2011.05.057

Y. Z. Chen, X. Y. Lin, and Z. X. Wang, Evaluation of the degenerate scale for BIE in plane elasticity by using conformal mapping, Engineering Analysis with Boundary Elements, vol.33, p.147158, 2009.

Y. Z. Chen, X. Y. Lin, and Z. X. Wang, Inuence of dierent integral kernels on the solutions of boundary integral equations in plane elasticity, Journal of Mechanics of Materials and Structures, vol.5, issue.4, p.679692, 2010.

Y. Z. Chen, Z. X. Wang, and X. Y. Lin, Eigenvalue and eigenfunction analysis arising from degenerate scale problem of BIE in plane elasticity, Engineering Analysis with Boundary Elements, vol.31, issue.12, p.9941002, 2007.
DOI : 10.1016/j.enganabound.2007.05.003

Y. Z. Chen, Z. X. Wang, and X. Y. Lin, A new kernel in BIE and the exterior boundary value problem in plane elasticity, Acta Mechanica, vol.24, issue.3-4, p.207224, 2009.
DOI : 10.1007/s00707-008-0088-5

S. Christiansen, Integral Equations without a Unique Solution can be made Useful for Solving some Plane Harmonic Problems, IMA Journal of Applied Mathematics, vol.16, issue.2, p.143159, 1975.
DOI : 10.1093/imamat/16.2.143

C. Constanda, ON NON-UNIQUE SOLUTIONS OF WEAKLY SINGULAR INTEGRAL EQUATIONS IN PLANE ELASTICITY, The Quarterly Journal of Mechanics and Applied Mathematics, vol.47, issue.2, p.261268, 1994.
DOI : 10.1093/qjmam/47.2.261

A. Corfdir and G. Bonnet, Degenerate scale for the Laplace problem in the half-plane; Approximate logarithmic capacity for two distant boundaries, Engineering Analysis with Boundary Elements, vol.37, issue.5, p.836841, 2013.
DOI : 10.1016/j.enganabound.2013.02.009

URL : https://hal.archives-ouvertes.fr/hal-00806771

M. Costabel and M. Dauge, Invertibility of the biharmonic single layer potential operator, Integral Equations and Operator Theory, vol.1, issue.4, p.4667, 1996.
DOI : 10.1007/BF01195484

W. Dijkstra and M. Hochstenbach, Numerical approximation of the logarithmic capacity, p.119, 2009.

W. Dijkstra and R. M. Mattheij, A relation between the logarithmic capacity and the condition number of the BEM-matrices, Communications in Numerical Methods in Engineering, vol.21, issue.7, p.665680, 2007.
DOI : 10.1002/cnm.917

J. Hayes and R. Kellner, The Eigenvalue Problem for a Pair of Coupled Integral Equations Arising in the Numerical Solution of Laplace???s Equation, SIAM Journal on Applied Mathematics, vol.22, issue.3, p.503513, 1972.
DOI : 10.1137/0122044

U. Heise, The spectra of some integral operators for plane elastostatical boundary value problems, Journal of Elasticity, vol.275, issue.2, p.4779, 1978.
DOI : 10.1007/BF00044510

E. Hille, Analytic function theory, 1962.

R. A. Horn and C. R. Johnson, Matrix analysis, second edn, 2013.

G. C. Hsiao and R. E. Kleinmann, On a uniform characterization of capacity, p.103126, 1987.

M. A. Jaswon, Integral Equation Methods in Potential Theory. I, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.275, issue.1360, p.2332, 1963.
DOI : 10.1098/rspa.1963.0152

S. R. Kuo, J. T. Chen, and S. K. Kao, Linkage between the unit logarithmic capacity in the theory of complex variables and the degenerate scale in the BEM/BIEMs, Applied Mathematics Letters, vol.26, issue.9, p.929938, 2013.
DOI : 10.1016/j.aml.2013.04.011

G. Pólia and G. Szegö, Isoperimetric inequalities in mathematical physics, 1951.

R. S. Rumely, Capacity Theory on Algebraic Curves, 1989.
DOI : 10.1007/BFb0084525

A. Y. Solynin and V. A. Zalgaller, An isoperimetric inequality for logarithmic capacity of polygons, Annals of Mathematics, vol.159, issue.1, p.277303, 2004.
DOI : 10.4007/annals.2004.159.277

O. Steinbach, A note on the ellipticity of the single layer potential in two-dimensional linear elastostatics, Journal of Mathematical Analysis and Applications, vol.294, issue.1, p.16, 2004.
DOI : 10.1016/j.jmaa.2003.10.053

R. Vodi£ka, An asymptotic property of degenerate scales for multiple holes in plane elasticity, Applied Mathematics and Computation, vol.220, p.166175, 2013.

R. Vodi£ka and V. Manti£, On invertibility of elastic single-layer potential operator, Journal of Elasticity, vol.74, issue.2, p.147173, 2004.

R. Vodi£ka and V. Manti£, On solvability of a boundary integral equation of the rst kind for Dirichlet boundary value problems in plane elasticity, Computational Mechanics, vol.41, issue.6, p.817826, 2008.

Y. Yan and I. H. Sloan, On integral equations of the rst kind with logarithmic kernels, Journal of Integral Equations and Applications, vol.1, issue.4, p.549579, 1988.