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Microporomechanics study of anisotropy of ASR under loading
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Abstract

In this article, we introduce a new micromechanical model for alkali-silica reaction. Our idea was to build a model with
the following characteristics. First, the model has to be simple enough to be used to compute damage under loading
and chemical attack at the level of each element in a structure code. Second, its parameters must be easy to identify
on available alkali-silica reaction lab experiments. We have chosen to model the behavior of a concrete containing
aggregates such that most of the damage occurs in the cement paste. Using micromechanics and an energy criterion, the
model remains analytical except for the minimization of the energy. The parameters were identified on Multon’s triaxial
experiments and good results were obtained for compressive loadings up to 10 MPa.

Keywords: Alkali-aggregate reaction, Anisotropy, Micromechanics, Energy criterion

1. Introduction

Concrete is vastly used for construction and the life
span of buildings is an important parameter of their rentabil-
ity. Therefore durability issues such as freeze-thaw, car-
bonation or endogenous reactions need to be addressed.
The alkali-silica reaction is an endogenous reaction dis-
covered in the US in the 40’s by Stanton [66]. It can
develop several years after building. The reaction is ex-
ternally visible because of a characteristic surface cracking
which tends to align with the main compression directions
and also through reaction products which sometimes flow
from these cracks. The reaction also induces irreversible
expansions which can lead to complications when using
the structure. Various kinds of buildings can be affected.
They all share some characteristics. First, their aggre-
gates must contain some reactive silica, in the sense that
it can dissolve in the concrete interstitial solution. Sec-
ond, the concrete must contain alkali, usually provided by
the cement. Third, there must be a water supply to the
structure, since water enhances the transport of chemicals
inside the concrete and is absorbed by the alkali-silica gels,
leading to their swelling.

How to stop this reaction is an open problem. Today,
a lot of effort has been made to make sure that no new
building will be affected. For affected structures, mechan-
ical techniques exist to release the stresses due to the reac-
tion or try to stop the expansion mechanically. However,
these solutions are expensive. It is therefore necessary to
have simulation tools available to estimate the remaining
life-span of affected structures and the efficiency of repair
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solutions. In this paper we give some elements for the nu-
merical simulation of ASR.

ASR modeling can roughly be divided in three branches.
First, chemistry and transport models studying at the ag-
gregate or structure scale, the transport of chemicals and
water, so as to predict the amounts of gel produced at re-
active sites, that is close to or in the aggregates. These
models directly simulate the chemical reaction with var-
ious simplifying assumptions [59, 58]. Second, mechani-
cal models at the structure scale which are usually im-
plemented in more general concrete durability codes ac-
counting for various important phenomena such as creep,
shrinkage and macroscopic damage [45, 2, 63, 33, 17]. Fi-
nally, microscopic scale models which can be analytical
or numerical and try, by a fine description of the mi-
crostructure, to determine the mechanical consequences
of the presence of a swelling gel in the concrete porosity
close to the reactive sites [44, 16, 22, 64, 49, 4]. The aim
of these models is at the same time to help studying the
affected structures and help understanding the physics of
the degradation. It seems to us that analytical models
are more likely to help for structure computations since
their simplicity makes more obvious the influence of their
parameters. Also, we can hope that such a model could
serve as a way to compute degradation in each element
in structure-size codes. That is why we have focused our
research and this article on such models.

Therefore, for our model to be satisfactory, is must be
such that its parameters are easily identifiable in the lab on
concrete samples, some by direct testing, some by fitting
of expansion curves. The model must be simple enough to
keep short computation times if we want to couple it with
a structure-size code. It must also reproduce expansion
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and reduction of mechanical properties of attacked con-
crete samples under mechanical loading.

We will first motivate our study by recalling some works
discussing the anisotropy of alkali-silica reaction. Then,
we will present our thermodynamical description of the
attacked concrete. We will continue by describing the
microporomechanics equations we use to describe the mi-
crostructure of the concrete and extract needed informa-
tion. Then, we will explain the behavior of the model on
simple examples first, and by identifying its parameters on
lab experiments of alkali-silica reaction.

2. Evidence and modeling of the anisotropy of ASR

The question of anisotropy of ASR, as is well explained
in [37, 50, 39], was first raised by the orientation of the
macroscopic cracks on affected structured. These cracks
tend to align with the principal compression direction in
the structure (which means that the normal to the crack is
orthogonal to the principal compression direction), which
can be due to reinforcing bars or weight. At a sample-size
level, in the lab, anisotropy is also seen, sometimes even in
the case of free-swelling of the sample. The directions of
casting, as underlined in [39], play a major role, since they
influence the orientation of the aggregates and the zones of
higher porosity around the aggregates. These phenomena
alone can induce anisotropy factors up to 4 [39].

However in this article, we are interested in the anisotropy
of swelling which is due to mechanical loads. As pointed
by Hobbs, [37], applying stresses on concrete during attack
can modify expansion a lot. The mechanical restraint also
can modify expansion, as explained and measured by Bi-
nal, Kawamura and Iwahori, and Berra et al. [7, 38, 6],
using an experimental set-up introduced by Ferraris et al.
[27].

The effect of stress and restraint was originally under-
stood as a redistribution of expansion from the compressed
to the less compressed directions. Macroscopic expansion
models by Larive and Multon [39, 50] are based on this
idea.

Some models were also developed at a macroscopic
scale to be able to compute deformations of attacked struc-
tures, for example in the works of Sellier, Capra and Bour-
nazel, or Léger et al. [64, 9, 42], generally without be-
ing too precise about what is happening at the micro-
scopic level, except in the microscopic model by Sellier
from which are extracted some information used in the
macroscopic model.

More refined mechanical models can be built, if the
description of what is happening microscopically is im-
proved. An attempt based on micromechanics was made
by Lemarchand et al. [43], where the initial load influences
the filling of initially existing cracks and hence, the expan-
sion. The model can explain the tendency of Larive’s test
results under uniaxial load [39], in terms of redistribution

of the expansion at intermediate load, and reduction of the
total (volumetric) expansion at high loads.

The most advanced effort in understanding the effect of
an external load on the mechanical consequences of ASR
seems to be the numerical model of Dunant and Scrivener,
presented in [22]. In his second paper, the focus is placed
on anisotropy [23]. The author gives interesting experi-
mental results of expansion under uniaxial loading. The
cracking/damage pattern in the aggregate (where the gel is
located, in pockets) and in the cement paste is influenced
by the loading. However, the model fails at high loads
due to an artificial coalescence of cracks in 2d. This model
was recently improved by Giorla et al. [31, 30] who in-
troduced creep in the cement paste. The effect of particle
shape on the anisotropy of free expansion was successfully
reproduced as well as many features of ASR. The effects
of creep and damage (using different criteria) are investi-
gated. This model is very advanced but few comparisons
with experiments are available at the time.

Finally it seems the most complete experimental work
concerning the expansion of concrete samples under load-
ing is Multon’s [50, 51], since a variety of compressive loads
are used (0 MPa, 10 MPa, 20 MPa) for the loading direc-
tion, in conjunction with a restriction of the radial ex-
pansion by steel rings of two different thicknesses (3 mm
rings, 5 mm rings). This set-up induces a triaxial stress
state which influences cracking in a more complicated way
than the usual uniaxial compression [39, 23]. Giorla also
developed a new device for ASR under triaxial load which
is very promising [31].

Our goal is, as stated in our introduction, to improve
the micromechanical modeling of ASR. We will present a
model based on micromechanics, poromechanics, and an
energy fracture criterion. Therefore, we will start our pre-
sentation of the model by explaining the thermodynamic
framework we used for our model.

3. Thermodynamic evolution of a concrete under-

going ASR

In this section we will present the basis of our model.
We will start by some geometrical simplifications of the
description of the concrete. Our model has been built in
the idea of studying concrete made of aggregates which
are sometimes classified in the literature as fast reacting
aggregates [32, 56]. For us the important point is that we
focus on aggregates in which the expansive products can
easily reach the interface with the cement paste. Therefore
the most important cracking phenomenon are considered
to be the decohesion between the aggregate and the inter-
face first, and in a second stage the propagation of cracks
in the cement paste. Some authors focus on slow reactive
aggregates, in which the most important cracking mecha-
nism occurs inside the aggregates [21, 22, 62, 61, 31]. This
category of aggregates is of great interest, and the method-
ology developed in this article will hopefully be used in the
future for this kind of aggregates.

2



3.1. Microscopic description of a concrete undergoing ASR

In this section we introduce the geometrical description
of our attacked concrete at a given time t. We will call Ω
the actual volume of concrete that we study.

3.1.1. Description of the concrete under attack before crack-
ing

Our concrete, at the scale at which we consider it, is
composed of two main components: grains and cement
paste matrix, whose properties vary due to the attack. Let
us detail their properties, beginning with the grains. They
are an ensemble of aggregates and sand particles (which
size are extremely variable, from microns to a few cen-
timeters). Let us call their number Ng in the volume Ω
(g stands for grain). All grains are considered spherical.
The grain i ∈ Ng is of radius Ri, and its current attack
degree is called αi(t). The attack degree represents the
proportion of the radius of the grain which has undergone
attack. Therefore the shell between radii (1−αi(t))Ri and
Ri will be called the attacked zone, while the sphere of ra-
dius (1− αi(t))Ri will be called the sound zone, at time t
(Fig. 1). The sound zone has the mechanical properties of

(1− αi(t))Ri Ri Ri + lc

sound zone

attacked zone

ITZ

cement paste

Figure 1: Schematic attack of an aggregate

a sound aggregate. It is therefore taken as a linear elastic
isotropic material, which stiffness tensor is called Ca. The
attacked zone has been partly dissolved by the attack of
ions coming from the cement paste. We do not describe
this attack but only its mechanical consequences. We as-
sume that it transforms the sound aggregate into a porous
material of porosity ρi, whose poroelastic properties are
a tensor of elasticity Ci

p, a Biot coefficient bip and a Biot

compliance M i
p, which are defined according to the habits

in poromechanics as presented by Coussy [18], except for
the Biot compliance, which is taken as the inverse of the
usual Biot modulus. We get the following constitutive law

for the attacked zone of grain i:

{

σ = C
i
p : ε− bipp1

(ϕ̃i − ρi) = bip1 : ε+M i
pp

(1)

Where σ is the stress tensor, ϕ̃i is the deformed (due to
strains ε and pressure p) porosity of the attacked zone. We
assume that the attack keeps the isotropy of the aggregate,
therefore the Biot coefficient bip is a scalar. In our model

the porosity ρi can be different in different aggregates, but
is constant in time. The attack progresses by increasing of
the size of the attacked zone (described by αi(t)) only. The
poroelastic coefficients of this zone are obtained using the
Mori-Tanaka estimate [5], assuming the porosity is com-
posed of spherical cavities. This simple homogenization
step is not described here.

The grain is surrounded by an interfacial transition
zone (ITZ ). We think it is important to take it into account
for two reasons. First, attempts to predict the stiffness of
concretes have shown that if micromechanics models are
used considering concrete as a two-phase (aggregates and
cement paste) material, the mechanical properties were
overestimated. Nielsen and Monteiro [54] argued that it
is better to consider three phases (aggregates, ITZ, and
cement paste) to predict the mechanical properties. It
confirmed mechanically observations that were made long
before by Farran for example [25] about the modification of
the packing of cement grains close to the aggregates lead-
ing to different composition and porosities in this zone.
There is discussions about the dependence of the proper-
ties of this zone on the total aggregate volume fraction
[35] based on generalizations of the self-consistent scheme
of Christensen and Lo [60, 15], or on the aggregate size
[36], and whether it is possible to model it as a uniform
zone or not [36, 10, 53]. The second reason why we need
to take the ITZ into account is related to ASR. The ITZ
plays the role of a reservoir for gel escaping from the aggre-
gate, limiting the pressure increase. Not willing to put too
much detail in the ITZ which is not the focus of our study,
we choose to model it as a homogeneous porous medium
of constant thickness lc and porosity ρitz (both indepen-
dent on the grain considered). The properties are written
in the same manner as for the attacked zone: a tensor of
elasticity Ct, a Biot coefficient bt and a Biot compliance
Mt in the following constitutive law:

{

σ = Ct : ε− btp1
(ϕ̃itz − ρitz) = bt1 : ε+Mtp

(2)

Where ϕ̃itz is the deformed (due to strains ε and pressure
p) porosity of the ITZ. The poroelastic coefficients relative
to the ITZ are also determined using the Mori-Tanaka
estimate.

Now that we have described in detail the geometry of
our concrete during attack, we will proceed with the de-
scription of cracking.
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3.1.2. Description of cracking

The concrete described in the previous paragraph is go-
ing to change morphology due to the high pressures which
will develop in the pores of the attacked zone and ITZ.
Let us describe the changing microstructure by a number
of damage parameters for each grain i. First, a decohesion
parameter di(t) which can take values of 0 and 1 only and
is an increasing function of time. At the beginning of the
attack and as long as the aggregate remains bounded to
the cement paste, di(t) = 0. When the interface at radius
Ri, that is between the attacked zone and ITZ breaks,
di(t) = 1. Second, crack size parameters we note collec-
tively xi(t) which describe the size of the cracks developing
in the cement paste. The choice of crack shape and exact
meaning of these parameters will be explained in § 4.2,
since some approximations will be related to specificities
of the micromechanical description. The crack sizes are
also increasing functions of time.

The geometrical properties of our sample has been de-
scribed and we have defined the damage parameters ac-
counting for the evolution of the microstructure. Let us
sum things up defining the problem we want to solve:

(P): Find the evolution of the damage parameters di(t)
and xi(t) due to the ASR, represented by the set of attack
degrees αi(t).

To simplify the resolution of this problem, let us intro-
duce aggregate families.

3.1.3. Definition of the aggregate families

An aggregate family is a group of aggregates which are
assumed to have identical evolutions. Usually it will corre-
spond to a given aggregate size, but a given aggregate size
can also be divided in families. Let us call their number
Nf . We assume that the grains of family i are of size Ri.
The volume fraction of grains of site i is called f i, and
the number of grains per unit volume in family i writes
N i = f i/ 4π

3 (Ri)3. Aggregates which are in the same fam-
ily will follow the same evolution in terms of attack and
cracking. The vicinity of each aggregate contain various
kinds of pores. First, pores in the aggregate which appear
due to the chemical attack. As explained in § 3.1.1, they
are located in the attacked zone between radius

(

1− αi
)

Ri

and radius Ri, and represent a volume fraction ρi of the
region where they are located. That means that in the
family i, there is a total porous volume in each aggregate

equal to ρi 4π3 (Ri)3(1 −
(

1− αi
)3
). The overall constitu-

tive law has been written in Eq. 1. Second, pores in the
ITZ which, due to its small thickness lc occupy a volume
ρitz4πlc(R

i)2 for each aggregate. This volume is available
to the gel, which we think has threshold behavior and be-
cause of that, cannot penetrate farther in smaller pores of
the cement paste [14]. The constitutive law of this zone
was given in Eq. 2. Third, if decohesion has occurred, the
gel is also able to occupy the space between the aggregate
and the ITZ in each site, and if cracking has occurred,
it can go in the cracks. These zones have no undeformed

volume, but gel under pressure can invade them.
In our model, we assume that all pores belonging to

the same family are at the same pressure that we call pi,
which means that we consider that the alkali-silica reaction
develops slowly enough so that the gel can flow to every
part of the porosity without dissipating large amounts of
energy.

To solve problem (P) in various cases (for example for
different macroscopic loading conditions on the sample),
let us introduce a virtual problem.

3.2. Virtual problem: loading with imposed strains and at-
tack degree

As explained in the previous section, the chemical at-
tack is described by a number of attacked degrees. Let us
now take external loadings into account, since one of the
goals of our model is to be able to estimate expansions of
an attacked concrete under loading.

3.2.1. Total energy function

Let us now describe problem (P∗) which will give an
energetic framework for solving problem (P). Let us first
be clearer about the loading parameters of our problem.
Our problem is driven by a set of time-dependent param-
eters αi(t) which represent the attack degree for each site
present in the sample. The second loading parameter from
now on will be the macroscopic strain E. That means the
displacements E.x are prescribed on the external bound-
ary of Ω. This is a particular external loading which is
convenient for the presentation, but our model is suited
for any macroscopic loading as will be shown in the exam-
ples section at the end of this article (section 5).

Now that our loading parameters are defined, let us
choose a given loading state

(

E,αi
)

and write formally
the total energy of our sample for a set of virtual damage
parameters

(

di∗, xi∗
)

. This total energy is the sum of the
elastic energy stored in all components of the system, plus
the surface (or dissipated) energy due to crack creation:

E
E,(αi)

i=1:Nf

tot

(

di∗, xi∗
)

= E
E,(αi)

i=1:Nf

el

(

di∗, xi∗
)

+ Ediss

(

di∗, xi∗
)

(3)

Where the loading parameters appear as parameters for
the energy functions, while the damage parameters appear
as arguments. The values of these energy functions will be
specified later. Let us now explain the energy criterion
used to compute the crack state of the sample for a given
loading.

3.2.2. Postulate: law of evolution of the damage (Francfort-
Marigo criterion)

The damage law we choose is as follows: the real dam-
age parameters are found by minimizing the total energy
over all possible virtual damage parameters, as proposed
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by Francfort and Marigo, Fedelich and Ehrlacher, or Mielke
[28, 26, 47]:

(

di, xi
)E,(αi)

i=1:Nf
= argmin

(di∗,xi∗)∈A

{

E
E,(αi)

i=1:Nf

tot

(

di∗, xi∗
)

}

(4)
Where A is the set of admissible damage states. With-
out entering too much details about this, it requires that
damage is increasing, and that cracks surfaces are not in-
terpenetrating.

These definitions of the energy and evolution law form
problem (P∗). We now need to specify the shape of the
total energy, which means mainly of the elastic energy.
However it is a difficult problem since the attack degrees
influences the energy in a complex way. Let us introduce
a simpler problem where we assume pressure is controlled.

3.3. Auxiliary problem: loading with imposed strain and
pressures

We do so by means of an auxiliary problem (Paux)
to the virtual problem (P∗). In this problem, the load-
ing variables are changed. In problem (P∗), the load-
ing parameters are

(

E,αi
)

, corresponding to the physical
parameters imposed in our representation of alkali-silica
reaction. While we apply a strain and the chemical at-
tack progresses, all regions filled with gel (pores in the
attacked zone, pores in the ITZ, cracked aggregates inter-
faces, cracks in the cement paste) in family i are under
pressure pi.

3.3.1. New loading parameters and resulting strain

For the purpose of writing explicitly the elastic energy,
we decide to use

(

E, pi
)

as loading parameters for the me-
chanical auxiliary problem. Following the description we
have proposed of the morphology of the attacked concrete,
there are two type of sites we need to distinguish, which we
will call Type I and Type II, as shown on Fig. 2. The sites

Type I Type II

pβ

pα

pα

Cc

Ωc

Ωβ
vCa

(Cp, bp,Mp)

(Ct, bt,Mt)

u(x) = E.x Ω

Ωα
a

Ωα
t

Ωα
p

Figure 2: Attacked concrete: auxialiary problem

of Type I are those where decohesion has not occurred yet.
Therefore the porosity is only that of the attacked aggre-
gate and of the ITZ. The sites of Type II have undergone
decohesion. Therefore, from the point of view of the solid

skeleton, the aggregate is not visible anymore. Only the
pressure on the cavity and the crack lips remain. The Nf

families are therefore divided into NI families of Type I
and NII families of Type II.

In this new mechanical problem the displacement and
hence the strain is, everywhere in the structure, propor-
tional to the loading parameters because all materials are
linear elastic. Let us define two sorts of localization ten-
sors. First, a strain localization tensor A(x) such that if all
pressures

(

pi
)

are equal to zero, the strain in the structure
writes:

ε(x) = A(x) : E (5)

It is a fourth order tensor, with the minor symmetry but
not necessarily major symmetry. Second, Nf pressure lo-
calization tensors Ai

p
, i = 1..Nf . If only pj 6= 0, while

pi = 0, i 6= j and E = 0,

ε(x) = Aj

p
(x)pj (6)

As a result our strain writes, for any set of loading param-
eters in the auxiliary problem:

ε(x) = A(x) : E +

Nf
∑

j=1

Aj

p
(x)pj (7)

3.3.2. Elastic energy of the solid skeleton and constitutive
law

We are now able to write, at least formally, the expres-
sion of the elastic energy of the skeleton by unit volume of
the porous medium in the auxiliary problem for a virtual
damage state, using a poromechanical description at the
scale of the REV. We make the strong assumption that
the matrix of Biot compliances is diagonal, that is when
pressure is applied in a given porous zone, the average
strain on this zone is much larger than anywhere else in
the porous medium. It makes the expressions simpler and
avoids keeping terms that cannot be approximated easily
by micromechanics tools. Let us illustrate this assump-
tion by showing a numerical evaluation of the value of the
crossed Biot compliances in a very simple case : the case
where we have 2d plane strain elastic medium with cir-
cular pores, gathered in two families, each with volume
fraction f . These results are unpublished but were es-
tablished by the authors while comparing finite element
results with micromechanical estimated. This work is al-
ready published in [13], where all details concerning the
simulations can be found. The materials parameters cho-
sen were E = 1 for Young’s modulus and ν = 0.25 for
Poisson’s ratio. As one can see on Figure 3, the propor-
tion between diagonal Biot compliances M11 = M22 and
the extra-diagonal ones M12 = M21 greatly varies with
volume fraction. When reaching f = 0.2 for both fami-
lies, which means a total porosity of 0.4 and is close to
what can be reached with the random sequential addition
algorithm we used for these simulations, crossed and diag-
onal Biot compliances are close, with opposite signs. This
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means that at zero macroscopic strain, the pressure in one
family induces an increase of its volume of just a little
larger amount than the decrease of volume of the other
family. This fact is surely to be considered to precisely
study the coupled evolution of damage around different
reactive sites. We underline that the use of the strain lo-
calization tensor to determine the Biot compliance which
is made in this paper induces the replacement of M ii by
∑

j

M ij and M ij by zero (§ 4.1). However we stick to this

assumption which is exact if the various families undergo
exactly the same evolution, even if obviously we loose a
coupling phenomenon by doing this. We keep in mind that
this could be an idea for an improvement of the model,
which will be however hard to implement due to the lack
of simple micromechanical formula.
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Figure 3: Evolution of two dimensional plane strain Biot compli-
ances of a homogeneous medium with circular holes gathered in two
families of the same volume fraction f

All quantities except the loading parameters depend
in the following equations on the virtual damage state
(

di∗, xi∗
)

. The elastic energy of the skeleton writes:

E
E,(pi)

i=1:Nf

el,ske =
1

2
E : Chom : E +

1

2

Nf
∑

i=1

(pi)2M ii (8)

While the constitutive equations of the overall porous medium
write:







Σ = Chom : E −
Nf
∑

i=1

piBi

φi − f̃ i = Bi : E +M iipi for i ∈ {1, Nf}
(9)

Where Bi is the overall Biot coefficient of family i, describ-
ing how a pressure in a pore creates a macroscopic stress
Σ in a macroscopically restrained sample, or equivalently
how a macroscopic strain induces a pore volume change in
a pore free of pressure, M ii is the overall Biot compliance
of family i, linking the pressure in a pore family to its

volume change when the macroscopic strain is zero, and
Chom is the macroscopic stiffness tensor. The computation
of these poroelastic properties will be detailed in section 4.

The dual quantities of the imposed deformation E and

the imposed pressures pi are the average stress on the
porous medium Σ and φi − f̃ i which is the difference be-
tween the volume fraction of pores in site i relatively to
the volume of porous medium in deformed configuration
φi and the volume fraction of pores in site i relatively to
the volume of porous medium in undeformed configuration
f̃ i, that means the volume variation of the porous space
of site i relatively to the volume of porous medium.

We have completed the presentation of the auxiliary
problem, let us explain how it is related to the virtual
problem.

3.4. Back to P∗, introduction of the gel

In this section we wish to compute the pressures in
problem Paux, and introduce them in the energies given
in the previous paragraph to yield energies of problem P∗.

3.4.1. Undeformed and deformed gel volume

First let us write the undeformed gel volume, from the
attack degree αi, of site i. We define the parameter δ that
we call the expansion factor of the gel. It is the volume
of gel created by unit volume of dissolved aggregate. The
volume fraction of new porosity due to the attack at site i
per unit volume of concrete writes:

F i = f iρi
[

1−
(

1− αi
)3
]

(10)

While the undeformed volume fraction of the ITZ of family
i writes:

V i
itz = 3f i lcρitz

Ri
(11)

Since we assume that the gel has a volume δ times that of
the dissolved aggregate, the total undeformed volume of
gel of site i writes:

V i
0 = δF i (12)

Then assuming our gel behaves elastically and is charac-
terized by a bulk modulus Kg, the deformed volume of gel
in sites i per unit volume of porous medium V i writes:

V i = δF i

(

1− pi

Kg

)

(13)

This gel volume has to be compatible with the volume
available.

3.4.2. Available volume

This volume of gel has to be compared to the available
volume in deformed configuration for site i by unit volume
of porous medium. For families of Type I, it simply is
equal to the current volume fraction of the pores φi, which
according to the constitutive law at the macroscopic scale
writes:

φi = f̃ i +Bi : E +M iipi (14)

6



Where the undeformed volume f̃ i = V i
0 + V i

itz is the sum
of the newly created porosity and the porosity of the ITZ
and the deformed porosity is occupied by gel if there is
enough gel φi = V i. Therefore for families of Type I, the
equation we obtain is:

(

F i +Bi : E +M iipi
)

+ V i
itz = δF i

(

1− pi

Kg

)

(15)

Which can be solved for the pressure as:

pi
(

E,αi
)

=
(δ − 1)F i −Bi : E − 3f iρitz

lc
Ri

M ii + δF i

Kg

(16)

In families of Type II, the undeformed porosity in the con-
stitutive equation still writes f̃ i = V i

0 + V i
itz . But the

deformed porosity is occupied both by gel and a deformed

aggregate of volume V i
a =

(

f i − F i
)

(

1− pi

Ka

)

. Hence,

φi = V i + V i
a , and the pressure writes:

pi
(

E,αi
)

=
(δ − 1)F i −Bi : E − 3f iρitz

lc
Ri

M ii + δF i

Kg
+ fi−F i

Ka

(17)

Where Ka is the bulk modulus of the sound aggregate.
In Eqs. 16 and 17, F i, Bi and M ii depend on the attack

degree αi, and Bi and M ii depend on the damage state. If
Eqs. 16 and 17 predict negative pressures, they are taken
as zero instead.

3.5. Total energy in problem P∗

The combination of energies of the problem Paux which
are expressed in terms of

(

E, (pi)i=1:Nf

)

for a damage state
(

di∗, xi∗
)

, combined with the expression of the pressure un-

der the loading
(

E, (αi)i=1:Nf

)

at the same damage state,
will now yield the energy in terms of imposed deformation
and attack degrees, which corresponds to the situation of
problem P∗.

3.5.1. Contribution of the solid skeleton

Now that we know how to compute the elastic energy
of the skeleton at given macroscopic loading and pressure
(Eq. 8) and how to compute the pressure for a given macro-
scopic loading and given attack degrees (Eqs. 16 and 17),
we can write the elastic energy of the skeleton as a function
of our real loading parameters, for a given virtual damage
state

(

di∗, xi∗
)

:

E
E,(αi)i=1:Nf

el,ske = E
E,(pi(E,αi))

i=1:Nf

el,ske (18)

3.5.2. Contribution of the gel

The elastic energy of the gel is written as follows for
site i per unit volume of porous material :

E
E,(αi)i=1:Nf

el,gel =
1

2

δF i

Kg

(pi)2
(

E,αi
)

(19)

3.5.3. Contribution of the aggregates

While for Type II families, in which the aggregates are
no more accounted for as a part of the skeleton, the energy
stored in the aggregates of site i writes:

E
E,(αi)i=1:Nf

el,a =
1

2

f i − F i

Ka

(pi)2
(

E,αi
)

(20)

3.5.4. Dissipated energy

It is the sum of crack surfaces weighted by surface frac-
ture energies, which we take equal to Gdec for decohesion
and Gfiss for cracks in the cement paste. Therefore it
writes:

Ediss =

Ns

∑

i=1

f i

4π
3 (Ri)3

[

di∗4π(Ri)2Gdec

+

3
∑

k=1

π
(

(xi∗
k )2 − (Ri)2

)

Gfiss
]

(21)

We have shown the way we want to solve this evolution
problem. One information is missing: how are the homog-
enized properties of the concrete related to the material
properties of the various regions for a given damage state.
We address this question in the next section.

4. Resolution technique: microporomechanics

We have all the tools to write the elastic energy of our
attacked concrete for any virtual damage state

(

di∗, xi∗
)

and any imposed strain and attack degrees
(

E, (αi)i=1:Nf

)

.
We need to compute the poromechanical properties of the
concrete appearing in the overall constitutive equations
(Eq. 9). We will not detail this part but give final ex-
pressions. Details about this derivation can be found in
[19, 11, 55].

4.1. Poroelastic coefficients

The expressions write: Introducing the volume frac-
tions of each zone, α referring to Type I families, β to
Type II families : fα

a = Ωα
a/Ω, fα

p = Ωα
p /Ω, fα

t = Ωα
t /Ω,

fβ
v = Ωβ

v/Ω (see Fig. 2). The homogenized stiffness tensor
writes:

C
hom = Cc −

NII

∑

β=1

fv
βCc :< A >Ωβ

v

+

NI

∑

α=1

[

fα
a (Ca − Cc) :< A >Ωα

a
+fα

p (Cp − Cc) :< A >Ωα
p

+ fα
t (Ct − Cc) :< A >Ωα

t

]

(22)
Where, as shown on Fig. 2, Cc is the elasticity tensor of
the cement paste, Ca is the elasticity tensor of the sound
aggregate on domain Ωα

a , (Cp, bp,Mp) and (Ct, bt,Mt) are
the elasticity tensor, Biot coefficient and Biot compliance
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of the attacked aggregate and ITZ, respectively on do-
mains Ωα

p and Ωα
t . < A >D denotes the volume average

of the field A on domain D. The Biot coefficients of the
various zones containing fluid write:

{

Bα = Bα

p
+Bα

t
= fα

p bp1 :< A >Ωα
p
+fα

t bt1 :< A >Ωα
t

Bβ

v
= fβ

v 1 :< A >Ωβ
v

(23)
And finally the Biot compliances (neglecting crossed terms,
as explained at § 3.3.2):



















Mαα = fα
p

[

bp1 :< Aα >Ωα
p
+Mp

]

+ f t
α

[

bt1 :< Aα >Ωt
α
+Mt

]

Mββ = fβ
v 1 :< Aβ >Ωβ

v
= 1 : C−1

c :
[

Bβ

v
− fβ

v 1] (24)

Let us now use micromechanics to give approximations of
the averages of the various localization tensors.

4.2. Approximation of the localization tensors

In our approach, one of the main objectives is to keep
the model very simple. Hence, we have decided to approx-
imate the localization tensors thanks to classical microme-
chanics schemes. We have decided to use a scheme called
the interaction direct derivative (IDD) scheme, which was
introduced by Zheng and Du [68, 20]. Let us first present a
dilute estimate for our problem, since it is the easiest way
to write and also serves as a basis for the IDD scheme.

4.2.1. Dilute approach

In this approach, we assume that the heterogeneities
only occupy a very small volume fraction of concrete. Hence,
to estimate the localization tensors averages on the various
zones, we can use simpler mechanical problems, assuming
that each grain lies in an infinite cement paste. Let us first
show our approach for Type I families.

Type I sites. In these families which have not undergone
decohesion, we have a number of spherical shells. At the
center, the sound part of the aggregate in a sphere of radius
(1−αi)Ri and modulus Ca. Then, the attacked zones be-
tween radii

(

1− αi
)

Ri and Ri, and poromechanical prop-
erties (Cp, bp,Mp). Next, the ITZ between Ri and Ri + lc
with proporties (Ct, bt,Mt). Finally, an infinite cement
paste of elasticity tensor Cc.

As explained in § 4.1, we need to compute the local-
ization tensors under two types of loading: strain imposed
at infinity on the one hand and pressure in the porous
zones on the other hand. This is conveniently achieved us-
ing Love’s solution [46] which is also used by Christensen
and Lo in [15]. This solution yields the displacement field
under an imposed shear strain. For the pressure and the
spherical part of the imposed strain, it is much easier due
to the spherical symmetry of the solution. We won’t give
the details of this solution which can be found in the au-
thor’s PhD thesis and are classical [11].

The dilute estimate of the strain localization tensor is
an isotropic tensor which can hence be written for the three
regions as:

< Adil >Ωα
z
= rαz J+ sαzK (25)

Where J and K are the classical basis tensors for isotropic
fourth order tensors and the index z takes values a, p and
t. Second, the space averages of the pressure localization
tensors can be determined simply using a spherical sym-
metry solution where the porous zones are under pressure.
We hence obtain the averages< Aα

dil
>Ωα

p
and < Aα

dil
>Ωα

t
.

These averages allow computing the poromechanical coef-
ficients thanks to Eqs. 22, 23, and 24.

Type II sites. For these families we haven’t yet specified
the shape of the cracked cavities. We need a very simple
geometrical description so we can write the solution inspir-
ing ourselves of Eshelby’s solution. These sites are made
of a spherical cavity on which the pressure of the gel sur-
rounding the aggregate which has undergone decohesion is
applied, and cracks in the cement paste which appear due
to the high pressures remaining even after decohesion.

First, the cracks are assumed to be penny-shaped (PS)
and centered on the center of the cavity. In fact, they have
an annular shape. Each crack is only described by its ori-
entation and external diameter (x). With this description
it is possible to have N cracks of sizes xi, i ∈ 1 : N around
each cavity, and orientations θi, φi. We want to reduce
the number of cracks. Thanks to finite element calcula-
tions in 2d, we have shown that the overall properties of a
medium containing randomly oriented cracks are very close
to those of a medium containing cracks oriented along 2
orthogonal directions only [11, 13]. Hence, we assume that
anisotropic crack distributions can be represented by or-
thogonal cracks of adequate sizes. Therefore, we assume
that in 3d, only 3 orthogonal cracks can grow around each
cavity (see Fig. 4)

This geometrical simplification leads us to try to com-
pute the desired averages of strain localization tensors us-
ing a superposition of various Eshelby solutions. Our com-
plex cracked cavity is hence considered as a superposition
of a spherical cavity of Eshelby tensor Ssphc and volume
fraction f i , and 3 PS cracks identical to the cracks around
the cavity, of aspect ration Xf and sizes x1, x2, x3 in di-
rections e1, e2, e3. The associated Eshelby tensors only de-
pend on the orientation, the aspect ratio and the outside
medium (here the cement paste). We call these Eshelby
tensors Sf1c , Sf2c , Sf3c . This decomposition was studied in
detail in 2d in [11].

An important point in the choice of the volume fraction
affected to the cracks (here we use volume fraction instead
of the more common crack density parameter introduced
by Budiansky and O’Connell [8]). If there is one crack
in each direction τ for each family i of size xi

τ and aspect
ratio Xf , the volume fraction for each direction and family
writes:

fτ i = f iXf

(

xi
τ

Ri

)3

(26)
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Figure 4: Spherical cavity surrounded by three orthogonal cavities

However, we have noticed that better results are obtained
when correcting this volume fraction to account for the
fact that the cracks intersect the sphere. Thanks to 2d
computations detailed in [11], we came up with a correc-
tion volume fraction equal to:

f
′i
τ = f i

τ

(

Ri

xi
τ

)2

= f iXf

xi
τ

Ri
(27)

The final volume fraction we use for the crack in direction
τ of family i is then:

f i
τ − f

′i
τ = f iXf

(

xi
τ

Ri

)3
(

1−
(

Ri

xi
τ

)2
)

(28)

All the Eshelby tensors can be found in Mura’s book
[52]. Finally the dilute localization tensors corresponding
to these families can be written:

< A
dil >Ωβ

v
=
[

I− S
sph
c

]−1
+

3
∑

τ=1

f i
τ − f

′i
τ

f i

[

I− S
fτ
c

]−1

(29)
One could think that since the volume fractions of the
cracks are much smaller than those of the cavity, the cor-
responding terms are negligible, but in fact some terms
of the Eshelby tensors diverge when the aspect ratio goes
to zero, so that their product by the volume fraction con-
verges to a constant value [19].

We now have a dilute approximation of the averages
of the localization tensors of Eqs. 22, 23, and 24. Let
us explain how we obtain a better estimate with the IDD
scheme.

4.2.2. Use of the IDD estimate

The IDD estimate was proposed by Zheng and Du
[68, 20]. From our point of view, it gives good results
with cracks and is easy to use, so it makes it the best can-
didate to improve our estimate of the localization tensors
[11, 13]. With this estimate, it is easy to account for the di-
versity of inclusion shapes and space distribution. In many
cases it is identical to classical estimates: the two-phase
estimate [65] when we only have one type of ellipsoidal in-
clusion, Mori-Tanaka [5] when the inclusions are spherical.
We have shown its effeciency thanks to 2d finite element
computations on randomly generated microstructures, in
cases where the interpenetration of cracks was forbidden
[13]. Therefore, we don’t expect our model to remain valid
at high cracking states where percolation occurs. Also, this
explains why we have considered the IDD estimate to per-
form much better than self-consistent estimates. Let us
now build the IDD estimate from the dilute estimate.

Strain localization tensor. The IDD localization tensors
are obtained from the dilute ones by multiplication by a
correction term accounting for the interaction between the
heterogeneities. It makes use of a Hill tensor describing
the shape of the ellipsoidal inclusions Pk

c and another one
describing the ellipsoidal spatial distribution of the inclu-
sions PDk

c . Let us recall that the Hill tensor of a given
inclusion k in medium c is related to the Eshelby tensor
of the same inclusion in the same medium by the relation
Pk
c = Skc : C−1

c .

< A
IDD >Ωi=< A

dil >Ωi :
[

I−
∑

k

fk
P
Dk
c :

(

[Ck − Cc]
−1

+ P
k
c

)−1
]−1

(30)

The correction term is the same for all inclusions. We call
it T. More precisely, the following sum must be computed:

W =
∑

k

fk
P
Dk
c :

(

[Ck − Cc]
−1

+ P
k
c

)−1

(31)

However, this description only works for ellipsoidal inclu-
sions, which is not the case for our Type I families. These
cannot be fully described by Hill tensors, that is why we
had to use the Love solution. If we go back to the idea
behind this correction term, we can write it as a function
of the dilute localization tensor:

< A
dil >Ωi =

(

I+ P
i
c : [Ck − Cc]

)−1

= [Ck − Cc]
−1

:
(

[Ck − Cc]
−1

+ P
i
c

)−1 (32)

It writes:

W =
∑

k

fk
P
Dk
c : [Ck − Cc] :< A

dil >Ωk (33)
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Then, if the inclusions are not ellipsoids but we know their
dilute localization tensor (we do thanks to Love solution)
and a Hill tensor approaching their space distribution, we
know all the terms needed. Concerning the spatial dis-
tribution of the aggregates and the cracks, we keep things
simple assuming that it is spherical (which might be wrong
if the aggregates are flat, but then a lot of things would
have to be adapted). We get:

W = S
sph
c :

∑

k

fk
C

−1
c : [Ck − Cc] :< A

dil >Ωk (34)

Therefore, we know how to write the IDD estimate for
strain localization tensors.

Concerning pressure localization tensors, we have not
been able to make the same kind of modification and have
decided to keep the same expression as for the dilute esti-
mates.

5. Simple examples

We have explained in the previous sections the theo-
retical basis of our model. Let us now demonstrate how it
works by very simple examples of concrete under attack.
When using our model, the most time-consuming opera-
tion is the minimization of the total energy, which requires
many evaluations of the energies for different crack config-
urations. Hence, to make things simpler, we need to de-
crease the number of crack sizes over which the energy is
minimized. There are two simple ways to do that. First,
reduce the number of aggregate families. Second, assume
the symmetry of the crack state not to have 3 independent
crack sizes for each aggregate family, but just one or two.
In this section and next section we present our results,
which were created using a second implementation of our
program (compared to [11]), in Python, in the Materials
Ageing Platform developed at EDF R&D [40].

5.1. Imposed strain

Our theoretical derivation has been performed in the
case of an imposed macroscopic strain. In this example we
assume that the strain is imposed to the value:

E = 10−4e1 ⊗ e1 (35)

Which corresponds to a moderate traction along axis e1.
The result of this traction is that when the pressure devel-
ops around the aggregates, once decohesion has occurred
due to high pressures, an anisotropic cracking takes place
due to the combination of the pressure and the macro-
scopic loading, which corresponds precisely to the situa-
tion on real structures which we are modeling.

Let us detail on this example how the degradation of
the attacked concrete develops. We will choose simple val-

ues for the parameters of the model:

Ea 60 GPa Kgel 0.3 GPa
Ec 20 GPa ρ1 0.1
νa = νc 0.25 δ 1.5

Gdec
c 40 J.m−2 lc 10 µm

Gfiss
c 80 J.m−2 ρitz 0.3

(36)

And, in this example, there will only be one aggregate
family of size R1 = 1 mm and volume fraction f1 = 0.1.

Let us start with the observation of the evolution of the
pressure. One can see on Fig. 5 that there is first a short

0 2 4 6 8 10
10−4

d [m]

0

1

2

3

4

5

6

p
[P

a
]

107 Pressure

Figure 5: Evolution of the pressure under uniaxial traction strain.
R1 = 1 mm, f1 = 0.1

time during which no pressure increase is seen. This pe-
riod corresponds to the filling of the ITZ by the gel. Then
the pressure increases very fast to high values (60 MPa) in
this case, but here the parameters have not been identified
properly, so this value is not to be trusted. Following this
increase, there are two pressure drops. These correspond
to the decohesion of the aggregates and the beginning of
cracking, with a slight crack size jump in this case. This
interpretation of the evolution of pressure is confirmed by
the observation of the crack size (Fig. 6). We see the crack
jump at the same time as pressure drop. The crack size
plateau which occurs around attacks depths of 4.10−4 m
is purely due to our model: using the Full Range IDD
scheme, at some point the spatial distribution of the cracks
is assumed to flatten. We haven’t discussed this issue in
detail here, but it is explained extensively in [57, 3, 13, 11].
This evolution of the shape of the crack distribution in-
duces this temporary crack size stabilization. It could be
avoided by smoothing the relationship between the distri-
bution and the crack volume fraction. Due to this increase
in crack size in direction e1, there is a drop in mechanical
properties in this direction, as can bee seen on Fig. 7. The
first property loss is due to decohesion, which is why it
affects all three directions identically. The second drop is
only in direction 1 and is due to cracking. The Young’s
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Figure 6: Evolution of the crack size under uniaxial traction strain.
R1 = 1 mm, f1 = 0.1
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Figure 7: Evolution of the solid skeleton Young’s modulus under
uniaxial traction strain. R1 = 1 mm, f1 = 0.1

modulus of the skeleton diminishes to a very low value,
while the undrained modulus, which takes the value of the
gel and aggregate in the cavities into account diminishes
much less (Fig. 8). We also display the Biot coefficients
(Fig. 9) and Biot compliance (Fig. 10). Their evolution
are similar, but the Biot coefficient becomes anisotropic
as the stiffness tensor, which is due to the crack orienta-
tion. The values of the anisotropic Biot coefficient might
seem large (when it reaches 1, it means a stress inside the
pore network is fully transmitted at the macroscopic scale,
if strain is prevented), but are consistent with the Young’s
modulus values. When the Biot coefficient reaches 0.7 in
direction 1, the drained Young’s modulus is divided by
almost a factor of 4. This large increase of the Biot coeffi-
cient (Fig. 9) and decrease of the Young’s modulus (Fig. 7)
are due for the isotropic part to decohesion (spherical cav-
ities of volume fraction 0.1 here yield a Biot coefficient of
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10−4

d [m]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

E
u

[P
a
]

1010 Undrained Young’s modulus

End
1

End
2

End
3

Figure 8: Evolution of the undrained Young’s modulus under uniax-
ial traction strain. R1 = 1 mm, f1 = 0.1

0.2 with the IDD estimate), and for the anisotropic part,
to a high concentration of cracks normal to direction 1,
not in terms of volume fractions which are always negli-
gible for cracks, but in terms of crack density parameter
which is not computed here (see Fig. 6), [8].
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Figure 9: Evolution of Biot coefficients under uniaxial traction strain.
R1 = 1 mm, f1 = 0.1

Finally, during this pressure build-up and crack cre-
ation under fixed displacement, stresses develop (Fig. 11).
While at the beginning of attack the largest stress is in
the direction of the imposed traction, cracking creates a
high compressive stress which is most important in the
cracking direction. It is also interesting to take a look
at the evolution of energies during the evolution of the
concrete (Fig. 12). The total energy is continuous, even
at moments where the crack state is discontinuous. The
dissipated energy jumps, and the elastic energy drops ex-
actly of the same amount at decohesion and at the crack
jump. The potential and elastic energies are identical be-
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Figure 10: Evolution of the Biot compliances under uniaxial traction
strain. R1 = 1 mm, f1 = 0.1
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Figure 11: Evolution of stresses under uniaxial traction strain. R1

= 1 mm, f1 = 0.1

cause there are no imposed forces in this example. We
have then shown that our model is able to determine the
evolution of cracking depending on an external loading of
the imposed strain type. Let us now give an example with
imposed stresses.

5.2. Imposed stress

We choose to impose an unidirectional compression
stress.

Σ = −5 MPa e1 ⊗ e1 (37)

All parameters remain the same as given in Eq. 36, but
the aggregate volume fraction is higher in this example
(R1 = 1 mm, f1 = 0.3). In this example, a compression
is imposed to the sample along the first direction. It is
therefore more likely to see cracks appear along axes 2 and
3. As expected, this is what happens, as can be seen on
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Figure 12: Evolution of energies under uniaxial traction strain. R1

= 1 mm, f1 = 0.1
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Figure 13: Evolution of crack sizes under uniaxial compression stress.
R1 = 1 mm, f1 = 0.3

Fig. 13. This cracking under imposed stress induces impor-
tant strains in the uncompressed directions (Fig. 14). We
have hence shown that our model is also able to deal with
imposed stresses. The equations relative to this case have
not been detailed because they are very close to those of
the imposed strain case. The only difference is that when
computing the total energy, the potential energy includes
a term taking account of the work of the imposed stresses.

Finally let us present a more complicated test which
was used by Multon in his thesis [50].

5.3. Multon’s test

In this test, cylindrical concrete samples are submitted
to various compressive loads along their longitudinal axis,
while their radial expansion is restrained by steel rings
[50]. This set-up is interesting because of the complex
three-dimensional stress state which is induced. The idea
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Figure 14: Evolution of strain under uniaxial compression stress. R1

= 1 mm, f1 = 0.3

is that because of the longitudinal compressive load, crack-
ing starts in the radial directions. This induces tension in
the rings and eventually high stresses. Therefore, at some
point radial cracking can be stopped and cracking can ap-
pear in the longitudinal direction where compression is
still applied. This phenomenon of cracking reorientation
is very interesting and a good way to test the qualitative
behavior of our model. This behavior is shown here by
using the same set of parameters as previously (Eq. 36),
again with only one aggregate size (R1 = 1 mm and f1

= 0.3). As in Multon’s test, the sample’s radius is 6.5 cm
and the steel ring’s Young’s modulus is 193 GPa. The
rings cover all the height of the sample but are not con-
nected. Hence they only impact the radial stress in the
sample. In the present case the steel rings are of radius
3 mm and the compressive load is 10 MPa.

Let us take a look at the development of cracking in the
sample. It starts with cracks in directions 2 and 3, which
are the directions impacted by the rings (Fig. 15). At some
point, compressive stresses become much more important
in the radial direction that in the longitudinal direction
(Fig. 16). Cracking changes orientation and stresses in the
longitudinal and radial directions progressively equilibrate.

5.4. Conclusion on the qualitative behavior of the model

In this section we have shown some examples of the
ability of the model to predict cracking of an attacked
concrete under various loadings. However, no comparison
with experiments has been shown yet. This will be the
focus of next section.

6. Comparison with experiments

In order to test our model, we need to compare its
results to experimental data. We have chosen to use Mul-
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ton’s data [50, 51]. Until more data is available, particu-
larly on triaxial tests in which the radial and axial loads
are independently imposed (such as in the testing devise
developed by Giorla [31]), it seems to us it is the most com-
plete data set for ASR under loading. Let us give some
details about the test.

6.1. Multon’s test

Multon performed 9 different loading cases on reactive
samples, and 3 loading on non reactive sample, in order
to correct the strains of the reactive sample from shrink-
age and creep. Even if this correction is not perfect, we
follow Multon’s approach and use the corrected expansion
curves. A better solution would be to simulate shrinkage
and creep, which is done for example in Grimal’s model
[33, 34] in his phenomenological model and which was de-
veloped by Giorla in a microscale model [30, 31]. Since
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creep of cementitous materials is faster at small scales, we
think that creep plays a role very locally on crack propaga-
tion. This role is neglected here, and could be investigated
in a further version of the model where the cement paste
would be considered as viscoelastic, as is done by Giorla
through finite element simulations.

The samples are vertical cylinders of 13 cm diameter
and 24 cm length. They are sealed with aluminum adhe-
sive foils. A creep frame is used to submit them to 10 MPa
and 20 MPa loads. The steel rings are either 3 mm or 5 mm
thick and 1 cm high, covering all the lateral surface of the
samples but not touching each other. The temperature
is kept at 38˚C. The 9 tests combine 3 radial restraints:
rings of 0 mm, 3 mm, and 5 mm, and three axial loadings:
0 MPa, 10 MPa, and 20 MPa. In our model we assume
that the volume fraction of reactive silica in the reactive
aggregates is ρ = 0.1 [49].

The particle size distribution is shown on Fig. 17. There
is 23 % of non reactive aggregates (represented with a ra-
dius of 1 mm, but this radius does not matter since they
don’t undergo degradation). The rest of the aggregates are
reactive. They are limestone crushed aggregates with silica
veins, which can react. We think the created gels can eas-
ily migrate to the ITZ because of the veins. Therefore, our
model seems well suited for this aggregate since most frac-
ture phenomena will take place in the cement paste. All
reactive aggregates are rather large, starting from 2.5 mm
to 2.8 cm. We here underline that our model is able to deal
with such variety of particle sizes, very large computations
would be required to deal with a representative elementary
volume of such a material.
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Figure 17: Aggregate size distribution.

6.2. Comments on the test results

The strain and stress computed from the measurements
are given on Figs. 18 and 19. Looking at the strains
(Fig. 18), we see that the free expansion is quite anisotropic,
which was also mentioned by Comi and Grimal who worked

on these tests results as well [34, 17]. The axial strain
(Emulton

zz ) decreases with increasing axial load, except when
looking at the couples (3 mm, 10 MPa; 3 mm, 20 MPa) and
(5 mm, 10 MPa; 5 mm, 20 MPa) and tends to increase with
increasing rings thickness, but it is not very pronounced
when looking at couples (3 mm, 10 MPa; 5 mm, 10 MPa)
and (3 mm, 20 MPa; 5 mm, 20 MPa). The radial strain
slightly increases with the axial load and decreases with
the rings thickness. It is difficult to interpret these strains,
possibly because of measurement errors, as mentioned by
Multon concerning the radial strain, or of the correction
for creep and shrinkage from experiments with non reac-
tive aggregates and therefore, different stress states. The
computation of the stress is more strainghforward (Fig. 19)
and it seems easier to interpret: the radial stress increases
with increasing axial load and rings thickness.

Let us use these experiments to identify the parameters
of our model.

6.3. Parameter identification

We have performed the identification of some of the
parameters of our model on Multon’s data. First, we have
considered that some parameters could be fixed because
their values can be measured:

Ea 60 GPa ρitz 0.3
Ec 20 GPa ρi 0.1
νa = νc 0.25 X 10−6

Es 193 GPa νs 0.25

(38)

We have fixed the aspect ratio of the cracks since the model
is insensitive to this parameter as long as it is very small.
We then assume that the fracture energy of the cement
paste is twice that of the interface Gfiss = 2Gdec, which
is consistent with values given in [1]. We also introduce
a time scale parameter η, which links the attack depth to
the physical time:

d(t) = η
√
t (39)

We assume the attack depth is the same for all aggregates
and scales with the square root of time, which was also our
choice in [12], following [48, 29]. The reason for that it that
the progress of the attack is linked to diffusion processes.
Therefore, the parameters of our model which need to be
identified are Kg, lc, δ, η,G

dec.
The optimization of the parameters is done only on the

expansion curves of two experiments: (0 mm, 0 MPa) and
(3 mm, 10MPa). Only the strain curves were used to iden-
tify the parameters. Then all experiments were simulated,
and stress were also computed for comparison with the ex-
perimental results. The obtained set of parameters is the
following:

Kg 0.303 GPa η 2.67 10−5 m/
√
d

lc 3.88 µm Gdec 338 J.m−2

δ 1.58 Gfiss 2Gdec

(40)

Where the time scale parameters η is written in meters per
square root of days. Let us first comment on this value of
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η. With this value, 400 days of experiment correspond to
an attack depth of 0.53 mm. Compared to the size of the
aggregates (2.5 mm to 2.8 cm, see Fig. 17), we see that the
smallest aggregates are significantly attacked, while for the
larger ones, the attack is rather superficial.

The fit of the strains on experiments (0 mm, 0 MPa)
and (3 mm, 0 MPa) give satisfactory results (Fig. 18). Our
model cannot reproduce the anisotropy of the free expan-
sion. One way to do it would be to use non spherical aggre-
gates, as shown by Giorla [31]. This improvement could
be introduced in a more advanced version of the model
but was not attempted yet. The other strain curves are
also well reproduced for loads of 0 and 10 MPa, but the
model obviously fails at 20 MPa. The decohesion does not
occur at such loads, because our model currently does not
allow for partial decohesion, and also forbids interpenetra-
tion of cracked surfaces. In the case of high loads (20 MPa
here), the pressure is not sufficient to prevent interpene-
tration of the aggregate and its surrounding cement paste
after decohesion. Therefore decohesion is prevented. This
could be improved by modeling partial decohesion of the
aggregate but would require important improvements of
its micromechanical description. This discrepancy of the
model is also seen on the 10 MPa tests where the brutal-
ity of decohesion induces important strain jumps. This is
also due to the low number of aggregate size and the to-
tal absence of variability of the material parameters. One
could point out that the expansion seems to slow down at
the end of the test period (450 days), which is less visible
in the predictions than in the tests results. Indeed, the
depletion of reactants such as alkali is not modeled here,
while it might have occurred in the tests. Some models at
the same scale consider this point [48].

The results are also satisfactory in terms of stress for
most cases (Fig. 19), even if stresses are usually overesti-
mated. This can be linked to the fact that creep is not
taken into account in our model, but only by correcting
the expansion curves using experiments on non-reactive
samples.

Finally, let us comment on the identified parameters
(Eq. 40). The gel bulk modulus is roughly a tenth of that of
water, and two orders of magnitude below that of C-S-H. It
is also much lower that the modulus chosen by Giorla in his
simulations [31] and those measured by Leeman and Lura
on samples from a 45 years old dam [41]. We think that
the kind of gel that forms outside the aggregates is very
different from the swelling pockets found in more slow-
reactive concrete as modeled by Giorla. Considering the
gel as a porous solid, this bulk modulus corresponds to its
drained stiffness, since the experiment is long compared
to the time of water transport in gels. Therefore we think
the bulk modulus is in the right order of magnitude. We
think that the expansion factor δ and the ITZ thickness
are also realistic.

In contrast to that, the fracture energies Gdec and Gfiss

are an order of magnitude above the values reported in the
literature, for example by Wittmann or Alexander [1, 67].

We think that the reason for that is that our model cre-
ates fracture patterns that are more oriented than in real
concretes, where crack directions are highly influenced by
the relative position of aggregates. To compensate for this
intrinsic lack, the identification lead to increased values of
the fracture energies, allowing cracking to occur at higher
pressures and distributing cracks more isotropically.

We think that the model is well suited for loads below
10 MPa. The drawbacks of our model, such as the bru-
tality of decohesion and the high fracture energies, do not
invalidate it, but give hints to improve the model. Another
drawback which was not underlined is the overestimation
of the decrease of the Young’s moduli with our model. We
haven’t shown these results, but these moduli are roughly
divided by four, which is too much compared to experimen-
tal data. We think the main reason is that in our model,
the decohesion removes completely the shear stiffness of
the aggregates, while in real concrete this stiffness would
contribute to the overall stiffness in compression. Another
interesting output of the model would be to compute the
resistance of the concrete at different attack stages, as done
by Esposito and Hendriks [24]. This would require that the
failure mechanism during a resistance test be close to that
modeled here for alkali-silica reaction, which needs to be
discussed.

7. Conclusion

In this article our main goal was to show that it is pos-
sible to build simple models for alkali-silica reaction based
on micromechanics. To do so, we have chosen to repre-
sent the behavior of a concrete containing aggregates such
that most of the damage occurs at the interface between
the aggregates and the cement paste and in the cement
paste. We have presented the micromechanical framework
as well as the energy criterion that allow computing crack-
ing around the aggregates under macroscopic loading. We
have been able to identify the parameters of our model
on triaxial experiments by Multon. The model reproduces
the interesting phenomenon of cracking reorientation un-
der loading and behaves well up to compressive loads of
10 MPa. The model was implemented in the Materials
Ageing Platform at EDF R&D.

Some improvements are needed for the model. For ex-
ample, the description of decohesion is not refined enough,
inducing brutal evolutions of strain in some cases, and for-
bidding swelling in any direction in cases where the con-
crete is highly compressed.

To make the model more practical, now that we are
confident that that kind of model can be built and that
parameters can be identified on experiments, we plan to
build a version that would describe degradation for slow-
reactive aggregates. That would require computing dam-
age inside the aggregates rather than outside. On the one
hand, from a micromechanical point of view, such a model
seems easier to build since interaction between aggregates
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Figure 18: Identification of parameters on Multon’s experiments. Strain. Grey plots: experiment used for the identification.

will be diminished if damaged is located inside the aggre-
gates. On the other hand, on larger time-scales, the neglect
of creep would become a bigger approximation. This path
surely needs to be explored.
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