F. Bignonnet, K. Sab, L. Dormieux, S. Brisard, and A. Bisson, Macroscopically consistent non-local modeling of heterogeneous media, Computer Methods in Applied Mechanics and Engineering, vol.278, issue.402, pp.218-238, 2010.
DOI : 10.1016/j.cma.2014.05.014

J. Nadeau, A multiscale model for effective moduli of concrete incorporating ITZ water???cement ratio gradients, aggregate size distributions, and entrapped voids, Cement and Concrete Research, vol.33, issue.1, pp.103-113, 2003.
DOI : 10.1016/S0008-8846(02)00931-6

J. Feder, Random sequential adsorption, Journal of Theoretical Biology, vol.87, issue.2, pp.237-2540022, 1980.
DOI : 10.1016/0022-5193(80)90358-6

B. D. Lubachevsky and F. H. Stillinger, Geometric properties of random disk packings, Journal of Statistical Physics, vol.58, issue.1, pp.561-583, 1990.
DOI : 10.1007/BF01025983

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Transactions on Mathematical Software, vol.22, issue.4, pp.469-483, 1996.
DOI : 10.1145/235815.235821

D. Bentz, E. J. Garboczi, and K. A. Snyder, A hard core/soft shell microstructural model for studying percolation and transport in three-dimensional composite media, Tech. rep., National Institute of Standards and Technology, 1999.

J. Escoda, Modélisation morphologique et micromécanique 3d de matériaux cimentaires, 2012.

E. Gilbert, D. Johnson, and S. Keerthi, A fast procedure for computing the distance between complex objects in three-dimensional space, Robotics and Automation. Proceedings. 1987 IEEE International Conference on, pp.1883-1889, 1987.
DOI : 10.1109/56.2083

A. R. Kansal, S. Torquato, and F. H. Stillinger, Computer generation of dense polydisperse sphere packings, The Journal of Chemical Physics, vol.117, issue.18, 2002.
DOI : 10.1063/1.1511510

A. Donev, S. Torquato, and F. H. Stillinger, Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details, Journal of Computational Physics, vol.202, issue.2, pp.737-764, 2005.
DOI : 10.1016/j.jcp.2004.08.014

A. Donev, S. Torquato, and F. H. Stillinger, Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles., Journal of Computational Physics, vol.202, issue.2, pp.765-793, 2005.
DOI : 10.1016/j.jcp.2004.08.025

E. Ghossein and M. Lévesque, A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites, International Journal of Solids and Structures, vol.49, issue.11-12, pp.11-12, 2012.
DOI : 10.1016/j.ijsolstr.2012.02.021

O. Zienkiewicz, M. Watson, and I. King, A numerical method of visco-elastic stress analysis, International Journal of Mechanical Sciences, vol.10, issue.10, pp.807-827, 1968.
DOI : 10.1016/0020-7403(68)90022-2

R. L. Taylor, K. S. Pister, and G. L. Goudreau, Thermomechanical analysis of viscoelastic solids, International Journal for Numerical Methods in Engineering, vol.18, issue.1, pp.45-59, 1970.
DOI : 10.1002/nme.1620020106

Z. P. Ba?ant and S. T. Wu, Creep and shrinkage law for concrete at variable humidity, Journal of the Engineering Mechanics Division, vol.100, issue.6, pp.1183-1209, 1974.

P. Suquet, H. Moulinec, O. Castelnau, M. Montagnat, N. Lahellec et al., Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep, iUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, pp.76-90, 2012.
DOI : 10.1016/j.piutam.2012.03.006

URL : https://hal.archives-ouvertes.fr/hal-00644773

H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1-2, pp.69-94, 1998.
DOI : 10.1016/S0045-7825(97)00218-1

URL : https://hal.archives-ouvertes.fr/hal-01282728

M. Idiart, H. Moulinec, P. P. Castañeda, and P. Suquet, Macroscopic behavior and field fluctuations in viscoplastic composites: Second-order estimates versus full-field simulations, Journal of the Mechanics and Physics of Solids, vol.54, issue.5, pp.1029-1063, 2006.
DOI : 10.1016/j.jmps.2005.11.004

URL : https://hal.archives-ouvertes.fr/hal-00111463

D. J. Eyre and G. W. Milton, A fast numerical scheme for computing the response of composites using grid refinement, The European Physical Journal Applied Physics, vol.6, issue.1, pp.41-47, 1999.
DOI : 10.1051/epjap:1999150

H. Moulinec and F. Silva, Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials, International Journal for Numerical Methods in Engineering, vol.42, issue.2
DOI : 10.1002/nme.4614

URL : https://hal.archives-ouvertes.fr/hal-00787089

M. Frigo and S. G. Johnson, The Design and Implementation of FFTW3, special issue on " Program Generation, Optimization, and Platform Adaptation, pp.216-231, 2005.
DOI : 10.1109/JPROC.2004.840301

S. Balay, W. D. Gropp, L. C. Mcinnes, and B. F. Smith, Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries, Modern Software Tools in Scientific Computing, pp.163-202, 1997.
DOI : 10.1007/978-1-4612-1986-6_8

A. Kwan, C. Mora, and H. Chan, Particle shape analysis of coarse aggregate using digital image processing, Cement and Concrete Research, vol.29, issue.9, pp.8-884600105, 1999.
DOI : 10.1016/S0008-8846(99)00105-2

J. Hu and P. Stroeven, SHAPE CHARACTERIZATION OF CONCRETE AGGREGATE, Image Analysis & Stereology, vol.25, issue.1, pp.43-53, 2011.
DOI : 10.5566/ias.v25.p43-53

M. Gambhir, Concrete Technology: Theory and Practice, 2013.

S. Brisard and L. Dormieux, FFT-based methods for the mechanics of composites: A general variational framework, Computational Materials Science, vol.49, issue.3, pp.663-671, 2010.
DOI : 10.1016/j.commatsci.2010.06.009

URL : https://hal.archives-ouvertes.fr/hal-00722339

C. F. Dunant, B. Bary, A. B. Giorla, C. Péniguel, J. Sanahuja et al., A critical comparison of several numerical methods for computing effective properties of highly heterogeneous materials, Advances in Engineering Software, vol.58, issue.0, pp.1-12, 2013.
DOI : 10.1016/j.advengsoft.2012.12.002

URL : https://hal.archives-ouvertes.fr/hal-00804043

K. Sab, On the homogenization and the simulation of random materials, European Journal of Mechanics A-Solids, vol.11, issue.5, pp.585-607, 1992.

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13-14, pp.13-14
DOI : 10.1016/S0020-7683(03)00143-4

A. A. Gusev, Representative volume element size for elastic composites: A numerical study, Journal of the Mechanics and Physics of Solids, vol.45, issue.9, pp.1449-1459, 1997.
DOI : 10.1016/S0022-5096(97)00016-1

K. Sab and B. Nedjar, Periodization of random media and representative volume element size for linear composites, Comptes Rendus M??canique, vol.333, issue.2, pp.187-195, 2005.
DOI : 10.1016/j.crme.2004.10.003

URL : https://hal.archives-ouvertes.fr/hal-00121487

E. Gal and R. Kryvoruk, Meso-scale analysis of FRC using a two-step homogenization approach, computational Fluid and Solid Mechanics 2011 Proceedings Sixth MIT Conference on Computational Fluid and Solid Mechanics, pp.11-12, 2011.
DOI : 10.1016/j.compstruc.2011.02.006

M. Ostoja-starzewski, Material spatial randomness: From statistical to representative volume element, Probabilistic Engineering Mechanics, vol.21, issue.2, pp.112-132, 2006.
DOI : 10.1016/j.probengmech.2005.07.007

A. Lachihab and K. Sab, Aggregate composites: a contact based modeling, Computational Materials Science, vol.33, issue.4, pp.467-490, 2005.
DOI : 10.1016/j.commatsci.2004.10.003

K. L. Scrivener, A. K. Crumbie, and P. Laugesen, The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete, Interface Science, vol.12, issue.4, pp.411-421, 1023.
DOI : 10.1023/B:INTS.0000042339.92990.4c

S. Diamond and J. Huang, The {ITZ} in concrete ? a different view based on image analysis and {SEM} observations, Cement and Concrete Composites 179 ? 188, special Theme Issue on Image Analysis, pp.2-3, 2001.

A. Hussin and C. Poole, Petrography evidence of the interfacial transition zone (ITZ) in the normal strength concrete containing granitic and limestone aggregates, Construction and Building Materials, vol.25, issue.5, pp.2298-2303, 2011.
DOI : 10.1016/j.conbuildmat.2010.11.023

C. Neubauer, H. Jennings, and E. Garboczi, A three-phase model of the elastic and shrinkage properties of mortar, Advanced Cement Based Materials, vol.4, issue.1, pp.1065-735590058, 1996.
DOI : 10.1016/S1065-7355(96)90058-9

E. Garboczi and J. Berryman, Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations, Mechanics of Materials, vol.33, issue.8, pp.455-470, 2001.
DOI : 10.1016/S0167-6636(01)00067-9

F. Grondin and M. Matallah, How to consider the Interfacial Transition Zones in the finite element modelling of concrete?, Cement and Concrete Research, vol.58, issue.0, pp.67-75, 2014.
DOI : 10.1016/j.cemconres.2014.01.009

URL : https://hal.archives-ouvertes.fr/hal-01006934

M. Vandamme and F. Ulm, Nanoindentation investigation of creep properties of calcium silicate hydrates, Cement and Concrete Research, vol.52, issue.0, pp.38-52, 2013.
DOI : 10.1016/j.cemconres.2013.05.006

URL : https://hal.archives-ouvertes.fr/hal-00840477

J. Nadeau, Water???cement ratio gradients in mortars and corresponding effective elastic properties, Cement and Concrete Research, vol.32, issue.3, pp.481-490, 2002.
DOI : 10.1016/S0008-8846(01)00710-4

S. Diamond, The microstructure of cement paste and concrete??????a visual primer, Cement and Concrete Composites, vol.26, issue.8, pp.919-933, 1999.
DOI : 10.1016/j.cemconcomp.2004.02.028

E. Lee, Stress analysis for linear viscoelastic materials, Rheologica Acta, vol.19, issue.4-6, pp.426-430, 1961.
DOI : 10.1007/BF01989085

J. Mandel, Cours de mécanique des milieux continus, Gauthier-Villars, 1966.

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, vol.11, issue.2, pp.127-140, 1963.
DOI : 10.1016/0022-5096(63)90060-7

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, issue.5, pp.571-57410, 1973.
DOI : 10.1016/0001-6160(73)90064-3

F. Fisher and L. Brinson, Viscoelastic interphases in polymer???matrix composites: theoretical models and finite-element analysis, Composites Science and Technology, vol.61, issue.5, p.731, 2001.
DOI : 10.1016/S0266-3538(01)00002-1

R. Christensen and K. Lo, Solutions for effective shear properties in three phase sphere and cylinder models, Journal of the Mechanics and Physics of Solids, vol.27, issue.4, pp.315-330, 1979.
DOI : 10.1016/0022-5096(79)90032-2

E. Herve and A. , Zaoui, n-layered inclusion-based micromechanical modelling, International Journal of Engineering Science, vol.31, issue.193, pp.20-722590059, 1993.

H. Stehfest, Algorithm 368: Numerical inversion of Laplace transforms [D5], Communications of the ACM, vol.13, issue.1, pp.47-49, 1970.
DOI : 10.1145/361953.361969

W. Whitt, A unified framework for numerically inverting laplace transforms, INFORMS Journal on Computing, vol.18, pp.408-421, 2006.

R. Schapery, Approximate methods of transform inversion for viscoelastic stress analysis, fourth U.S. National Congress of Applied Mechanics, pp.1075-1085, 1962.

M. Lévesque, M. Gilchrist, N. Bouleau, K. Derrien, and D. Baptiste, Numerical inversion of the Laplace???Carson transform applied to homogenization of randomly reinforced linear viscoelastic media, Computational Mechanics, vol.2, issue.3, pp.771-789, 2007.
DOI : 10.1007/s00466-006-0138-6

N. Lahellec and P. Suquet, Effective behavior of linear viscoelastic composites: A time-integration approach, International Journal of Solids and Structures, vol.44, issue.2, p.507, 2007.
DOI : 10.1016/j.ijsolstr.2006.04.038

URL : https://hal.archives-ouvertes.fr/hal-00091303

Q. H. Vu, R. Brenner, O. Castelnau, H. Moulinec, and P. Suquet, A self-consistent estimate for linear viscoelastic polycrystals with internal variables inferred from the collocation method, Modelling and Simulation in, 2012) 024003. URL http://stacks.iop.org, pp.965-0393, 24003.

J. Sanahuja, Effective behaviour of ageing linear viscoelastic composites: Homogenization approach, International Journal of Solids and Structures, vol.50, issue.19, pp.2846-2856, 2013.
DOI : 10.1016/j.ijsolstr.2013.04.023

F. De-larrard, Structures granulaires et formulation des bétons -Concrete Mixture -Proportionning -A scientific approach, Modern technology Series, E & FN SPON, 1999.

R. L. Roy, Déformations instantanées et différées des bétonsbétons`bétonsà hautes performances, Ecole Nationale des Ponts et Chaussées, 1995.

T. Stovall, F. De-larrard, and M. Buil, Linear packing density model of grain mixtures, Powder Technology, vol.48, issue.1, pp.1-120032, 1986.
DOI : 10.1016/0032-5910(86)80058-4

F. Benboudjema, Modelisation des déformations différées du béton sous sollicitation biaxiales . application aux enceintes de confinement de batiments réacteurs des centrales nucléaires, 2011.

P. Rossi, J. Tailhan, F. L. Maou, L. Gaillet, and E. Martin, Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission, Cement and Concrete Research, vol.42, issue.1, pp.61-73, 2012.
DOI : 10.1016/j.cemconres.2011.07.011

P. Rossi, N. Godart, J. Robert, J. Gervais, and D. Bruhat, Investigation of the basic creep of concrete by acoustic emission, Materials and Structures, vol.22, issue.4/5, pp.510-514, 1994.
DOI : 10.1007/BF02473211