A critical look on rice husk gasification in Cambodia: engineering and sustainability

Nguyen Hong Nam
PhD student at CleanED, USTH

PACITA Conference on Energy, Environment & Sustainable Development
Berlin, February, 2015
A critical look on rice husk gasification in Cambodia: engineering and sustainability

Gasification, an appropriate technology for Cambodia?

Lessons learned

Summary and concluding remarks
Rice husk Gasification technology

Rice husk

Syngas (H₂+CO)

- Drying of the fuel
- Pyrolysis
- Combustion
- Reduction
Technical potential of rice husk power

4-6 kg rice husk ≈ 1 liter diesel ≈ 3 kWh*

1.5 Million tons rice husk/year = 300 Million liters diesel = 900 GWh (30% of electricity demand**)

*Source: Baseline study waste to energy for the rice milling sector in Cambodia, SNV Netherlands Development Organization, 2012

** Electricity consumption in 2014 = 3 000 GWh, Independent Statistic and analysis (IEA)
Rice growing areas in Cambodia
Electricity tariff from diesel based generation: $0.75 - $1/kWh

Source: Cambodia Consulting Development Engineering (CCDE), 2014
Rice husk gasification, an appropriate technology for Cambodia?

- Appropriate technology: “small-scale, decentralized, labor-intensive, energy-efficient, environmentally sound, and locally controlled” (Hazeltine, B.; Bull, C., 1999).
A critical look on rice husk gasification in Cambodia: engineering and sustainability

Gasification, an appropriate technology for Cambodia?

Lessons learned

Summary and concluding remarks
1. Gasification technology works in Cambodia
Dual fuel gas-diesel engine at Golden Daun Keo rice mill, Battambang, Cambodia, 2014-12-20

100% gas engine at HAK SE Plant, Kompong Cham, Cambodia, 2014-12-21
2. Pollution is a problem. Who assess technologies for foreign aid?
Solid and liquid wastes from gasification system at Yam Chan rice mill, Battambang province, Cambodia, 2014 - 12 – 20

Wastes from the gasification system at rice mill- Deum Pou village, Cambodia, 2014-12-19

Liquid waste from the gasification system- Deum Pou village, Cambodia. 2014-12-19
3. Government lacks technology planning or regulation
Royal Government of Cambodia

Ministry of Industry, Mines and Energy

Electricity Authority of Cambodia

Banks

Electricité Du Cambodge

Gasification system

SME Renewable Energy

Federation of Cambodian Rice millers’ Association

Local manufacturers

Rice mills

Brick kilns

Ice plants

Rural electricity enterprises
4. Technology has been transferred in 2 ways: formally and informally.
600kW Gasifier at Golden Daun Keo rice mill, Battambang, Cambodia, KH. 2014-12-20

600kW gasifier, local manufacturer at Yam Chan rice mill, Battambang province, Cambodia, KH. 2014 - 12 – 20
5. If a locally built gasifier is operated at high pollution levels, is it because copycats are bad or because management decision?
Profitability objective

Technology choice

Pollution level

Black water pond - rice mill at Deum Pou village, Cambodia. 2014-12-19

Cleaning water system - UNIDO Project in Siem Siep Province, Cambodia. 2014-12-20
6. Markets change: Rice husk is now a commodity, sector is concentrating
Rice husk truck for Thailand. Baitang trading mill, Cambodia, 2014-12-20
Baitang PLC, Battambang province, Cambodia

Rice mill at Deum Pou village, Cambodia, 2014-12-19

Yam Chan rice mill, Battambang province, Cambodia, 2014 - 12 – 20
A critical look on rice husk gasification in Cambodia: engineering and sustainability

Gasification, an appropriate technology for Cambodia?

Lessons learned

Summary and concluding remarks
Summary

• Hundreds rice husk gasifiers have been installed in Cambodia.

• Pollution from gasification systems starts to be adressed now, after 10 years.

• Technology choices driven by market forces and foreign aid, not by parliamentary assessment.

Minh Ha-Duong, Hong Nam Nguyen. Rice husk gasification for electricity generation in Cambodia in December 2014. [Research Report] Université de Sciences et Technologies de Hanoi. 2014. <hal-01107615>
Gasification may not remain an appropriate technology in Cambodia.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small-scale</td>
<td>Yes</td>
</tr>
<tr>
<td>Decentralized</td>
<td>Yes</td>
</tr>
<tr>
<td>Labor-intensive</td>
<td>Yes, compared to a power plant</td>
</tr>
<tr>
<td>Energy-efficient</td>
<td>>steam engine, <steam turbine</td>
</tr>
<tr>
<td>Environmentally sound</td>
<td>No</td>
</tr>
<tr>
<td>Locally controlled</td>
<td>To some extend</td>
</tr>
</tbody>
</table>
FINAL REPORT

SERVICES FOR AN EMISSION REDUCTION PROJECT
BASELINE, FEASIBILITY AND ENVIRONMENTAL STUDY

EU SWITCH-Asia funded project:
“Waste to Energy (WtE) for the Rice Milling Sector in Cambodia”, EuropeAid/130830/C/ACT/CAI

SURVEY REPORT

STATUS OF RICE HUSK GASIFIERS, RICE HUSK AND RICE HUSK CHAR FROM GASIFIERS in 12 provinces of Cambodia

EU SWITCH-Asia funded project:
“Waste to Energy (WtE) for the Rice Milling Sector in Cambodia”, EuropeAid/130830/C/ACT/CAI

28th June 2014

Conducted by:
Mr Ngin Hong, Business Development Advisor WtE Project for Rice Milling Sector in Cambodia
Thank you for your attention!