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We report gravity oscillations of a liquid column partially immersed in a bath of liquid. We stress
some peculiarities of this system, namély the fact that the mass of this oscillator constantly
changes with time(ii) the singular character of the beginning of the rise, for which the mass of the
oscillator is zerof{iii) the sources of dissipation in this system, which is found to be dominated at
low viscosity by the entrancer exit) effects, leading to a long-range damping of the oscillations.
We conclude with some qualitative descriptions of a second-order phenomenon, which is the
eruption of a jet at the beginning of the rise. ZD02 American Institute of Physics.
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|. EXPERIMENT function (z—1) is not a constanfthe four first ratios are,
respectively, 0.61, 0.68, 0.73, and 0.77, and increase with

A vertical cylindrical glass pipe, closed at its top, is par-time); (iii) a pseudoperiod can be deduced from the data,
tially immersed in a large bath of liquid. The experimentwhich is 6.3+0.5; this period is quite well defined for the
consists of opening the pipe, and recording the hefybt  first oscillations, but slightly increasésf typically less than
the liquid column as a function of time& (Fig. 1). The pipe  5%) at longer times.
has a centimetric radiuR (which makes capillary effects We shall first describe the principal characteristics of a
negligible, and a total length of about 1 m. We denétéhe  model recently proposed to analyze the nonlinear oscillations
depth of immersion, ant the level of liquid inside the tube of a liquid column. Then, we shall discuss different effects
before opening. This parameter can be adjusted by addinguch as the speed of invasion, the initial acceleration of the
with a syringe either liquid or air at the bottom of the column fluid, and the damping. We shall conclude with qualitative
before opening the top. We are interested here in liquids ofbservations related to local properties of the flow.
low viscosity  (such as water or hexaneso that the motion
of the liquid is dominated by inertia and gravity, leading to
numerous oscillations of the liquid column. II. MODEL

Figure 2 shows typical observations of the column
height as a function of time, obtained thanks to a high speed A model was recently proposed to describe the capillary
camera(~125 frames per second=or this particular experi- motion of a wetting liquid inside a small vertical tube ini-
ment, the immersion depth wa$=230 cm, the tube radius tially empty (H=h=0), in the inertial regimé.Then, the
R=1cm, and the initial height of liquid inside the column forces acting on the liquid column write7Ry— pgmR°Z
h=3 mm. The liquid was hexane, of densjty=660 kg/n? (denoting y as the liquid surface tensipnHere, the tube
and viscosity7=0.39 mPas. Both the height and the time radius is much larger than tienillimetric) capillary length,
are made dimensionless in Fig. 2, using the natural lengtRO that capillary forces can be neglected and replaced by the
and time scales, namely and VH/g, whereg is the accel- hydrostatic pressure as a driving force. Hence, the total force
eration of gravity. We denoteandt as these reduced quan- F acting on the liquid column is found to exhibit a structure
tities. We can observe in Fig. 2 several features, on which w¥ery similar to the one in the capillary problem:

shall base our discussion§) the height first quickly in- F=pgmR3(H-2). (1)
creasegthe typical velocity at the beginning is 170 cm/s _ _ _ _ i o _
and reaches a maximuzgy, = 1.52+ 0.01 fort = 3.0+ 0.5; (ii) It is very instructive to consider first a situation without

then, many oscillations are observed, before approaching tH"y source of dissipation. Then, the total enefgyf the
final equilibrium heightz=1: the damping is not exponen- column is the sum of the kinetic energy and the potential

tial, since the ratio between two successive maxima of th€n€rgyU which can be integrated froff (takingU=0 for
Z=0). Hence it is expressed as

dElectronic mail: quere@ext.jussieu.fr E=1p7R%27%+ LpgmR?Z%— pgHmR?Z. 2
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2R gular pressure losst the tube entrandé the liquid rises or
exit (if the liquid goes dowh This pressure loss is due to the
difference of radii between the tarikf huge radiusand the
tube (of much smaller radiysbecause of the abrupt contrac-
7 tion between both, some eddies appear at the entrance of the
H tube, dissipating a certain amount of energy. This pressure
hoé loss is classically evaluated by applying the Bernoulli equa-
tion (based on the conservation of ener@nd the Euler
@) ()1 ! equation(based on the momentum equatido the liquid
FIG. 1. Sketch of the experimenia) before opening the topT(<0); (b) column, which does not lead to the same re%tﬂhe differ-
when the motion takes plac& ¢ 0). ence between these results is the pressure loss. When the
ratio of the tube area to the tank area is close to zierour
experiment, this ratio is of the order of 19), the singular
In dimensionless variablegand scaling the mass by pressure losdAP has a very simple expression:
pmR?H), it reads

e=1z72+372*-z (3)

AP=1p72. (4)

o o This pressure loss is positive and is simply equal to the
~ Consideringe as a constant with time, Eq3) can be  yinetics energy per unit volume of the column. The associ-
integrated, which leads to parabolic oscillations of the equaz;eq energy loss is negative, and has a different sign depend-
tion: z(t)=v2t(1—1/4v2), supposingz(0)=0. The maxi- ing on whether the liquid is going updZ>0) or down
mum, reached at= 2‘/_7' is z=2, far above the maximum (47<0). In dimensionless quantities, the energy loss is thus
observed in the experiment in Fig. 2. Assuming energy CONgxpressed as
servation makes this parabolic behavior perioaiith a pe-
culiarity: whenz comes back to zero, the velocity is maxi- ~ de=32°dz (53
mum but the mass is zero: there is no inertia and the liquidynen the liquid falls ¢z<0), and
column can bounge-but observations clearly reveal a
damping of the oscillations. de=—37°dz (5b)

The second step consists of analyzing the possiblghen it rises (z>0). If the situation is quite clear at the
causes of.d|55|pat|.on in the system. We could try to iNCOrPOgescentEq. (58 just expresses the loss of kinetic energy
rate the viscous dissipation along the wall of the tube, bufggociated with the loss of a fluid jet entering an infinite pool
this should be negligible at short time, i.e., at a time scalgy the same fluigl it is not the case for the rise, and it has

2 . . . . .
smaller tharpR*®/, the characteristic time for setting a Poi- pheen proposed to introduce a numerical empirical coefficient
seduille profile in the tube. This time in these experiments i« for the energy loss in this case:

very large, typically 18-10° in our dimensionless units. The s
negligible influence of viscosity at short time was confirmed  de=—3Kz°dz (50

by doing the same experiment with watthree times as \hereK should be in the intervdD, 1]. We shall see that our
viscous as hexamefor which we found exactly the same gyneriments are well described by takikg 1, but we shall
positions for the five first maxima and five first minima giscyss how the results should be modified for smaller values

(within 1% in erroj. _ of this coefficient.
In classical textbook$0ne can find that a second cause We first consider the case where the singular pressure
of dissipation for a liquid of very small viscosity is thn-  |5sg at the tube entrance is the main cause of dissipation and

thus neglect the viscous dissipation along the pipe wall. Dif-
ferentiating Eq(3) with respect td, and equating the result-

L5 ing expression with either E¢5a) or (5b), we find two dif-
z ferent equations, depending on the direction of the motion:
1 zz+7°=1-z for dz>0, (6a)
zz=1-z for dz<O0. (6b)
0.5 - It is worth noting that Eq(6a) just expresses Newton’s

law of dynamics, for a system of mass and velocityV
driven by a forceF:

0 T

‘ ‘ d
0 20 40 60 80 , 100 JiMV=F-Mag. (78)
FIG. 2. Height of the liquid column vs time, for a glass tuli®=(1 cm) For the descent, a similar law can be written, taking into

partially immersed at a depth=30 cm in hexane. Initiallyt=0), the tube : . e . )
is empty. The height is normalized by; and the time by 1/g)"*%. The dots account the thrust associated with the emission of a jet com

correspond to experimental data and the full line to a numerical integratiodnd out of _the pipe at a velocity. Thus, Eq.(7a must be
of Eq. (9). corrected in
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d ) 2

—MV=F-Mg+MYV, (7h) VY

dt .0

1.5 o

which is just Eq(6b), with dimensions. Note that we did not -
consider a term of the formV in Eq. (6a) because the mass 1 /,««“’
radiates from all the directions in the reservoir to enter the o i
tube, while the jet is directional at the exit: the thrust at the 0.5 .
entrance implies a nearly zero velocity, and thus is itself M
nearly zero. This defines the cake=1 stated in Eqs(5b) 0 1 ‘ , ‘
and (5c)—and this result should depend on the shape of the 0 01 0.2 03 04 05 0.6
pipe. For exampleK should decrease for funnel-shaped H" m")

pipes, which would drive more smoothly the current lines.

Note also that Bernoulli, considering in his book on FIG. 3. Rise velocityV of the liquid column at short timet{1.5), as a
. . . . . _function of the square root dfl, the depth of immersion in watéclosed

Hydrau“0§ the qUESt.I(.)n of .a pipe empty”?g na b.ath' pro diamonds$ or in hexane(open squate The full line has a slope/g, as

posed Eq.(6b) by writing dlrect_ly Newton’s Iavy W!th the expected from Eq(11).

form: MdV/dt=F—Mg—a straightforward derivation, in-

deed, but quite hazardous sinlgkis changing with time.

The energy loss associated with E¢ga) and (7b) can @ maximum very close to 1.@ut slightly larger, as expected
be calculated in a general way. The eneffys 1/2MVv?  sinceK=1 is the maximum possible valyeso that we shall
+U, denotingU as the potential from which the forces can takeK=1 in all the rest of this study.
be derived. Using Eq(7), the way the energy varies as a We now focus on different peculiarities of this system in
function of time can be deduced, and a unique expression igrder to discuss more carefully some details of the model.
found for both the rise NI >0) and the descent<0):

Ill. DISCUSSION
dE

e M|V, (8)  A. Constant velocity regime

Initially, the beginning of the rise is linear, which can be
Equation(8) is found to be identical to Eq$5a and(5b). It  explained by balancing inertia with the pressure force
expresses more generally the energy loss related with an efpgH7R?) exerted on the liquid column. This behavior is
trained masgdE/dt=0 if M=0). It thus concerns similar reminiscent of similar systems with a mass varying linearly
questions such as the bursting of a soap ibm even the  With z, and driven by a constant force and resisting inertially.

academic problem of a rope wound on a pulley and drawn by his indeed leads to a constant velocity, as observed for the

a constant weight. retraction of a liquid sheétthe bursting of a soap filh® the
Equations(6a) and (6b) can eventually be integrated dewetting of a film of small viscosifyand the first steps of
once, introducing two constanfsand B: capillary rise® Note that in all these problems, conservation
oo 13 12 of energy also leads Fo acons'Fa_nt veIOC|t_y, but similarly over-
32725+ 377 32°=A, (93 estimates the numerical coefficient of this veloéfty.
oo B We measured the initial velocity of the liquid column as
2Z°+z=Inz=B. (9b) 4 function of the depth of immersid. Since the dimension-

less law at short timet(&6) just readsz=t, introducing
éiimensional guantities implies a quick variation of the col-
umn velocity withH. Then, Eq.(10) just is expressed as

If z=0 att=0, the constanA is zero, and Eq(9a) can be
integrated once again, which provides the trajectory of th

liquid column:
¢ Z(T)=+gHT. (11
Z(t)=t< 1- g)- (100 we did experiments with hexane, and found that indeed the

heightZ of the liquid column increases linearly with time at

Thus, the beginning of the rise should be lin¢art, fort  short time(practically fort<1.5, which corresponds to 10
<6), before the weight makes the velocity smaller and thedata points Thus, we could report its velocity as a func-
trajectory parabolic. The maximum is reached fer3, and  tion of the square root of the depth heightg. 3), varyingH
is found to bezy,=1.5. The latter point is in close agreement from 2 to 35 cm, and indeed found a linear relation with a
with the data displayed in Fig. 2, which stresses that indeedlope Vg, as predicted by Eq11). Conservation of energy
energy loss is present in the system, even at short time. in Eq. (3) for a system starting frox=0 also predicts a

Note that if we take as an expression for the energy lossegime of constant velocity, but with a higher slopé2g
at the rise the more general expressién), the maximum instead of\/g). Thus this regime of constant velocity also
height can also be calculated analytically. We fiagl= (K allows us to stress the existence of an energy loss in this
+2)/(K+1), which varies between 2 and 3/2 whéaries  system. Note also that the observed curve does not intercept
between 0 and 1. The first value corresponds to energy corhe origin, which will be shown to be due to an entrance
servation Eq. (3) and below, while the second to the maxi- effect, characterized by a length of orderThus, our model
mum of singular pressure loss. Our experimental data exhibibnly holds in the limitH>R.

Downloaded 17 Sep 2003 to 128.103.60.225. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



1988 Phys. Fluids, Vol. 14, No. 6, June 2002 Lorenceau et al.

1.5 - 0-
z lOgaM,m .
1 -0.5
L
(J
0.5 -1
[ )
3 A
0 -1.5 ‘ :
0 0.5 1 15 2
0 20 40 60 ¢ logt

FIG. 4. Same experiment as in Fig. 2, in a thinner tuBe=6 mm). The  FIG. 5. Successive maximay (triangle3 and minimaa, (circles of the
dots are experimental data obtained with hexane. The full line correspondsscillation amplitude as a function of time. The data are taken from Fig. 2
to a numerical integration of E49), and the thin one to an integration of and the full line has a slope 1.

Eqg. (17).

More generally, Egs(6a) and (6b) indicate that a solu- d_issipatiorl iq Eq(9). If the damping were Just causeq by the
tion of constant velocity can only be found at the rise and jf/IScous d|53|pat|oq along the pipe, th|s would provide a de-
creasing exponential law for the maxima. In the case we are

gravity can be neglecte@z>0 andz<1), or in the case U . ) . S
where a horizontal pipe is connected with the bottom of amalnly interested in(short ime behavior the damping is

very large tank, which only generates an entrance flow. Or(Ijue t(.) the singular pressure loss at the entrdocexif of

the other hand, Eq(6b) shows that the velocity is never the PIpe. The following argument allows us to un_derstand
constant during the descent, and the only analytical regime i‘rﬁvhy 't. s 50 low. From Eqs(?,) and(5), we can derive an
this case is a regime of constant acceleration: leaving a "quigquatlon for the energy loss:

column flow downwards from a very large heigldy&1) d . .
yieldsz=—1. &(ZZZJF(Z— 1)%)=-|2Z. (12
B. Oscillations, and their two regimes of damping We setz(t)=1+ a(t)sint, with «<1, and suppose a

slow variation fore. During a period, the mean value of the
At longer times, gravity cannot be neglected and Eqsquantities|z|z2 and ¢Z+(z—1)?) are 4a3/37 and o?,
(98 and(9b) can be integrated numerically. This solution is respectively. Thus, an equation for the oscillation amplitude
drawn in full line in Fig. 2, and compared with data obtained , is obtained from Eq(12):
with hexane(for H=30 cm andR=1 cm). 5 5
The agreement between the theory and the experiment is di __ 4o’

excellent during the first oscillations: both the positions of dt 37’ (13
the extrema and the periodicity are well predicted by the, ..., yields

model. In particular, the first half-oscillation is the parabola

derived in Eq.(10). After typically ten oscillations, a slight a(t)= +3_77 (14

shift appears, and the damping is observed to be quicker than 2t

predicted. We interpret this “overdamping” as due to the e L .
usual viscous friction along the tube, which must be taker{he Even if this linear approximation should mainly concern

into account as soon as a parabolic Poiseuille—Hagen profil oscillations of small amplitude, it helps to understand

has been established. This is achieved after the time necei%—alt the damping is unusually long, due to this hyperbolic

sary for the boundary layer to diffuse on a len@hwhich ehavior. Furthermore, a hyperbolic damping is in fair agree-
2 . . o ment with our data even for oscillations of non-negligible
scales apR“/ 5, with a numerical coefficient of order 0.11,

. N . amplitude, as shown in Fig. 5 where the maxima and minima
as shown in Ref. 11. This time mainly depends on the tUb%orres onding to Fia. 2 are displaved versus time in a lo
radius, which can be easily checked by doing the same ex- bonding '9. ISplayed versus time 1 9-

. . . . . g plot.
Ezirrg?:ljgeatw;gg%itr:anfr.F{zgSur;emL; shows the data obtained It is observed thatapart from the first maximujmn the

damping is close to being hyperbolic in tinthe full line

While the first oscillations remain quite well described .

by Eq.(9), it is indeed observed that the overdamping takes!mjlc""teS the slope-1), before acceleratingthe two last

place much earlier: deviations toward H@) are observed pointg, because of the additional dissipation due to the lig-
aroundt=15 instea.d of =60 (in agreement with the scaling uid viscosity. The latter can of course be evaluated by incor-

for the time of diffusion of the viscous boundary layer, in porating in the model a viscous Poiseuille friction along the
R?) "’ pipe. If the liquid front progresses by a length the corre-

One of the remarkable features of this system is the per§pond|ng energy loss writé® the same dimensionless vari-

sistence of the oscillationgypically, more than 20 oscilla- ables as previously
tions can be observedrhis is due to the particular source of de=—-0zzdz, (15
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where the numbef) compares viscosity with inertia: 0.4
167H12 ¢
= . 16 0.3+
pRZgl72 ( )

A difference with the energy loss due to pressure en- ¢, |
trance is thatle (energy variation associated with a motion
dz of the column has the same expression whatever the di-

rection of the motion, sinceé anddz always have the same 0.1
sign. Taking into account this viscous friction modifies Eq.
(6), which becomes 0 ‘ y
: . 0 0.1 0.2 0.3 0.4
7z+7°=1-z—-Qzz for dz>0, (179 t

FIG. 6. Heightz vs timet, in the very first steps of the risgk=20 mm,
H=30cm, anch=1.9 cm. The data, obtained with water, are successively
. . . fitted by a parabola of equation(t)=a+t%/2(a+z,) [Eq. (24)], from

Unlike Eq. (6), E_Q- (17) cannot _be mte_grat_ed analyti- \hich the coefficient, can be deduced, and by a straight line of equation
cally, but only numerically: such an integration is performedz(t)=t [Eq. (11)].

in Fig. 4 (in thin line). The resulting curve fits quite well the

extrema of the oscillations, but a shift in time appears, which

remains unexplained. The use of a simple Poiseuille frictiorb Very short time behavior
law for this oscillatory behavior could be questioned. The

dissipation in the menisci could also become non-negligible

z7z=1-2z—Qzz for dz<O. (17b)

in these regimes of approach of the equilibrium. 1. Starting of the liquid column
In the particular case of very larg®, inertia can be | gt ys come back to the beginning of the rise, starting
neglected, and the equation for the column motion simply i§rom z=0. We showed that it obeys a very simple law, since
expressed as the height of the column increases linearly with tifrx.
Ozz=1-72, (19) (11) and Fig. 2. An interesting question is the way the sys-

tem finds its constant velocity. At t=0, the system is at

which is often referred to, in the context of dynamic capillary "eSt and there is a regime of transition during which the
rise, as the Washburn equatitfnAt short time (but large ~ Velocity quickly increases from O tv/. Then, the column
enough so that inertia can be neglegfemis small <1), Weightis negligible, and Eq6a) can be written as

and integration of Eq(18) shows that the rise follows a 77+ 72 =1, (21)

diffusion-type law: z(t)=yt/Q2. Then, when approaching , , ) . »
equilibrium (z—1), we find an exponential relaxationt) Thls equation has no solutlon. WhICh.VeI’IerS bath 0 and
=1—exp(~t/Q). z=0 fort=0, because of the singularity z& 0 [then, a zero

An interesting feature of Eq17) is that it allows us to ~ VeloCity implies an infinite acceleration for E(1) to be
predict if the system will exhibit oscillations, or not. We saw ©°€Yyed- But physically, this singularity does not exist, be-
that at large viscositie€)>1), the system just relaxes to- cause of the mass of liquid entrained below the pipe. Thus,
ward equilibrium, without any overshoot of the equilibrium Ed: (21) can be rewritten, taking into account this additional
height. Thus, a critical numbe® does exist, below which Mass from the beginning:
oscillations develop. Close té)., we can linearize Eqgs. (z+29)2+7°=1, (22

(173 and (17b), which both reduce to where z, is the height below the pipe where the liquid is

T+Qi+ =0, (19) entrained. Because the velocity field in the bath quickly van-
ishes as a function of the distance to the entrance, we expect
where we have sez=1+¢, with {<1. This equation only Zo (the dimensional version of;) to be of orderR, the
leads to oscillations if2<Q.=2, i.e., for small enough vis- radius of the tube. More precisely, by integrating the velocity
cosities. Written dimensionally on the depth of immersion,profile from the entrance of the tube to infinity, Szekeley

this criterion reads et al. (in the context of capillarity® calculated an entrance
lengthZ,="7/6R.
p*gR* The general solution of Eq22) can be written as
7 z(t)+zo=(a+zp) 2+ 12 (23)

This criterion is largely fulfilled in the series of experiments denotinga=h/H as the height of liquid initially present in
presented previously: with water and centimetric tubl¢s, the tube[as sketched in Fig.(&)]. At very short time, Eq.

is of order 1 km! But this height rapidly decreases when(23) leads to a parabolic behavitacceleration stage
making the tube thinner: for a tube of radius 3 mm and a

liquid 10 times more viscous than watet,, becomes of z2(t)~a+ —.
order 10 cm. 2(a+2z)

t2
(24)
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6

Z, (cm) A+

4l /

2 =
+F ’
0 T
0 2 4 R (cm) 6
FIG. 7. Entrance lengtl, vs R, the radius of the tubéH =20 cm andh
~1 cm). The data are obtained with water. 7

Later (t>a+zy), it matches the solution of constant velocity
z=t analyzed previouslyFig. 3.

By taking pictures at a high rafgypically 1000 frames
per secony we could record the very beginning of the rise. FIG. 9. Early stage of the ris&k=20 mm,H=230 cm, anch=0 mm). The
Such data are reported in Fig. 6. It is observed that the bééontlis flat, except at the tube center where a liqthere, water finger
havior at a very short timet0.15) can indeed be fitted by evelops.

a parabold Eqg. (24)], from which two coefficients can be

deduced. Onéa=0.064, in Fig. 6 is indeed found to be the Z>R, remain unchanged. The corrections mainly concern
initial height of liquid in the tube, while the secorid+z, the very first steps of the trajectory, in the accelerating re-
=0.126, in Fig. 6 provides the value of,. Note that at gime illustrated in Fig. 6. Other modifications are quite neg-
larger time, the parabolic regime meets the linear one disligible: for example, the positiomy, of the first maximum is
cussed in Sec. Il AEqg. (11)]. found to be slightly modified by taking into account the en-

We plotted in Fig. 7 the value df, (deduced from fits trance length, from 1.5 to 145z4/2 (i.e., about 1.53 for the
such as the one in Fig) Gas a function oR, the pipe radius. data in Fig. 2, very close to the observed value
The results are found to agree closely with Szekeley’s
predictions*?® Z, varies linearly withR, with a numerical 2. Jet eruption
coefficient of order 1.

) i We have up to now focused our discussion on the motion

We also considered the influence lofon Zo, and fo- ot yhe whole column, but local deformations of the free sur-
cused on the case of an empty tube—0). Then, as ace were also observed at short time. Figure 9 shows a side
stressed previously, the problem should become singulagie,, of the tube foiz of about R, where it can be seen that
Pract[cally, itis npt; Fig. 8 shows th, dqes not depend on a liquid finger develops at the center of the tube. This finger
h, which is consistent with the hypothesis of an added masggq4 during the first oscillation and collapses befare
below the tube entrance. Even in the limit of a tube initially reaches its maximum valug, ; this structure is local and
empty (hﬂo)_' the mass OT e_lccelerated fluid is not zero anddoes not impact the more macroscopic observations reported
the acceleration remains finite. earlier

Since the flow inside the tube perturbs the reservoir on a The maximum size of the finger depends on the height
length of orderR, all the conclusions and interpretations pre-p of liquid initially in the tube, as shown in Fig. 10. Note that
sented previouslySecs. Il A and 111 B, for which we had

60
1.6 .
A (mm)
Zem| 4L gb .o
12 ! ! +T ! 1 { 40 -
L
*
0.8 | 20 | ¢
TS
& " .
0.4 ¢ * L
O T T T T
0 r ; , -2 2 6 10 14
0.01 0.1 1 10 100 b (mm)
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FIG. 10. Maximum amplitude of the water finger vs the initial height of
FIG. 8. Entrance lengtl, vs h the height of water initially present at the liquid h. The experiment was carried out in a tube of radR#s20 mm and
bottom of the pipgR=1.2 cm andH =30 cm. for H=30 cm.
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FIG. 11. Amplitude of the water finger as a function of tifké= 30 cm and

R=20 mm). The liquid column starts rising a&i=0 and the finger starts FIG. 13. Diameter of the water crater vs tirfR=20 mm andH =20 cr.
developing at the arrow.

h can even been made negative, by injecting air bubblegantly larger tharg. Hence, for a wave vectd, a typical
inside the empty pipe, before the rise takes place. wave velocity should scale agyH/kR, of the order of/gH
For largeh (>6 mm), the size of the liquid finger does for K~ 1/R. The time needed for shutting down the crater in

not depend ot In this regime, we still observe some oscil- 4 pipe of radius 20 mm is 26 ms, of the order of the delay
lations of the interface due to the abrupt contraction betweep,easured in Fig. 11.

the reservoir and the tube. Such oscillations were described The origin of the crater can also be questioned, and re-

by Taylor;*in the case of a tank with an oscillating wall. He |ated to local flows at the pipe entrance. An effervescent drug
showed that free standing waves could set up in the tankyaced below the tube provides indications on the flow: the
with a shape very close to the one observed in the tube. FQjas pubbles reveal the existence of a circular vortex which
smallerh, a strong dependence can be observed: the smallggmains close to the entrance as fluid sinks into the Gtz

the height, the longer the finger. We were interested in th 4) This vortex is related to the contraction of the flow lines

dynamics of the finger growth. Figure 11 reports differentemering the tube jetthe so-calledvena contractaphenom-

series of experiments. _ ~enon, which traps some fluid at this place.

Besides theh dependence oh stressed previously, Fig. If his negative, the initial conditions are different. Then,
11 shows that the finger grows after some deffgpically  some air can be trapped in the tube creating a vortex ring of
0.02 9, whateverh. This implies that a simple scenariei-  ajr rather than a liquid onéas seen in the preceding para-

ther a convergence of the flow lines, or a kind of Rayleigh—graph_ This phenomenon could be enhanced by placing a
Taylor instability due to the pulse of acceleration at the beyjiaphragm at the tube entrance, as seen in Fig. 15. The col-
ginning of the ris¢ cannot explain the phenomenon. To go ymn then adopts the diameter of the diaphragm, with a
further, we took detailed films of the very beginning of the modulation of frequency 184 Heln addition, the finger pre-
rise, focusing on the shape of the front interface. A series Oi(/iously described is still here, above the main column, as
snapshots taken at short time from above the tube is digspserved in Fig. 15 The column modulation is probably due
played in Fig. 12. to the stationary pressure waves of the air trapped into the

These pictures show the existence of a circular rimg,pe. The frequency of such a resonant t(iygen at one end
which sets near the wall of the tube, and closes as time goggd closed at the otheis

on. The collapse of this surface wave produces algt
picture of the serigsas observed in similar situatiohsThe
speed at which the liquid crater closes could be deduced
from series similar to Fig. 12. Figure 13 shows how the
diameterD of the liquid crater varies versus time. whereC is the sound speed,the total length of the tubgl.6

The liquid crater closes at a constant velocity, which ism in the experiment andn the mode of oscillation. Fon
1.3 m/s in the above-given example, of the order of the ve=1, we findf,=187 Hz, in very good agreement with the
locity \/gH of the rising column(1.4 m/s, in the same ex- measured frequency. This agreement remains excellent if the
perimen}. Note that this wave starts propagating during thetube length is changed. Another cause of modulation of this
acceleration phase of the column. We saw that in this phaseylindrical column of liquid could be the liquid surface ten-
the acceleration is of the order gH/R (for h=0), signifi-  sion (Plateau—Rayleigh instability but it would lead to a

f.=nCl4yY, (25)

FIG. 12. Set of pictures taken from above each 2. 7R 20 mm,H =20 cm, anch=3 mm). These pictures correspond to the first poilsfore the arrow
in Fig. 11. It can be observed that a cavity forms and closes, producing a watksjepicture.
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liquid entrained was mainly the one below the tybthe
velocity of rise was found to be a constant fixed by the depth
of immersion. Then, the rise was observed to slow down
(because of the column weightwe have shown that the
trajectory is parabolic, reaching as a first maximum 1.5 times
the depth of immersion. This value confirms that energy is
indeed dissipated in this inertial phase, because of the sudden
contraction endured by the moving liquid which passes from
FIG. 14. Visualization of eddies using small bubbles as a tracer for the flowa large reservoir to a finite pipe. After this first maximum,
(?f water(R_= 20 mm anch=7 mm). The pictures are taken before the erup- many rebounds were observed, which was understood by
tion of the jet. evaluating the long range damping associated with this en-
ergy loss: the envelope of the height/time dependence was
found to be hyperbolidinstead of exponential, as it is the

totally different wavelengttthigher than the column perim- X . ) :
case for usual viscous dampjnét long time, viscosity must

eter, i.e., of the order of 10 cm instead of the observed cen= . 4 i X
timeter in Fig. 15. of course also be considered, which provides a quicker

damping of the oscillations. We finally described qualita-
tively an instability of the liquid/air interface during the first
IV. CONCLUSION steps of the rise: then, a liquid jet is emitted while the col-

We have studied the gravitational oscillations of a liquidUmn develops. A complete study of this jet remains to be
column initially empty(or nearly empty and partially im- ~ done.
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