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stable semigroups solving one-dimensional diagonal
hyperbolic systems with large monotonic data

Benjamin Jourdain and Julien Reygner

Abstract. This article is dedicated to the study of diagonal hyperboli ¢ systems in one space
dimension, with cumulative distribution functions, or mor e generally nonconstant monotonic
bounded functions, as initial data. Under a uniform strict h  yperbolicity assumption on the
characteristic elds, we construct a multitype version of t  he sticky particle dynamics and obtain
existence of global weak solutions by compactness.

We then derive a LP stability estimate on the particle system uniform in the num  ber of
particles. This allows to construct nonlinear semigroups s olving the system in the sense of
Bianchini and Bressan [Ann. of Math. (2), 2005]. We also obta in that these semigroup solutions
satisfy a stability estimate in Wasserstein distances of al | orders, which encompasses the classical
L1 estimate and generalises to diagonal systems the results by Bolley, Brenier and Loeper [J.
Hyperbolic Dier. Equ., 2005] in the scalar case.

Our results are obtained without any smallness assumption o n the variation of the data, and
only require the characteristic elds to be Lipschitz conti  nuous and the system to be uniformly
strictly hyperbolic.
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1. Introduction

1.1. Hyperbolic systems. A one-dimensional system of conservation laws is a di erenal equa-
tion of the form

(1.2) @u+ @(f(w)=0; t 0 X2R;

whereu = (ul;:::;u%):[0;+1) R! RYis the vector of conserved quantitiesandf : R9!1 RY
is the ux function. When both f and u are smooth, it rewrites in the nonconservative form
(1.2) @Qu + A(u)@u =0;

where A(u) = D f (u) is the Jacobian matrix of the ux function. If, for all u, the matrix A(u) is
diagonalisable and has real eigenvalues'(u) 2(u) d(u), the system is calledhyperbolic
and the functions *;:::; 9 are its characteristic elds. Hyperbolic systems naturally arise in

continuum physics [23] and are the object of an intense mathematical researchol), 51, 18, 36].
A system of the form (1.1) or (1.2) is strictly hyperbolic if (u) > 2(u)> > 9(u) for all
u. Global weak existence results for the strictly hyperbolicone-dimensional Cauchy problem

@Qu+ @(f(u))=0;

(1.3) u(0;x) = ug(x);

go back to Glimm [35], under the assumption previously introduced by Lax (3] that the char-
acteristic elds *;:::; 9 be either genuinely nonlinear, or linearly degenerate. Undr the same
assumption, an alternative method to construct global weaksolutions to the Cauchy problem (1.3)
is the Front Tracking approximation, which was introduced by Dafermos [27] in the scalar case
d = 1 and then extended to systems of conservation laws by DiPern§?7], see also]7, 48, 3. A
version of this method that does not refer to any genuine nonhearity nor linear degenerescence
assumption on the characteristic elds was later introduced by Ancona and Marson [l]. Both the
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belonging to the class of functions with bounded variation BV), and having a small total vari-
ation. On the other hand, the vanishing viscosity approach [, 7] provides L' stable semigroups
de ned on a set of BV functions containing functions with su ciently small total variation, that
yield weak solutions to the system (L.2). The convergence of the vanishing viscosity approach, as
well as the uniqueness ol! stable semigroup solutions to (..2), were proved by Bianchini and
Bressan [/]. The Bianchini-Bressan solution was also proven to be theimit of Glimm and Front
Tracking approximations [7, 1].

Outside of the BV setting, the theory of systems of conservaibn laws with L initial data was
developed by DiPerna Pg]. By compensated compactness, under weak structural contibns, it was
rst proved that systems of d = 2 equations in conservative form admit global entropy solutbns
for L' initial data. Uniqueness for such systems starting from intial data with large variation was
obtained by Bressan and Colombo4(] under a stability assumption on the ux function. For d 3
equations, unless the system is in the Temple clas€,[4] or has coinciding shocks and rarefaction
curves [], no existence, uniqueness nor stability theory is availale without a smallness assumption
on the variation of the initial data.

1.2. Diagonal systems. For a strictly hyperbolic system of the form (1.2), let 1*(u);:::;19(u)
and ri(u);:::;rd(u) refer to the respective left- and right-eigenvectors of thematrix A(u). Fol-
lowing [49)], the system (L.2) is diagonalisableif and only if the Frobenius condition

8; % %2f1::::dg with & 6 ;| fr%r “g=0;

is satis ed, wherefr;r%=Drr® Dr% refers to the Poisson bracket. Up to a change of variable,
the system then reduces to the diagonal form

(1.4) 8 2f1;:::;dg; @u + (u@u =0:

According to [51, Theorem 12.1.1], the diagonal system1.4), when strictly hyperbolic, admits a
conservative form

@(g(u)) + @(h(u)) =0
if and only if, for all ; © 02f 1;:::;dg distinct,

@ ‘(u) @ o (u)

(uw  (w u)y ()

The system is then called arich system. Any diagonal strictly hyperbolic system ofd = 2 equations
is clearly rich. On the other hand, any strictly hyperbolic system in conservative form @v +
@(f (v)) =0 composed ofd = 2 equations may be diagonalised by choosing*(v) and u?(v) two
Riemann invariants respectively associated with the rst and second elds of eigenvectors of the
Jacobian matrix Df (v).

This article is dedicated to the study of the Cauchy problem fr the diagonal system (L.4) where,
forall 2 f1;:::;dg, u, is a nonconstant, monotonic and bounded function onR. Such initial
data can be interpreted as cumulative distribution functions of bounded measures of constant sign,
and up to rescaling, there is no loss of generality in assumgthat these measures are probability
measures. Diagonal systems with monotonic data have attraed a particular attention on account
of their appearance in the dynamics of dislocation densitis or in isentropic gas dynamics. We
refer to the works by El Hajj and Monneau [33, 34], whose existence, uniqueness, regularity and
stability results are discussed in ¥.4.5and ¥2.6.3 below.

8u201";, @w = @

1.3. Main results and outline of the article. In this article, we consider the diagonal Cauchy
problem (

@u + (U)@Qu =0;
(1.5) 8 2f1;:::;dg; ()

u (0;x) = ug(x);
whereu = (ul;:::;uf) :[0;+1) R! [0;1])4, the characteristic functions 1;:::; ¢ are de ned
on [0;1]° and we assume that there exist probability measuresn?;:::;m¢9 on the real line such
that
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where H refers to the convolution with the Heaviside function H. In other words, for all
In the scalar cased = 1, the conservative form of (1.5) is the scalar conservation law

( @u+ @((u)=0;

(1.6) u(0;x) = up(x);

with  °= andup = H m, wherem is a probability measure onR. Brenier and Grenier [16]
proved that the entropy solution of (1.6) describes the large-scale behaviour of th&ticky Particle
Dynamics, under which nitely many particles evolve on the real line by sticking together at
collisions with preservation of the total mass and momentum We also refer to (] for a proof of
the large-scale limit in a more general framework. Indepenently of this representation, stability
estimates in Wasserstein distance for the entropy solutiorof (1.6) were derived by Bolley, Brenier
and Loeper P].

In the present article, we introduce a multitype version of the Sticky Particle Dynamics, where
particles have atype 2 f1;:::;dg and only stick with particles of the same type. Using this
Multitype Sticky Particle Dynamics, we obtain the following three main results, under the geneical
assumption that the system (1.5) be uniformly strictly hyperbolic.

Theorem 2.4.5 asserts the existence of a global weak solution for the Caughproblem (1.5).
More precisely, we show that the large-scale behaviour of # Multitype Sticky Particle Dynamics is
described by functionsu : [0;+1 ) R! [0;1]% solving the Cauchy problem (L.5) in an appropriate
sense, to which we refer as grobabilistic solution. We use a tightness argument for the particle
system, which does not allow to identify its possibly multiple large-scale limits.

Theorem 2.5.2is a stability result on the Multitype Sticky Particle Dynam ics. We carry out a
detailed pathwise analysis of the evolution of the dynamicswith two di erent initial con gurations
and thereby obtain LP stability estimates, for all p 2 [1;+1 ]. The important point here is that
our stability constants are uniform with respect to the number of particles, which allows us to pass
to the large-scale limit in these estimates.

Theorem 2.6.5 combines the two previous results and nally asserts that ow solutions are
nonlinear semigroups, stable in Wasserstein distances ofllaorders (order 1 corresponds to the
usual L1 stability), which generalises the results of J] to the diagonal system (L.5). Besides,
these solutions satisfy the uniqueness conditions of Biamini and Bressan [/] corresponding to
our de nition of probabilistic solutions. This allows us to identify all the large-scale limits of the
Multitype Sticky Particle Dynamics and to nally obtain a co mplete convergence result for the
particle system.

Our approximation procedure can be compared with the Glimm €heme or the Front Tracking
method, as opposed to the vanishing viscosity approach, intte sense that it consists in constructing
a piecewise constant solution to the hyperbolic system withinitial data given by a discretisation
of ud;:::;ud. Besides, similarly to [L9, 21], our stability estimates are obtained by taking the limit
of uniform discrete stability estimates.

Working with cumulative distribution functions allows us t o employ classical tools from prob-
ability theory, and to some extent, from optimal transport. As an example, we shall use weak
convergence and tightness of probability measures in placef the usual Helly Theorem in order
to construct weak solutions. Likewise, stability estimates in Wasserstein distance shall naturally
arise from discreteLP estimates on our particle system when described by the incesing order of
the positions.

A striking remark is that the diagonal structure of the system (1.5 combined with the mono-
tonicity of the initial data permits to obtain global existe nce, uniqueness and stability results
without any smallness assumption on the variation of the intial data. This is done at the price of
assuming that the strict hyperbolicity of the system holds uniformly on [0; 1]. Let us also mention
that our results involve no such condition as genuine nonliearity or linear degenerescence of the
characteristic elds.
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The main de nitions and results of the article are summarised and discussed in Sectior?. Then
the article is divided into two parts. Part 1 is dedicated to the introduction of the Multitype Sticky
Particle Dynamics and to the proof of Theorem 2.4.5 our global weak existence result. We also
describe a few properties of those solutions to the systeni(5) that are obtained by Theorem 2.4.5
Part 2 is concerned with stability results and contains the proof d the discrete stability estimates
of Theorem2.5.2, as well as the construction of semigroup solutions given bffheorem 2.6.5 Some
technical proofs are postponed to an Appendix section, wher a list of notations is also provided.

1.4. Notations and conventions. We shall use the following notations and conventions throudp-
out the article. A complete notation index is provided in App endix B.

1.4.1. Bold symbols. Generically, bold symbols, such asu in (1.5), refer to objects of sized. Their

in which case we take the convention that <

1.4.2. Algebraic notations. For all x;y 2 R, we letx” y :=minfx;ygand x _y := maxfx;yg. The
integer part of x 2 [0;+1 ) is denoted bybxc. Given two setsA and B, the union setA[ B shall
be denoted byAt B wheneverA\ B = ;.

1.4.3. Set of probability measures.Given a metric spaceE, the set of Borel probability measures
on E is denoted by P(E). It is endowed with the topology of weak convergence, whichs de ned
with respect to the set of continuous and bounded functionsifom E to R.

Given two metric spaceskE, F, a measurable functiong: E ! F, and 2 P(E), the image
(or pushforward measurg¢ of by the function g, denoted by g ! 2 P(F), is dened by
( g Y)B)= (g ¥B)) for all Borel setsB F.

1.4.4. Function spaces. Given an interval | R, we denote byC(l; R) (resp. C(I; RY)) the set of
continuous functions onl with values in R (resp. RY). We similarly denote by C1°([0;+1 ) R;R)
(resp. CXO([0;+1) R;RY) the set of functions of (t;x) 2 [0;+1 ) R with values in R (resp.
RY) having compact support and a continuous time derivative (resp. of which each coordinate has
a continuous time derivative). We nally denote by CY}1([0;+1) R;R) Cl°([0;+1) R;R)
the subset of functions with a continuous space derivative.

The set of locally integrable functions onR with respect to the Lebesgue measure is denoted
Li.(R). Given a probability measurem 2 P(R), we denote byL!(m) the set of integrable functions
with respect to m.

1.4.5. Probability measures on the space of sample-path$Given an interval I R, we endow the
setsC(l; R) and C(I; RY) with the topology of the uniform convergence ifl is compact, and of the
locally uniform convergence otherwise. Both these topolags can be metrised.

The set of Borel probability measures onC([0; + 1 ); RY) is denoted

M = P(C([0;+1 );R%):

For all 2 M, we denote by , the marginal distribution of the -th coordinate at time t O
under ;thatisto say, ; := (¢) % where

_ C([0;+1 );R% ! R
E (XY Xs)s 0 TTOX (1)

is the usual projection operator. Since ; is continuous, the Mapping Theorem B, Theorem 2.7,
p. 21] implies that the mapping 7!  is continuous for the topology of the weak convergence on
M and P(R).
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2. Main de nitions and results

This section contains the main de nitions and results of the article. The various assumptions

presentation of the Multitype Sticky Particle Dynamics is given in Subsection2.2. Cumulative
distribution functions play a crucial role in our work, ther efore basic de nitions and properties are
recalled in Subsection2.3.

The notion of probabilistic solution to the Cauchy problem (1.5) is de ned in Subsection 2.4,
where the weak existence result of Theoren2.4.5is stated. The discrete uniform stability esti-
mates of Theorem2.5.2 are stated in Subsection2.5, while our main Theorem 2.6.5is detailed in
Subsection?2.6.

2.1. Assumptions on the characteristic elds. Our results are stated under various assump-
tions on the function

=( Lo 9001 RYG
that we now list.

We rst introduce continuity conditions.
(C) Continuity: forall  2f1;:::;dg, the function is continuous on[0; 1]°.
Under Assumption (C), the functions 1;:::; ¢ are bounded and we de ne the family of nite
constantsLc;p, p2 [1;+1 ], by
! ]_:p
Xj . . . .
(21) 8p2[L,+1); Lcp:= sup j (w)jP ; Lca = sup sup j (u)j:
=1 u2[o;1¢ 1 du2J0;1]d
(LC) Lipschitz Continuity: there exists L c 2 [0;+1 ) such that
. . xd . 0 0.
8 2f1;:::;dg; 8u;v 2 [0;1]; i (u) (v)j Lic ju v o
0=1

Of course, Assumption (C) is stronger than Assumption (C).

The following Uniform Strict Hyperbolicity condition is cr ucial in this article, since it enables
us to de ne the Multitype Sticky Particle Dynamics.

(USH) Uniform Strict Hyperbolicity: there exists Lysy 2 (0;+1 ) such that

8 2f1;:::;d 1g; inf (u) sup  *(u) Lush:
u2[0;1]d u2[0;1]d

Note that, under Assumptions (C) and (USH), the triangle inequality implies that Lysy Lca”?
2LC’1 .

2.2. The Multitype Sticky Particle Dynamics. The precise construction of the Multitype
Sticky Particle Dynamics (MSPD) is detailed in Section 3. In this subsection, we only give a
formal description of the MSPD and introduce the notations that will be necessary to state thelP
stability estimates of Theorem 2.5.2

The MSPD describes the evolution ofd n particles on the real line. Forall 2f 1;:::;dgand
k 2 f1;:::;ng, the k-th particle of type is labelled by the symbol :k, and we shall denote by

Pd:=f :k; 2f1;:::;dgk2f1;:::;ngg
the set of all such symbols.
Let us de ne the polyhedron D, R" by
Dp = f(X1;:::;%n) 2 R" 1 xg Xn0:
The con guration space for the Multitype Sticky Particle Dy namics (MSPD) is the Cartesian
product D¢, a typical element of which is denoted

X =(Xy) k2pd;

so that in the con guration x, the position of the particle :k is x,.
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In a con guration x 2 DY, the rank of the particle : k among the system of particles of type
02f1;:::;dg is the number of particles of type °located on the left of :k (i.e. which position
is lower than x, ). Informally, the MSPD started at the con guration x is de ned as follows:

the mass of each particle isl=n, and the initial velocity of a particle is determined by its
rank among each system of particles of a given type,

particles travel at constant velocity until they collide wi th other particles,

when two particles of the same type collide, they stick togeher into a cluster, and the
velocity of the cluster is determined by the conservation ofmass and momentum,

when two clusters of di erent types collide, the velocities of every particle is updated with
respect to its rank in each system after the collision.

The initial velocity of the particle  : k as a function of its rank among each system is given under
Assumption (C) by an appropriate discretisation of the function  appearing in (1.5), see ¢.6) in
Section 3. Under the further Assumption (USH), we show that the dynamics described above is
well de ned at all times and for all initial con gurations. D enoting by ( x;t) =( (X;t)) x2pg
the positions of the particles at timet 0 in the MSPD started at the con guration x, we thus
denea ow (( ;t))¢ oin DZ. A typical trajectory of the MSPD is plotted on Figure 1.

Figure 1. A typical trajectory of the Multitype Sticky Particle Dynam ics with
d = 4 types and n = 10 particles per type. The horizontal coordinate refers to
the physical positions of the particles, while the vertical coordinate describes the
time. Each color is associated with a type of particle. Partcles of the same type
stick together at collisions, and the velocities may be moded at collisions with
clusters of di erent types.
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Remark 2.2.1. Inthe scalar cased = 1, the MSPD reduces to the Sticky Particle Dynamics intro-
duced by Brenier and Grenier [L6] in the context of the study of general scalar conservationdws.
The construction of such an adhesion dynamics in the physicéterature is due to Zel'dovich [55]
and is related to the modeling of large-scale structure in tle universe, as well as elementary models
in turbulence [53]. In particular, it played an important role in the mathemat ical understanding of
the behaviour of pressureless gasesd, 37, 32, 15]; in this direction, we highlight the recent work
by Natile and Savaré [14] which relies on similar Wasserstein estimates as ours.

Remark 2.2.2. In the scalar cased = 1, the viscous version

@u+ @((u)= @u;
u(0;x) = uo(x);

of the scalar conservation law (..6) is known to describe the large-scale limit of systems of rakr
based interacting di usions [10, 11, 38]. In[41], it was proved that, when vanishes, such systems of
di usions converge to the Sticky Particle Dynamics, the large-scale limit of which is described by the
entropy solution to the corresponding inviscid conservaton law [16, 40]. Theoretical and numerical
approximation procedures of the conservation law {.6) based on this probabilistic representation
and combining the small-noise and large-scale limits whereonstructed in [39, 47], where fractional
di usions are also considered.

As far as the cased 2 is concerned, a multitype system of rank-based interactingdi usions
was introduced in [47, Chapitre 7] in order to approximate the solution to the parabolic system

@ + (WQu = @u ;
u (0;x) = ug(x):

Using the arguments introduced in [41], the MSPD can be shown to describe the small-noise limit
of this system.

2.3. Cumulative distribution functions. In this subsection, we give a few de nitions and in-
troduce some notations related to cumulative distribution functions (CDFs).

De nition 2.3.1  (Cumulative distribution function) . A cumulative distribution function on the
real line is a nondecreasing and right continuous functionF : R! [0;1] such that

X!Illm F(x)=0; x!“T1 Fx)=1:

It is an elementary result of measure theory {6, Theorem (4.3), p. 5] that a function F is a
CDF on the real line if and only if there exists a probability measurem 2 P(R) such that, for all
X2 R,F(X)=m((1 ;x]). Inthis case,F is said to bethe CDF of m, and we denoteF = H m,
where H refers to the Heaviside functionH (x) := 1ty og.

CDFs are generically discontinuous and therefore can havgimps, de ned as follows.

De nition 2.3.2  (Jumps). Let F be a CDF on the real line. For allx 2 R, the jump of F at x
is de ned by
F(x):=F(x) F(x);
where
F(x ):=lim F(y):
y X

Certainly, for all x 2 R, F(x) = m(fxg), and whenever the latter quantity is positive, then x
is called anatom of m. Note that the set of atoms of m is at most countable, thereforedx-almost
everywhere, F(x)=0.

If F is the CDF of m, then, for all f 2 L(m), the expectation of f under m is indi erently
denoted Z Z
f (x)m(dx) = f (X)dF (x):
x2R x2R
The expectation of f under m can also be expressed in terms of thpseudo-inverseof F, de ned
as follows.
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De nition 2.3.3  (Pseudo-inverse) Let F be a CDF on the real line. Thepseudo-inverseof F is
the function F 1:(0;1)! R de ned by

(2.2) F Y(v):=infffx2R:F(X) vg
The following properties of the pseudo-inverse are straigtfiorward.

Lemma 2.3.4 (Properties of the pseudo-inverse) Let F be a CDF on the real line.

() The function F ! :(0;1) ! R is nondecreasing, left continuous with right limits. It is
countinuous outside of the countable seftv 2 (0;1) :9x<y 2 R; F(x) = F(y) = vg
(i) Forall v2 (0;1), F(F *(v) ) v F(F (v)).
(i) Forall x2 R, forall v2 (0;1), F (v) xifandonlyifv F(x).

The expectation of f under m satis es the following change of variable formula[46, Proposi-
tion (4.9), p. 8].

Lemma 2.3.5 (Change of variable formula). Let F be the CDF of the probability measurem on
R. Then, for all f 2 L1(m),
z Z,
f (x)dF (x) = f(F 1(v))dv:
x2R v=0
Let us point out the fact that, with the notations introduced in Subsection 1.4 above, a re-
formulation of Lemma 2.3.5ism = U (F ) !, where U refers to the Lebesgue measure on

[0; 1].

Lemma 2.3.6 (Weak convergence and CDFs) Let (mp), 1 be a sequence of probability measures
onRandm 2 P(R). Let F, = H m, andF := H m. Then m, converges weakly tan if
and only if, for all x 2 R such that F(x) =0, Fn(x) converges toF (x). In this case, F, (V)
converges toF (v) at all continuity points v of F !, therefore dv-almost everywhere in(0; 1).

The equivalence between weak convergence and convergendehe CDF outside of the atoms
of the limit is a classical result, see for instance 1, Theorem 2.2, p. 86]. The almost everywhere
convergence of pseudo-inverses is often used as a proof o tBkorokhod Representation Theorem
on the real line, see §1, Theorem 2.1, p. 85].

We nally introduce a few notations for functions u : [0;+1) R ! [0;1] such that, for all
t 0O, u(t; ) is a CDF on the real line. For such a function, for allt 0,
the jump of u(t; ) at x 2 Risdenoted by 4u(t;x) andworth ,u(t;x) := u(t;x) u(t;x ),
whereu(t;x ) :=lim y« u(t;y),
if m 2 P(R) is such thatu(t; )= H m, then for all f 2 L(m), the expectation off under
m is denoted b d
f (x)m(dx) = f (x)dyxu(t; x);
x2R x2R
and we have 7 z,
f (x)dxu(t;x) = fou(t ) Y(v) dv;
x2R v=0
whereu(t; ) (v) refers to the pseudo-inverse of the CDFu(t; ).

2.4. Probabilistic solutions to the system (1.5). In this subsection, we introduce the notion
of a probabilistic solution to the Cauchy problem (1.5). Probabilistic solutions have to be thought

the real line at all times. Since such functions can be discdimuous, we need to take a convention
to de ne the product  (u)@u . This task is carried out in ¥2.4.1. The existence of probabilistic
solutions, based on an approximation procedure by the vectoof empirical CDFs of the MSPD, is
stated in ¥2.4.2 A description of arbitrary probabilistic solutions in ter ms of trajectories in RY is
discussed in ¥.4.3 and the continuity of solutions obtained at ¥2.4.2 under diagonal monotonicity
conditions on the characteristic elds is investigated in Y2.4.4. Finally, the links between our results
and those of B3] are discussed in ¥.4.5
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2.4.1. De nition of probabilistic solutions. The main di culty in de ning a notion of solution to
the system (L.5) is to make sense of the product (u)@u . Indeed, since we expecti (t; ) to be a
CDFonthereallineforallt 0, the function (u) is generically discontinuous at the atoms of the
measure@u , and therefore this product cannot be de ned in the distributional sense. Although
there has been several works?fl, 13] dedicated to the problem of giving a suitable de nition to
the product between a discontinuous function and a Radon mesure in the context of transport
equations, we shall use the particular connection between (u) and @u in order to provide a
de nition such that, in the scalar case, the product (u)@u coincide with the conservative form
@(( u)), see Remark2.4.3 below.

Let u = (ub::;ud) :[0;+1) R! [0;1) be a measurable function such that, for all 2
f1;:::;dg, forall t O, the function u (t; ) is a CDF on the real line. Forall 2f1;:::;dg, let
us de ne the function fug:[0;+1) R! R by

Z,
(2.3) fug(t;x) = ult X))@ Ju (Ex )+ u (Ex);udx) d;

which will play the role of a substitute for  (u(t; x)) in (1.5. Note that the function  fug can
be rewritten under the more explicit form

fugltx) = (u(tx))
ifxu (tx)=0, and
1 Z, (tx)
fug(t;x) = ———
9(t:x) xU (6X) w=u x )

otherwise.

We are now ready to introduce our notion of probabilistic soltion.

De nition 2.4.1  (Probabilistic solution to ( 1.5)). Under Assumption (C), a probabilistic solution
to the hyperbolic system(1.5) is a measurable function

u=(ut::udo;+1) R!O[0;1]%

such that:
(i) forall t O, forall 2f1;:::;dg, u (t; ) is a CDF on the real line,
(i) for all test functions ' =('1%;:::;' 92 CLO(0;+1) R;RY),
d Z41Z z
@ (tx)u (t;x)dxdt + " (0;x)ug (x)dx
=1 t=0 X2R X2R
)(d Z+l Z

= " (tx)  fug(t;x)dgu (t;x)dt;
-1 t=0  x2R

where fugis de ned by (2.3) above.
Remark 2.4.2. In the point (ii)Zof De nition 2.4.1, the integral term

"o(tx)  fug(tx)dxu (tx)
x2R
has to be understood as the expectation of the bounded measaile function * (t; ) fug(t; )
under the probability measure with CDF u (t; ). In addition, the point ( ii) only makes sense if
the function 7
t7! "o(tx)  fug(t;x)dgu (t;x)
X2R

is measurable or{0; + 1 ). This property is obtained by rst applying the change of var iable formula
of Lemma 2.3.5to rewrite

z Z,

"(tx) fug(tx)deu (tx) = otu () Nv) fug tu () Y(v) dwv
x2R v=0
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Now it is easily checked that the function
(tv) 7' tu () Y(v) fug tu (&) Y(v)

is measurable and bounded on the product spacf;+1 ) (0;1), so that the conclusion follows
from the Fubini Theorem.

Remark 2.4.3. In the scalar cased = 1, and with the de nition of fug above, we have

(2.4) @(( u(t;x)) = fug(t;x)dxu(t;x);
in the distributional sense, where we recall that is the antiderivative of  (this is a consequence
of the chain rule formula for functions of nite variation [ 46, Proposition (4.6), p. 6]). As a

consequence, a probabilistic solution in the sense of De tibn 2.4.1is nothing but a weak solution
to the scalar conservation law (L.6), which remains a CDF at all times.

2.4.2. Existence of probabilistic solutions. We rst de ne the empirical distribution and the vector
of empirical CDFs of the MSPD.

De nition 2.4.4  (Empirical distribution and vector of empirical CDFs of the MSPD). Under
Assumptions (C) and (USH), for all x 2 DY, the empirical distribution of the MSPD started at x
is the probability measure
1 X
[x]:= ﬁk X (Hoanm 2oa. o 2 M

1 X
(2.5) 8(t;x)2[0;+1) R; u [xJ(t;x):=H ¢ [X1(x) = = 1; LX) xgs
k=1
and we also let
1 X
(2.6) 8x 2 R; U [x](x) = o lix, xg'
k=1

With these de nitions, we check in Section 4 that that, for all x 2 D4, the MSPD started as x
satis es the characteristic equation

(2.7) 8 :k2 Dﬁ; —(x;)= fulx]o(t; (x;1); dt-almost everywhere.
We then prove that this implies that u[x] is an exact probabilistic solution to the system (1.5), but

of initial conditions such that uy[x(n)] approximates the initial data u, of (1.5), we combine
a tightness argument for the sequence of empirical distribtions of the MSPD in the space of
sample-paths with a closedness property of the set of probalistic solutions to obtain the following
existence theorem.

Theorem 2.4.5 (Convergence of the MSPD) Let Assumptions (C) and (USH) hold, and let us

x m=(m':::;md) 2 P(R)Y. Let (x(n)), 1 be a sequence of con gurations such that, for all
n 1, x(n) 2 DY, and assume that, for all 2f 1;:::;dg, the sequence of empirical measures
1 X
ﬁ Xy (n) 2 P(R)
k=1

converges weakly tan .
Then from any subsequence of [x(n)])n 1, one can extract a further subsequencé [x(n-)]): 1
weakly converging to someé 2 M, and such that the functionu = (u®;:::;ud) : [0;+1) R!

8 2f1;:::;dg; 8(t;x)2[0;+1) R; u(tx)=H —(Xx);
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The tightness argument is explicited in Proposition 4.3.1, while the closedness property is de-
tailed in Proposition 4.1.1. Of course, the probabilistic solutions that we obtain heremay depend
on the choice of the subsequende [x(n*)]) 1, and in the absence of a uniqueness property, nothing
enables us to identify the corresponding limits. This unigeness property is recovered by supple-
menting the de nition of a probabilistic solution with furt her conditions, that are adapted from
Bianchini and Bressan [/], see Subsectior?.6 below.

Combining the continuity of the mapping 7! , with Lemma 2.3.6 we rewrite the result of
Theorem 2.4.5in terms of convergence of the vector of empirical CDFs of theMSPD as follows.

Corollary 2.4.6  (Convergence of the vector of empirical CDFs) Under the assumptions of The-
orem 2.4.5 and along the sequencén-)- ; provided by the latter, we have

Jimeu Ix(n)I(6x) = u (6x);
forallt O, forall 2f1;:::;dg, and for all x 2 R such that ,u (t;x)=0.

In particular, forall t 0, forall 2f1;:::;dg, the convergence in Corollary2.4.6 holds dx-
almost everywhere. Besides, by Dini's Theorem, iti (t; ) is continuous onR, then this convergence
holds uniformly on R.

2.4.3. Trajectories associated with probabilistic solutions. The equation (2.7) for the MSPD shows
that the quantiles of the probabilistic solution u[x] play the role of characteristics for the sys-
tem (1.5 at least between collisions. In Section 5, we address the question of whether this fact
can be generalised to any probabilistic solutioru, and therefore try to describe the evolution of the
trajectories (X (t)): o in RY associated withu, de ned for all t ~ 0by X (t) = ( X (t);:::; X (1)),
with

X, ()= u () *v):

We rst prove in Proposition 5.1.1 that, for all probabilistic solutions u to (1.5), dv-almost
everywhere, the procesgX, (t)): o is Lipschitz continuous and that its velocity is bounded by the
minimal and maximal values of the characteristic eld . This enables us to provide gprobabilistic
representation of u as the ow of marginal distributions of some stochastic proess(X(t)): o taking
its values in RY. In the scalar case and for system of pressureless gases, mikir representation
was constructed by Dermoune 75, 24].

We then discuss conditions under which the trajectories(X(t)); o satisfy the characteristic
equation (2.7). We prove in particular, in Proposition 5.2.2 that an equivalent condition to this
characteristic equation is that the function u be arenormalised solutionto (1.5) in the sense of
DiPerna and Lions [29). However, the question of whether the solutions obtained  Theorem 2.4.5
are renormalised solutions in general is left open.

2.4.4. Continuity of rarefaction coordinates. Section6 addresses the continuity of the probabilistic
solutions to (1.5) obtained by Theorem 2.4.5when a characteristic eld  satis es some diagonal
monotonicity conditions. More precisely, under Assumptian (LC), we shall say that 2f1;:::;dg
is ararefaction coordinate if @ 0, and a strong rarefaction coordinate if there existsc > 0 such
that @ ¢. Then we prove in Corollary 6.1.2 and Proposition 6.2.1 the following continuity
results: if u is a probabilistic solution obtained by Theorem 2.4.5

for all strong rarefaction coordinate 2 f1;:::;dg, u is continuous on(0;+1) R, and
if uy is continuous onR then u is continuous on[0;+1) R.

Let us insist on the fact that, in the two statements, the conditiorg implying the continuity of u
does not depend on the monotonicity of the characteristic dd ,for 96

2.4.5. Comparison with [33]. The construction of the Multitype Sticky Particle Dynamics is made
under Assumptions (LC) and (USH), and the global existence result of weak solutions statedn
Theorem 2.4.5 only requires these two conditions to hold.

El Hajj and Monneau [33] obtained global existence of continuous probabilistic stutions to (1.5)
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in LlogL(R) (that is to say, for all 2 f1;:::;dg, t 7! @Qu (t; ) remains locally bounded in
Llog L(R)), without any strict hyperbolicity condition on the charac teristic elds which, in turn,

are supposed to beC! , globally Lipschitz continuous and such that the matrix (@ o (u) +
@ 0(u)) . o is positive semide nite for all u 2 [0; 1]°.

Notice that this last condition impliesthat @ (u) Oforall 2f1;:::;dgandu 2 [0; 1] so
that all coordinates are rarefaction coordinates as de nedn Y2.4.4 By Corollary 6.1.2in Section 6,
continuity of each rarefaction coordinate u (t;x) of our probabilistic solution holds under mere
continuity of the corresponding initial condition x 7! uy(x) and by Proposition 6.2.1, continuity
of (;x) 71 u (t;x) on (0;+1 ) R holds as soon as the characteristic eld is increasing in its

-th coordinate.

2.5. Discrete stability estimates. Forall p2 [1;+1 ], let us de ne the following (normalised)
LP distances onDY.

De nition 2.5.1  (LP distances onDY). For all x;y 2 DY, we de ne

0 11:p
L 1 X bA
8p2 [1,+1); jix iip:= o X Y ;
(2.8) k2pd
ix yijn = osup jx Y
k2pd

Section7 is dedicated to the proof of the following uniform LP stability estimates on the MSPD.

Theorem 2.5.2 (Uniform LP stability estimates for the MSPD). Under Assumptions (LC) and
(USH), for all p2 [1;+1 ], there existsL, 2 [1;+1 ) such that, for all x;y 2 D4, for all s;t O,

Ox;8)  (yitiip L piix  yiip+ it sjlcp;
where we recall thatL c;, is de ned in (2.1), while L, is an explicit function of d, L .c and Lysn
but does not depend om, see (2.9) below.

In the scalar cased=1,then L, =1 forall p2 [1;+1 ]. For d 2, the value of L, is given by
the following formulas:

Ly:=(1+4( d 1exp((d 1))exp 2 2dd 1exp((d 1) ;
(2.9) Ly ==(1+ dLi)exp(( d 1));
Lp:= LyPL P 8p2 (1;+1);

where =3 Lic=LysH.

Theorem 2.5.2is the cornerstone of this article. Up to technical correctons, its proof is essen-
tially divided into two main parts. First, we assume that the initial con gurations x andy areclose
to each other, in the sense that the trajectories of the MSPD tarted at both x and y share the
same topological features. This permits to reduce the derition of the stability estimates above
to a purely algebraic problem, which is solved by a careful btielementary analysis and thereby
provides alocal stability estimate. Second, we use the geometrical propeigs of the trajectories of
the MSPD to construct a continuous path between arbitrary initial con gurations x andy, along
which the local stability estimate can be integrated so as toobtain a globalstability estimate. We
note that the idea of such a decomposition into a rst local step and a secondnterpolation step
echoes the proofs ol! stability estimates for hyperbolic systems by Bressan and ©Glombo [19]
and Bressan, Crasta and Piccoli 21].

2.6. Stability and semigroup properties. Since the discrete stability estimates obtained in
Theorem 2.5.2 are uniform in the number of particles, they are expected to ke consistent with
the large-scale limit and therefore yield stability estimates on the solutions to the system (.5)
constructed in Theorem 2.4.5 As we shall explain below, the natural distance to extend these
stability estimates is the Wasserstein distance, that we dene in Y2.6.1

As a consequence of these estimates, we show that our solut® are semigroups. This prop-
erty enables us to use the Bianchini-Bressan unigqueness cditions [7] to roughly identify all the
semigroup solutions to (L.5). These results are summed up in Theoren?.6.5in Y2.6.2
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2.6.1. The Wasserstein distance.Our stability estimates are stated in Wasserstein distance an
introduction to which can be found in Rachev and Rischendorfl45] or Villani [ 54].

De nition 2.6.1  (Wasserstein distance) Let m;m°®2 P(R). For all p 2 [1;+1 ), we de ne the
Wasserstein distanceof order p betweenm and m° by
Z Pasp
Wp(m;m9 = inf ix  x%Pm(dxdx? :

m< Do (x;x 92 R?

where the in mum runs over all the probability measuresm 2 P(R?) such that, for all Borel sets
AA0 R,
mA R)= m(A); m(R A9 = mYA9Y:
The Wasserstein distance of orderl is de ned by

W; (m;m9 := pI!irQl Wy (m;m9:

Note that we allow the Wasserstein distances to take the vale + 1 , therefore they should rather
be referred to aspseudo-distanced54]. For the sake of simplicity, we shall keep the denomination
distance Besides, the existence of the limit in the de nition of Wy (m; m9 follows from Holder's
inequality, which ensures thatp 7! Wy(m; m9 2 [0; + 1 ] is nondecreasing.

It is a peculiar feature of the one-dimensional case that themeasure

m=U (H m) LH m9
where U refers to the Lebesgue measure ofd; 1], realises the in mum in De nition 2.6.1for any
choice ofp (see for instance {5, Theorem 3.1.2, p. 109]). We deduce the following charactéation
of the Wasserstein distance.

Lemma 2.6.2 (Optimal coupling) . Let m;m°2 P(R) and denoteF := H m, G:= H m° Then,
forall p2 [1;+1),

Z 1 1:p

Wp(m;m©) = jF Y(v) G *(v)jPdv :

v=0

while
W; (m;m9% = sup jF Y(v) G Y(v):
v2(0;1)

Note that, in particular,

(2.10) Wi(m;m9 = jiF  GjiLi(ry:
Remark 2.6.3. In the case of empirical distributions, Lemma 2.6.2 provides a very convenient
expression of the Wasserstein distances. More preciselgtlx = (x1;:::;xp) andx®=(x9;:::;x9) 2
D,, and let us de ne
— 1 X . 0.— 1 X .
m = ﬁ Xk 1 m-:= ﬁ X0+
k=1 k=1
Then, forall p2 [1;+1 ),
! ];p
Wp(m;m9) = % e QP

and
Wi (mim9 = sup jxk Xgi:
1 k n

The Cartesian product P(R)¢ is endowed with the family of distancesw ¥, p2[1;+1],dened

! 1:p
8p2 [L;+1); W@ (m;m9:
(2.11) =1

WP (m;m9:= 1SUde1 (m ;m°):

Wp(m ;m° )P ;
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Given x;y 2 DY, and letting
1 X 1 X

1,...
n k n n
k=1 k=1 k=1 k=1

it is a straightforward consequence of Remark2.6.3that, for all p2 [1;+1 ],
(2.12) jix yiip =W P (m;m9:
2.6.2. Construction of a stable semigroup.The existence result of Theorem2.4.5does not depend

of (1.5). In order to construct semigroup solutions, it is now necesary to specify how to discretise
these data. To this aim, we introduce the following discretisation operator on P(R)Y.

De nition 2.6.4  (Discretisation operator). For all n 1, we de ne the discretisation operator
n PR DY by, forall m =(m?*;:::;md) 2 P(R)Y, ,m = x, where, forall :k2PgZ,
Z (2k+1) =(2(n+1))
X, =(n+1) (H m) Y(w)dw:
w=(2 k 1)=(2(n+1))

We can now state the main result of this work, which is based orthe remark that, by (2.12),
the discrete stability estimates of Theorem?2.5.2 naturally yield Wasserstein stability estimates for
the solutions obtained as limits of the MSPD.

Theorem 2.6.5 (Convergence of the MSPD to a stable semigroup solution) Let Assumptions (LC)
and (USH) hold.
There exists a family of operators(S;); o on P(R)¢ having the following properties:
(i) for all s;t 0, for all m 2 P(R)Y, Sss¢ym = SsS;m,
(i) for all s;t 0, forall m;m®2 P(R)Y, forall p2 [1;+1 ],

WO (Ssm;SimY L WP (mim9+ jt  sjlcp;
whereLc, is de ned in (2.1) and L is de ned in (2.9);
and such that, for allm 2 P(R)Y, the function u : [0;+1 ) R! [0;1]° de ned by

8 2f1;:::;dg; u (tx):=H (S;m)x);
satis es:

(iii) the sequence of empirical distributions [ ,m] converges weakly to the measurelm] 2 M
de ned as the image of the Lebesgue measut on [0; 1] by the mapping

dened byuy=H m .

The proof of Theorem 2.6.5 is detailed in Section 8. It works in two steps: we rst use the
stability estimates of Theorem 2.5.2to prove that the solutions given by Theorem 2.4.5 with the
sequence of initial con gurations given by the discretisaton operator are semigroups and satisfy
the expected Wasserstein stability estimates. We then showthat these semigroups are viscosity
solutions in the sense of Bianchini and Bressan/], which allows us to identify all the semigroup
solutions and thus all the limits of the MSPD. We however prewent ourselves from calling our
semigroup solution a viscosity solution, as we do not actudy prove that it is indeed the vanishing
viscosity limit of the solution to the system (1.5) with viscosity.

Note that, in Theorem 2.6.5 both sides of the inequality in (i) may be in nite. Let us also
highlight the fact that, on account of (2.10), for p = 1, the point (ii) rewrites as a classicalL'
stability estimate

xd
jju(si) v()iw L1 jju@©) v(O)jyr +it siLcs
=1 =1
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de ned by
u (tx):=H (S, m)x); v (tx):=H (S, mY(x):

We nally remark that the results of Sections 5 and 6, namely the representation of the solutions
in terms of trajectories, and the continuity properties of rarefaction coordinates, obviously apply
to the probabilistic solutions to (1.5) given by the semigroup(S;): o-

2.6.3. Comparison with [34]. Besides Assumption (JSH), Theorems 2.5.2 and 2.6.5 are obtained
under the sole Assumption (C). The assumptions made by El Hajj and Monneau in B4, Theo-
rem 1.1] to obtain uniqueness and.? stability of continuous vanishing viscosity solutions to (1.5)
under uniform strict hyperbolicity are more stringent: the y assume moreover that the probability
measuresm?;:::;m¢ admit densities in LlogL(R) and that @ (u) Oforall 2f1;:::;dg

Under the assumption that the probability measuresm?;:::; m¢ admit bounded densities, they
replace strict hyperbolicity by one of the following alternative conditions reinforcing the mono-
tonicity of the characteristic elds in their -th coordinate:

@o (u) Oforallu2[0;1°and ; °2f1;:::;dgwith ©

@o (u)y Oforallu2[0;1°and ; °2f1;:::;dgwith °6 , as well as positive
semide niterlgss of the matrix (inf 0.0 @ o (U) +inf 420,10 @ 0(u)) .o,

@ (u) g (@ (u) forall 2f1;:::;dgandu 2 [0; 19, wherev =0 _( V)
denotes the nonpositive part ofv.

Part 1. Construction and properties of probabilistic solutions
3. The Multitype Sticky Particle Dynamics

In this section, we give a formal construction of the Multity pe Sticky Particle Dynamics (MSPD).
We rst recall some useful facts on the Sticky Particle Dynamics in Subsection3.1. The proper
de nition of the MSPD is given in Subsection 3.2, where a few elementary properties of this
dynamics are also stated.

3.1. The Sticky Particle Dynamics. In this subsection, we give a detailed introduction of the
Sticky Particle Dynamics and state a few properties of this d/namics.

3.1.1. De nition of the Sticky Particle Dynamics. Let us x = ( 1;:::; n) 2 R". For all

described as follows. _
First, the k-th particle has initial position xy and initial velocity , while its initial cluster is
determined by De nition 3.1.1

De nition 3.1.1  (Initial clusters) . The initial cluster of the k-th particle in the Sticky Particle

Dynamics started at x with initial velocity  is the largest set of consecutive indicesk;:::;kg
f1;:::;ng such that:
k k Kk,

(3.1)

Clusters of particles travel at constant velocity between ollisions, and stick together at collisions.
The velocity of a cluster between two collisions is given by he average of the initial velocities of
the particles composing the cluster. Denoting by
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the positions of the particles at timet 0, we obtain a continuous procesg [ ](x;t)): o taking
its values in D, that we call the Sticky Particle Dynamics started at x with initial velocity vector
. Clearly, this process has the ow property that, for all s;t 0,

[lct+s)= [ [1x1);s):

there is no ambiguity in the de nition of the initial cluster of the k-th particle.

De nition 3.1.3  (Clusters and their velocity). We denote byclux[ ](x; 0) the initial cluster of the

particles sharing the same position as thé-th particle at time t, that is, such that
kIt = = W[lx)= = L1xt):
For all t 0, the setclug[ ](x;t) is called thecluster at time t of the k-th particle in the Sticky
Particle Dynamics started at x with initial velocity .

Finally, the velocity of the cluster of thek-th particle at time t 0 is de ned by
1 X

vie[ 1(x; ) = T KO,
jclui 1(x; 1)j K02 clu 06 1)
where j¢j refers to the cardinality of the setc, so that
z t
(3.2) 8t O k[ 106G 1) = X + vi[ 1(x; s)ds:
s=0

Remark 3.1.4. De nition 3.1.3can be completed by the following remarks.

(i) Asis shown in [16, Lemma 2.2], in the caset > 0, the set clug[ J(x; t) necessarily satis es
the condition (3.1). The latter is called the stability condition.
(i) As a consequence of the de nition of the velocity of a clwster, we have, for allt 0,
(3.3) 8k2f1;:::;ng; min j  w[ Jxt)  max :
1 1) n
(i) Forall x2 D, ands;t Osuchthats t,forallk2f1;:::;ng,

clug[ 1(x;s)  clu[ 1(x; t):

be found in [41, Lemma 3.4].

Lemma 3.1.5 (Representation of the velocities) For all 2 R", for all x 2 D,, there exist right
continuous processe 1[ 10X )t o;:::;( n+1 [ (X 1))t o with values inR such that, for allt 0,

can be interpreted as Lagrange multipliers associated wittthe constraint that [ J(x; t) remain in
the polyhedron D,,. More precisely, it is shown in [}1, Lemma 3.4] that the process( [ ](X; t)): o
is the unique solution, in the sense of Tanakaq?], to the normally re ected equation

8t 0 x(t)=x+ t + (t)
at the boundary of D,, where (t) is a re ection term, the total variation of which only grows
when x(t) is at the boundary of D,.

We complete this paragraph with the following lemma, which will be useful in the sequel of the
article.
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have
1 X 1 X
KO k+1

k k-

———
K ok+1, 07 kK K+1l

In other words, if one splits a cluster into several smaller tusters, then the leftmost and rightmost
clusters tend to get closer to each other.

Proof. If k= K 1, then the result is a straightforward application of the stability condition ( 3.1)
with j = K° If K°< k° 1, then we de ne
1 X 1 X1 1 X

K Vmid -= —p K Viight -= ———o—— k-

Vieft *= ~ o -
K k+1, K K 1 on K kK+1,

Applying the stability condition ( 3.1) with j = K 1, we obtain
) 0

1
(1 1)Vieft + 1Vmid  Viight ; 1= —EO_—k 2 (0;1);
and applying the stability condition ( 3.1) with j = k° we obtain
ki kW 1
Vit 2Vmid * (1 2)Viignt ; 2= ﬁ 2 (0;1):

We conclude that Viert  Vright -

3.1.2. Local Sticky Particle Dynamics. Letus x T > 0, x 2 Dy, and take a setK f 1;:::;ng
having the property that

(3.4) 8k 2 K; clug[ 1(x; T)  K:

In other words, K is the union of a certain number of clusters at timeT. By (iii) in Remark 3.1.4 for

Dynamics, the interactions between particles are local: wkn some particles collide and stick
together, this does not a ect the motion of the other particl es.

Dk = f(Xip 511 Xk, ) 2 RS 1 Xy Xi O
with initial velocity vector k= ( ;11 k) 2 R¥.
For 0 t; tp, we shall also say that( [ J(x;t);:::; kin[_](x; t)) follows the Local Sticky

Particle Dynamics on [ty;to] if
D10 DI ta)it ta)soss w10 DI ta)it ta)
follows the Local Sticky Particle Dynamics on[0;t,  t1].

For all p2 [1;+1 ], we now give an estimation on the growth of theLP distance between two
realisations of the (Local) Sticky Particle Dynamics, with possibly distinct initial velocity vectors.
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Proposition 3.1.9 (LP stability for the Local Sticky Particle Dynamics) . Let x;y 2 D, and

and
(IO 00 ke 10 D)z o)
follow the Local Sticky Particle Dynamics on[0; T], with respective initial velocity vectors ¢ and
~x dened as above.
(i)XFor all t2][0;T],

_ X _ X _
Rl 106T)  k[CI: T el 16ty k[l 0i+(T ) j w7

k2K k2K k2K
(i) Inthe case = —, thenforallt2 [0;T], forall p2 [L+1),
X _ _ X — :
Jl1e6T) Wl 1y TP Jkl It Wl 1y i
k2K k2K
and

supj k[ 106 T) k[ 1v:T)i  supj k[ 10ct)  «[ 1(y: b)j:
k2K k2 K

Proof. Without loss of generality, we assume thatK = f1;:::;ng, sothat « = and =
Now, by (3.2), forall p2 [1;+1 ),

x x o
LI (CS D R (D L B O (€5 B (VAT

k=1 k=1
x L B B B
+ pik[10Gs) kI 9P 2 k[106s)  k[TI:9) W[ 166s)  w[TI(y:s) ds;
k=1 S=t
where we take the convention thatjzj? 2z =0 for p 2 [1;2].
Using Lemma3.1.5 we write, for all k 2 f 1;:::;ng,

vi[1s) w[y:s)= « k+ k[106s)  wa[16s)  «[IY:9)+ wea [T1Y: 9):
We shall prove below that, for all s 2 (t; T],

X _ _ _ _
3.5 P kllecs) w0 9P 2kl 1068)  «[Iv:s) k[ 16s)  walls) O
k=1
then, by symmetry, the contribution of f [7](y; S) k+1 [1(y; s)g is also nonpositive, so that
we obtain

X1 . - . X-] . - .
kL 16T) W[y TP ikl 16t [Ty 0P
k=1 k=1
x Zr _ _
+ ko Tk piok[106s) kI 9P 2( k[ 109) k[Tl s)ds;
k=1 s=t
from which (i) and the rst part of ( ii) easily follow. We derive the second part of {{) by letting
p grow to in nity after having taken the power 1=p of both sides of the inequality above.

Let us now prove (3.5). To this aim, we x s2 (t; T] and perform an Abel transform to write

X _ - - -
jcIs) W1y 9P 2CklI6s)  «l1yis) k[ 1x8) ke [1069)

X
= k[ 106 9)#( « 1L 1069); « 1[71y; 9); «[ 106 9); «[T1(y; S));

AR ID S T L G B B L G
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and we have applied LemmaB.1.5to remove [ J(x;s) and .1 [ ](x; ). Using Lemma3.1.5again,
we recall that [ J(x;s) Oandif [ ]J(x;s)> 0,then  1[ J(X;8)= «[ I(X;s), while we still

have  1[71(y; s) k[71(y; s). The conclusion of the proof now follows from the elementary
observation thatif °= and © ,then#( % %; ) O
3.2. De nition of the MSPD. Let us now give a proper construction of the MSPD. First, in

order to de ne the initial velocities of the particles, we encode the global ordering of a con guration
x 2 DY in the set R(x) de ned by

RX):=f( i :j)2(PH?: <ix | <x;0;
and we let N(x) refer to the cardinality of R(x).
0
Letus x :k2Pdand, forall °6 ,dene! . (x)2[0;1]by

8
1 X oL .
E L oko y2r(xyg If "<

1k oker(x)g I > ¢

Under Assumption (C), we can now de ne the initial velocity of the particle : k in the MSPD
started at x by
z k=n
(3.6) ((X)=n Pl (x);:e;! :kl(x);w;! :11 (x);::;! d:k(x) dw;
w=(k 1)=n

and we denote
3.7) T =T TR () 2R () = (TR T (x) 2 (RM):

For all x 2 DY, we de ne the Multitype Sticky Particle Dynamics started at x, and denote by
(( x;t))t o, the continuous process taking its values inD¢ and constructed as follows: as long
as there is no collision between particles of di erent types each system evolves according to the
Sticky Particle Dynamics with initial velocities given by ( 3.6) above. When particles or clusters of
di erent types collide, say at time t > 0, then the initial velocity of the particle : k is updated
to the value =, (( x;t )).

Under Assumption (USH), and whatever the composition of the clusters in each systa, the
velocity of a cluster of type is always larger than the velocity of a cluster of type if <
Therefore, the setR(x) contains the pairs of particles( :i; :j) that will collide at a positive and
nite time in the MSPD started at x. At the rst collision, say at time t > 0, between clusters
of di erent types, then the fastest clusters cross the slowst clusters and the systems restart with
initial velocities determined by the set R(x) from which the pairs of particles( :i; :j) involved
in the collision have been removed.

The outline of this subsection is as follows: in ¥.2.1, we introduce and state a few properties of
the Typewise Sticky Particle Dynamics which simply describes the joint evolution of d systems of
sticky particles, that do not interact with each other. A pro per construction of the actual MSPD is
made in ¥3.2.2. Continuity properties of this dynamics are stated in ¥3.2.3and a peculiar formalism
to describe collisions is introduced in ¥.2.4. Finally, we emphasise the fact that interactions remain
local in the MSPD in Y3.2.5

3.2.1. The Typewise Sticky Particle Dynamics. This paragraph is dedicated to the study of the
Typewise Sticky Particle Dynamcis which is de ned as follows.

De nition 3.2.1  (Typewise Sticky Particle Dynamics). Let = (_1; S ;_d) be a family of d
vectors

gt 0 TIoa=( [Ieht )
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In other words, (T ](;t)); o describes the joint evolution of d systems ofn particles, where
the system of particles of type follows the Sticky Particle Dynamics in D, with initial position
vector X = (Xq;:::;X,) 2 D, and initial velocity vector ~ 2 R", independently of the other
systems.

contraction property for the Typewise Sticky Particle Dyna mics. Let us recall that jj jj 1 refers to
the (normalised) L* distance inDY, see @.8).

Lemma 3.2.2 (L?! contraction). For all ;— 2 (R")Y, for all x;y 2 DY, for all s;t 0 such that
s t,
o _ L - _ ot s X
BT 166t T710:0he i T 106s) T7Iy:sljn + —— I Tk
k2pPd

Let x 2 DJ. In order to de ne the MSPD started at x in ¥3.2.2 below, we shall of course
be concerned with the Typewise Sticky Particle Dynamics wih initial velocity vector ~(x) given
by (3.7), up to the rst collision between particles of dierent typ es. Therefore, we introduce
the collision time ~°?i';' i (x) associated with a pair( :i; :j) 2 R(x) as the time at which
the particles :i and :j collide in the Typewise Sticky Particle Dynamics started at x. The
following lemma is a straightforward consequence of Assuntjpn (USH) combined with (3.6), and
we do not give a proof.

Lemma 3.2.3 (Collision times). Under Assumptions (C) and (USH), let x 2 D¢ and ( :i;
i) 2 (P9)? such that <

() If ( :i; :j)62R(x), then, forallt o0,
T TOOIG) T TOOIG ) + Luskt:
(i) f ( :i; :j)2 R(x), then there exists a uniquet =: ~°' . (x) > 0 such that

T COO10Gt) = T [TOOIX; 1)
Then, for all s2 [0;~°%" . (x)],
S T00I06GS) T TOOIS) Lusk (Y () s);
while, for all s ~9' . (x),
TTOIGS) T ITOONGS)  Lusu(s <9 (X))

For all x 2 DY, we now de net (x) by

+1 if N(x)=0;
(3'8) t (X) = i coll . e e . ;
minf ~“5" ;(x);( 1 1) 2 R(X)g2 (0;+1) otherwise
For all x 2 DY such that N(x) 1, we let x = T ~(X)](x;t (x)). The following corollary

of Lemma 3.2.3is a straightforward consequence of the ow property and thecontinuity of the
trajectories for the Typewise Sticky Particle Dynamics, therefore we do not give a proof.

Corollary 3.2.4 (Evolution up to t (x)). Under the assumptions of Lemma3.2.3, let x 2 DY,
t<t (x) and let us denotex®:= T ~(x)](x;t). Then R(x%) = R(x), ~(x% = ~(x) andt (x9 =
t (x) t. In addition, if N(x) 1, then x® = x and R(x ) is a strict subset of R(x), so that
N(X ) < N(x).

3.2.2. Construction of the MSPD. We are now ready to de ne the MSPD started at x 2 D¢.

De nition 3.2.5 (Multitype Sticky Particle Dynamics) . Under Assumptions (C) and (USH), for
all x 2 DY, the Multitype Sticky Particle Dynamics started at x is the process(( X;t))t o, with
values inDZ, de ned by

(. |
8t O ( x;t):= T 7091060 ff t<t (x);
(x;t tXx) ift tx):
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Since N(x) is nite and Corollary 3.2.4 asserts that, for all x 2 D¢ such that t (x) < +1 ,
N(X ) < N(x), then the process(( X;t)); o is well de ned on [0;+1 ).

Let us recall that, for the Sticky Particle Dynamics with ini tial position vector x 2 D, and

t

8t 0 k[ 106G 1) = xi + vi[ 1(x; s)ds;
s=0
see De nition 3.1.3 Now, for all x 2 D¢, forall :k 2 PY, we de ne the process(v, (X;s))s o by
V[T (OIx ;s if s<t (x);
(3.9) v (x:) = k[T OOIx ;s) ! (x)
V(X ;s t(x) ifs t(x);
so that z,
8t O (Xt = x, + v, (x; s)ds:
s=0
We easily deduce from this de nition and (3.3)-(3.6) that, for all x 2 D¢, forall t O,
(3.10) inf (u) v (x;t) sup (u):
u2(0;1]d u2(0;1]d

We are now willing to de ne the cluster of a particle in the MSPD started at x, similarly to
De nition 3.1.3above. In this purpose, we rst introduce the notion of generical cluster.

De nition 3.2.6  (Generical clusters) A generical clusteris a pair (; fk;:::;kg), where 2
f1;:::;dg is the type of the generical cluster andfk;:::;kg is a set of consecutive indices in
f1;:::;ng. To refer to the generical clusterc := ( ; fk;:::;kg), we shall rather use the notation
c= :k k.

Let us give a few rules to manipulate generical clusters.
The type of a generical clusterc is denoted bytype(c) 2f 1;:::;dg.

The cardinality of a generical clusterc= :k k is denoted byjg and worth k  k + 1.
For 9:k°2P%andc= :k Kk, we shall write

0:k%2 ¢
ifand only if °= and k2 fk;:::;kg. This set membership relation allows us to de ne

the inclusion relation a b between generical clustera and b as well as the union sefa[ b
and the Cartesian producta b of two generical clustersa and b.

A generical cluster :k k with a single element : k shall rather be denoted by : k.
It will always be clear from the context whether the notation : k refers to a particle (that
is, an element ofP?) or to a cluster containing a single particle.

We can now de ne the cluster of a particle in the MSPD started at x 2 DY.

De nition 3.2.7  (Cluster). The cluster of the particle : k in the con guration ( x;t) is the
generical cluster de ned by
cclug [T (O ;t) ift<t (X);
clu, (x;t) = .
clu (x ;t t (x)) ift t(x);
where we recall thatclu, [~ (x)](x ;t) was de ned in De nition 3.1.3.

3.2.3. Continuity properties of the MSPD. In this paragraph, we state some continuity properties
for the MSPD in Propositions 3.2.8and 3.2.9 the proofs of which are postponed to Subsectior.1
in Appendix A.

Proposition 3.2.8  (Time continuity and ow) . For all x 2 DY, the process(( x;t)); o has
continuous trajectories in DY. Besides, (( ;t)); o denes a owin DY.

For p 2 [1;+1 ], we recall the De nition 2.5.10f the (normalised) LP distance onD¢, and denote

Bp(x; )= fy 2Dy :jix vyijp< 0  Bp(x; )=fy2D3:jix vyip o
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Proposition 3.2.9  (Continuity with respect to the initial con guration) . Let x 2 DY. Then, for
all > 0, there exists > 0 such that, for ally 2 B1(x; ),

tSU(F))J'J' (x;t)  (y;Dis
3.2.4. Collision times. For all x 2 DY, forall ( :i; :j)2 (PY)? suchthat < , letus dene
O ) =infft 00 (xit) (e

Certainly, Assumption (USH) ensures that %' . (x) < +1 ; while ' .(x) > 0if and only if

( iy :]) 2 R(x). Besides, it is easily checked that
+1 if N(x)=0;
t (X) = i coll . cie e ; .
minf 5 (x);( i 1)) 2R(x)g i N(x) L
Forall ( :i; :j) 2 R(x), °% ;(x) is nothing but the time at which the particles  : i
and :j collide in the MSPD started at x. On the contrary, if ( :i; :]) 62R(x), then

cal j (x) = 0, which is somehow consistant with the intuitive idea that the collision between : |
and :j happened “before the origin of times', which we shall referd as thevirtual past.

Assumption (USH) implies that the collision times Cf’i';' ; (x) have properties similar to those de-
scribed in Lemma3.2.3for the collision times ~°f’i';' ; (x) in the Typewise Sticky Particle Dynamics.
As a consequence, we state the following lemma without a denmstration.

Lemma 3.2.10 (Collision times in the MSPD). Let x 2 D and ( :i; :j) 2 R(x). Then
' ;(x) > 0, and:
forall s2[0; % (), ;(x9) ;(x;8) Lusu( % ;(x) 9),
foralls ' .(x), ;(x;s) ;(x;8) Lusu(s % ;(x):
3.2.5. Local interactions. We nally explain why the interactions in the MSPD remain loc al, in the
sense of ¥.1.2. Indeed, according to De nition 3.2.5 if N(x) 1, then at the rst instant t (x)
of a collision between two particles of di erent types, the whole system restarts with new initial
velocities determined by ~(x ). Therefore, the velocities of all the particles could be moded.
The following lemma ensures that only the velocities of the @articles involved in a collision with
particles of another type at time t (x) are actually modi ed. It is rst useful to de ne the set
(3.11) Ta)=F 9 ;(x):( i :j)2R(x); :k2f :i; :jgg
of instants at which the particle : k collides with particles of di erent types in the MSPD starte d
at x. Forall T 0, we also let
0if the set T .« (x)\ [0;T) is empty;

N . =
(3.12) T AT w00 = d(T )\ [0:T)) otherwise
Notethat 0 T AT 4(X)<T.

Lemma 3.2.11 (Locality of the interactions in the MSPD) . Let T .x(x) be de ned as above.
(i) Forall :k2 P4, ift (x) 62 Tk(x), then

~k(X )= ~k(X)Z
(i) Forall T>0,forall 2f1;:::;dg, if K f 1;:::;ngis such that, for allk 2 K,
clu (x;T) 'K

(with an obvious notation for : K), then the processf | (x;t): k 2 K g follows the Local
Sticky Particle Dynamics, in the sense of De nition 3.1.8, on the interval [to; T] with

= N . .
to: rpgz( T 2T «(X);

with initial velocity vector « :=( k)k2x de ned by
8k 2 K; k= T x5t0)):
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Proof. We rst address (i) andlet :k 2 P¢ suchthatt (x) 62 T.(x). Then, due to the de nition
of 7. (x ), it su ces to check that, for all °6 ,

(X )= 1 o (x):

We describe the case °< , the reverse case is symmetric. The equality above holds ifral only

( %:k% :k)2R(x) ifandonlyif ( °%:k% :k)2R(x);
that is to say
xkg <Xy if and only if kg(x;t (x)) < (x;t (x));
which obviously holds true sincet (x) 62 T.x(x) implies that the particle : k does not collide
with any particle °: k®on [0;t (x)].
The point (ii) is now an easy consequence of the choice ©f which ensures that, for allk 2 K,
the particle : k does not collide with a particle of another type in the time interval (to;T).

4. Construction of probabilistic solutions by approximation

In this section, we detail the proof of Theorem2.4.5 which in particular provides existence of
probabilistic solutions to (1.5) under Assumptions (C) and (USH). In Subsection4.1, we rst state
a closedness property on the set of probabilistic solutiongo (1.5). In Subsection 4.2, we show
that, for all x 2 D9, the vector of empirical CDFs of the MSPD is an exact probabilistic solution
to the system (1.5), but with discrete initial data induced by x. Taking a sequence of initial

nally combine the closedness property of Subsectiont.1 with a tightness argument to complete
the proof of Theorem2.4.5in Subsection4.3.

4.1. Closedness of the set of probabilistic solutions. This subsection contains the statement
of Proposition 4.1.1, the proof of which is postponed to SectionA.2 in Appendix A.

Proposition 4.1.1  (Closedness of the set of probabilistic solutions) Under Assumption (C), let
(up)n 1 be a sequence of functions

up = (uk;iud):[o;+1) R!O[0;1°

such that:
for all n 1, the function u, is a probabilistic solution to the system(1.5) with initial
data (u%);n vees Ug;n),

forallt O, forall 2f1;:::;dg, there exists a CDFu (t; ) on the real line such that,
for all x 2 R for which ,u (t;x) =0,

n!Iirpl u,(t;x) = u (tx);
forall ; °2f1;:::;dgsuchthat 6 ¢
(4.2) dt-almost everywhere, 8x 2 R; xu (t;x) xu 0(t;x) =0:

Then the function u = (u';:::;ud) : [0;+1) R ! [0;1)¢ is a probabilistic solution to the

4.2. Empirical CDFs of the MSPD. For all x 2 DY, recall the De nition 2.4.4of the vector of
empirical CDFs u[x] of the MSPD started at x. Let us check that the trajectory ( | (X;t))t o is
Lipschitz continuous, and satis es the characteristic equation

(4.2) 8 k2 P,ﬁ‘; —(x;0= fulx]o(t; (x;1); dt-almost everywhere

To this aim, letus x t 0 outside of the nite set f ' ., (x);( :i; :j) 2 R(x)g. We claim
that, for all :k 2 PZ,

(4.3) fulx]g(t, (x;t)) = v (x;1);
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where we recall the de nition (3.9) of v, (x;t). Clearly, (4.3) implies the characteristic equa-

tion (4.2). To obtain (4.3), x -k 2 PY and write x := (G, Tk ko= clu(x;t).
Then 3 3
uxltx )= —— 1: u [x](tx) = ; and  xu [x](t;x) = 7§+1 > 0
As a consequence,
n z k=n
fulxlg(t;x) = =— ul ] x); s wg s udx(E X)) dw:

k kK+1 w=(k 1)=n
The choice oft implies that, for all °2f1;:::;dgsuchthat 6 ©

U X1 X) =0;

u I X) = 1 Gl (X))
As a conclusion,
fulx]g(t;x) = R

K1 o,

o X51) = v (X31);

hence @.3).
We deduce the following proposition.

Proposition 4.2.1  (The MSPD provides an exact solution to (1.5)). Under Assumptions (C)
and (USH), for all x 2 DY, the vector of empirical CDFs u[x] de ned by (2.5) is a probabilistic

Proof. Letus x x 2 DY. By construction, forall t 0, forall 2f1;:::;dg, u [x](t; ) is a CDF
on the real line. In order to prove that it is a probabilistic solution to the system (1.5), we rst
check that, forall 2 f1;:::;dg, the function u [x] is measurable on0;+1 ) R. Then, we check
that u[x] satis es (ii) in De nition 2.4.1

Proof of measurability. Recall that u [x](t; ) writes H ¢ [X]. In this de nition, replace the

HeavisideH with its continuous approximation H; de ned by, for all I 1,
< 0 if X 1=l
H(x)=  1+Ix if 1=l<x< 0
1 if x O
so as to deneu, [X](t; ) := H : [x]. Then, on the one hand, for all t 0, the function

X 7! u, [x](t;x) is continuous and nondecreasing orR, hence Dini's Theorem implies that u, [x]
is continuous, and therefore measurable, oii0;+1 ) R. On the other hand, H,(x) converges to
H (x) for all x 2 R, thereforeu [x] is the pointwise limit of u, [x], which completes the proof.

Proof of (ii) in De niton 2.4.1. Letus x ' =("'%:::;' 92 CLo(0;+1) R;RY) and, for all
2f1;:::;dg, de ne by
z +1
8(tx)2[0;+1) R; (t;x) = " (ty)dy:
y=X

Owing to (4.3), the chain rule formula for functions of nite variation [ 46, Proposition (4.6), p. 6]
yields, forall T 0, forall :k2 PZ,
VA
(T (TN = Oix )+ , (@ (& (x)+ @ (& (1) fulxlot; (x;t)dt
t=
Z+

= Ox)+ - (@ (& (1) (& (1) fulxlolt ((x;1))dt
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Since' has a compact support, the left-hand side above vanishes wheT grows to in nity, and

z Z,,2
0= (05 x)dug [X](x) + (@ (tx) ' (tx) fulx]g(t;x))dxu [x](t;x)dt:
x2R t=0 x2R
By the Fubini Theorem,
Z VA Z
(0; x)dug [x](x) = lix yg' (O3y)dug[x](x)dy = " (05 y)ue[x](y)dy;
x2R (x;y)2R? y2R
and we similarly obtain, forall t 0,
Z VA
@ (tx)dxu [x](tx) = @ (ty)u [x](ty)dy:
x2R y2R
As a consequence,
Z,,2 z
@ (ty)u [x](ty)dydt + " (Gy)u[x](y)dy
t=0 2R 7 y2R
+1
= o(tx)  fulx]o(t; x)dxu [x](t; x)dt;
t=0 x2R

Remark 4.2.2. Proposition 4.2.1 provides easy examples for which the uniqueness of probaisitic
solutions to (1.5) fails. Indeed, x x 2 DY and dene % 2 DY, by, forall 2f1;:::;dg, for all

Rk 1= Xy 1= X

1 X 1 X
olX]:= n X, and o[R] := >n 2,
k=1 k=1
coincide in P(R). As a consequence, by Propositiort.2.1, the vectors of empirical CDFsu[x] and
u[R] are probabilistic solutions to the system (1.5) with the sameinitial data.

the particles of type instantaneously drift away from each other. As a consequere; for all
t 2 (0;t (R)), the marginal distribution , [R] has exactly 2n atoms, while the marginal distribu-
tion | [x] possesses at most atoms. Therefore, the corresponding solutions to the systa (1.5)
do not coincide.

4.3. Proof of Theorem 2.4.5. The proof of Theorem2.4.5is based on a tightness argument for
the empirical distribution of the MSPD. We recall that a sequence of probability measureq ), 1
on some metric spaceE is said to betight if, for all > 0, there exists a compact subseK of E
such that ,(K) 1 foralln 1[8 p. 8] If ( n)n 1 is tight, then Prohorov's Theorem [8,
Theorem 5.1, p. 59] asserts that from each subsequence 6f,), 1, one can extract a further
subsequence weakly converging to some 2 P(E). Conversely, if E is complete and separable,
then any sequence of probability measure$ ), 1 on E of which every subsequence contains a
weakly converging further subsequence is tight§, Theorem 5.2, p. 60]. We nally recall that the
set C([0; + 1 ); RY), endowed with the topology of the uniform convergence on th&ompact sets of
[0;+1 ), is complete and separable; this follows from a slight adaggttion of [8, Example 1.3, p. 11].

Proposition 4.3.1 (Convergence of the MSPD) Under the assumptions of Theorem2.4.5, the
sequence [x(n)])n 1 is tight. Besides, if —2 M refers to the limit of a converging subsequence,

distinct atoms dt-almost everywhere.
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Proof. Letus x T > 0 and denote

_ X 11 od
o;T1x(n)] = ﬁk ( x():t)2pr 2 P(C(O0; T RY))
=1

the empirical distribution of the restriction of the MSPD st arted at x(n) to [0; T]. We rst prove
that the sequence( [o.rj[x(n)])n 1 is tight on C([0;T]; RY), using [3, Theorem 7.3, p. 82], which
is a consequence of the Arzela-Ascoli Theorem. To apply thisheorem, we need (i) to prove that
the sequence of marginal distributions o[x(n)] 2 P(RY) is tight, and (ii) to exhibit a uniform (in
n) control on the modulus of continuity of the sample-paths ofthe MSPD started at x(n).

The point (i) is obtained as follows: by the assumptions on the sequencéx(n)), 1, the marginal
distributions  3[x(n)];::: d[x(n)] 2 P(R) of o[x(n)] 2 P(RY) are weakly converging. SinceR is
complete and separable, we deduce that these marginal disbutions are tight, which, by an easy
adaptation of [8, Exercise 5.9, p. 65], implies that the sequencé o[x(n)])n 1 itself is tight.

The point (ii) follows from the fact that, by ( 3.10), for all n 1, for all k 2 f 1;:::;ng, the
process

satis es the Lipschitz continuity condition

Jox(n);t)y  (x(n);s)j Jt siLca;
=1

with a constant L¢.; that does not depend onn.

Let us x a subsequence of( [x(n)])n 1, that we still index by n for convenience. Then, by
the argument above, the sequenc¢ o.71[x(n)])n 1 is tight, and therefore, owing to the Prohorov
Theorem, we can extract a further subsequence converging &kly to some probability measure
To:r) ON C(0; T RY). Letting T grow to in nity along some countable set and using a diagonal
extraction procedure, we deduce that there exists an incresing sequence of integerén-)- 1 and
— 2 M such that [x(n-)] converges weakly to— 2 M.

Let us now check that, for all ; °2 f1;:::;dg such that 6 © dt-almost everywhere, the
0
probability measures™, and —; have distinct atoms. We note that this amounts to proving that
z +1

& T (F(xx9) 2 R2:x = x%)dt = 0;
t=0

where ™, to denotes the product measure of ;, and —; ° onR2. Following [8, (ii), Theorem 2.8,
0

p. 23], for allt 0O, the probability measure  [x(n)] to[x(n‘)] converges weakly to—, i
on R?. Hence, for all > 0, the Portmanteau Theorem [3, (iv), Theorem 2.1, p. 16] yields

T e 2R x x§< g
liminf (X)) XMOIEe6xY 2 R jx - x5 < )

therefore by the Fatou lemma,

Z+l o
L fxx92R?:jx xG< gyt
t=0
Z.,

lim inf XM CMIExY 2 R2:jx xS < gyt
I+ t=0
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Now, for all © 1, by the Fubini Theorem,

+1 o -
(XM XN 6xY 2 R? tjx - xF < g)dt
t=0
z Z., O
= dtlgx xge< g ¢ X(M)IAX) ¢ x(n"))(dx9)
(xx92R2  t=0
1 XX YA +1
- n2 1fj K (x(n);t) o(x(n)it)j< gdt:
k=1 ko=1 10 K
By Lemma 3.2.1Q for all :k; °:k°2 P¢ with 6 ©
1 0 a  —:
o D Gxni< o0 Lugy
As a consequence,
+1 0 Z +1 0
T (F6x9 2 R?:x = x%)dt T Fx92R?jx xG < gydt
t=0 t=0
2
LusH '

and we complete the proof by letting vanish.
The proof of Theorem 2.4.5 nally comes as a straightforward consequence of Propositin 4.3.1.

Proof of Theorem 2.4.5. Under the assumptions of Theorem2.4.5 let us x a subsequence of
( [x(MDn 1,andlet( [x(n")])- 1 denote afurther subsequence weakly converging to some2 M
as is given by Proposition4.3.1. De ne the function u = (u®;:::;u%):[0;+1) R! [0;1] by

8 0; 8 2f1;:::;dg; u(tx):=H —(Xx):
We rst note that, by Proposition 4.2.1, for all ~ 1, the function u[x(n-)] is a probabilistic
solution to the system (1.5). Furthermore, by Lemma 2.3.6 we have, for all 2 f 1;:::;dg, for all

t 0
Jimeu x(m)l(Ex) = u (6x)

for all x 2 R such that 4u (t;x) = 0. Finally, by the second part of Proposition 4.3.1, the
function u sati es (4.1) in Proposition 4.1.1

As a consequence, we can apply Propositiof.1.1and conclude thatu is a probabilistic solution
to the system (1.5), with initial data (ug;:::;ud) denedby uy=H —,=H m . The proof of
Theorem 2.4.5is completed.

5. Trajectories associated with probabilistic solutions

In Section 4, we checked that the MSPD satis es the di erential relation (4.2). In other words,
the MSPD behaves like what one would expect to be the charactéstics associated with the system
of transport equations (

@u + fug@u =0;
u (0;x) = ug(x):

However, the value ofu[x](t; |, (x;t)) is only constant between collisions of particles.

More generally, one may wonder whether such a description iterms of trajectories of a process
(X (1))t o in RY, may be generalized toany probabilistic solution u to (1.5) and whether these
trajectories satisfy a dierential relation similar to ( 4.2). In the MSPD, the positions of the
particles are given by the quantiles of orderk=n of the empirical CDF, therefore it is natural to
de ne, for all v 2 (0;1), the process(X(t)): o by

(5.1) 8t 0, Xy ()= (Xt Xd) 2RY X, ()= u () Yv):

In Subsection 5.1, we show that, for all 2 f 1;:::;dg, dv-almost everywhere, the trajectory of
(X, (1)t o is Lipschitz continuous, with Lipschitz constants given by the lower and upper bounds of
. This allows us to provide aprobabilistic representation of the solution u in terms of a stochastic
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a di erential relation similar to ( 4.2) if and only u is arenormalised solution to (1.5) in the -th
coordinate in the sense of DiPerna and Lions 9.

5.1. Probabilistic representation of probabilistic solutions . Throughout the subsection, we
shall work under Assumption (C) and denote, for all 2f 1;:::;dg,
= inf u); = su u):
B uz[o;1] ) uz[o;pl]d W

Proposition 5.1.1  (Lipschitz continuity of trajectories) . Under Assumption (C), let u be a prob-
abilistic solution to (1.5 such thatt 7! u(t; ) is continuous in LL (R)Y, and let (X (t)); o be
de ned by (5.1). Then, for all 2f1;:::;dg, dv-almost everywhere, the trajectory of(X, (t)): o
is Lipschitz continuous and

(5.2) XM dt-almost everywhere
Proof. Letus x 2f1;:::;dg. The proof of (5.2) is detailed in the two steps below.

Step 1: using intermediate functionsu and U . From the de nition of u , we note that Qu is a
nonnegative measure, and theru satis es

@ +_@Qu 0 @u + @u
in the distributional sense on(0;+1 ) R. This means that
utx):=u(x+_1t) and U (tx):=u (tx+ t)
satisfy
(5.3) @ 0 @u

in the distributional sense on (0;+1 ) R. We claim that this implies the existence of a Borel
subsetT of (0; +1 ) with zero Lebesgue measure such that, for alk 2 R, for all t1;t, 2 (0;+1 )nT
with t;  to,

(5.4) u (tz;x) u (ty;x) 0 U (tz2;x) U (t1;x):

The proof of this claim is postponed to Step 2 below.
We deduce that for ally 2 R,

u(t;y+ _ (tz t1)) u(tyy) u (ty+ (2 to):

Fixing v 2 (0; 1), then choosingy = X, (t1) in the right-hand inequality and y = X, (t2) _ (t2 t1)
in the left-hand inequality, we deduce from Assertions (i) and (iii) in Lemma 2.3.4 that

X (t)+ _ (2 t1)  X,(t2) X, (t)+ (t2 ta);

which holds for allt; t;in (0;+1 )nT.
Forall v 2 (0; 1), we deduce the existence af 7! X, (t) which coincides with X, (t) on (0;+1 )nT
and such that

(55) 80 4 to; X-v (t]_)"' _ (tg t]_) X-v (tz) X-v (t1)+ - (tz tl):

The continuity of t 7! X, (t) for all v 2 (0;1) combined with Lemma 2.3.6 ensure that the CDF
of the image ofU by v 7! X, (t), which coincides withu (t; ) on (0;+1 ) nT, is continuous in
LE.(R) as a function oft 2 [0;+1 ). Sincet 7! u (t; ) is also continuous inL}_(R), we deduce
that

Z,
(5.6) 8(t;x)2[0;+1) R; u (t;x) = . Lix, (1) ngv:

v=

From Assertion (i) in Lemma 2.3.4and Lemma2.3.6,t 7! X, (t) is continuous on[0; +1 ) as soon
asvis notin

Vi=fv2(0;1):9t1 0; 9x<y 2 R; u (t1;x)= u (t1;y) = vg:
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Let v 2 V and t; 0, X;y 2 Rbesuchthatx <y andu (ti;x) = u (t1;y) = v. The
monotonicity of w 7! X, (t1) and (5.6) ensure that

8w 2 (O;v); X, (t1) X and 8w 2 (v;1); X, (t1) >y:

Now, by (5.5), for to  t1, X,,(t2) X+ B (t2 t1) whenw 2 (0;v) and X, (t2) >y + _ (t2 t1)
whenw 2 (v;1). Fortz 2 (tyi;ta+(y x)=( _)),x+ (t2 t1)<y+_ (t2 t1)and, by (5.6),

u(tz;x+ (2 t))= u (tzy+ _ (t2 t)= v
Hence
V=1fv2(0;1):92 Qs+; X<y 2R; u (t2;X) = u (tz;y) = vg;

and V is countable as a countable union of countable sets. Singe7! X, (t) andt 7! X, (t) coincide
forv62Vandforallt O, v7! X,(t)is nondecreasing, the conclusion follows from%(5).

Step 2: proof of (5.4). The proof of (5.4) should be standard, but we do not know any reference,
S0 we propose a proof below.

Let R > 0. Let us consider aC! function : R! [0;+1) with supp [ R;R] and
let 0 be a nonnegative smooth approximation of the indicator fun¢ion (t) = Lltio[t,:t,]g
with compact support in (0;+1 ), where0 <t; <t, are Lebesgue points of the functionu 2
LY ((0;+1);LY( R;R]). Let us de ne the function

tx)= (x) () O
Taking the distributional bracket of inequality ( 5.3) with the test function , and integrating by
parts in the sense of distributions, we get

Z,Z zZ,Z
u (tx) X))@ (t)dxdt O U (t;x) (X)@ (t)dxdt:
t=0 x2R t=0 x2R
Passing to the limit as Zgoes to zero, we obtain
z z
u (tz;x) (x)dx u (ty;x) (x)dx 0 o (t2;x) (x)dx o (ty;x) (x)dx:
x2R x2R x2R x2R
SinceR and are arbitrary, this implies
(5.7) u (t;x) u (ty;x) 0 T (tz;x) T (t1;x) dx-almost everywhere

Because of the right continuity of u (t; ), we conclude that (5.7) holds true for every x 2 R, which
shows 6.4).

An immediate consequence of Propositiorb.1.1 is that probabilistic solutions to ( 1.5 have a
nite speed of propagation.

Corollary 5.1.2  (Finite speed of propagation). Under Assumption (C), let u be a probabilistic
solution to (1.5) satisfying the assumptions of Proposition5.1.1. For all 2 f 1;:::;dg, for all
it O

() forall a2 R,u (;a) u( +ta+ t),

(i) forall b2 R,u (;b) u( +t(b+_t)).

Proof. Let v = u (;a). By (iii) in Lemma 2.3.4 X, ()= u (; ) (v) a, so that Proposi-
tion 5.1.1vyields
u( +t) "WM= X+t X, ()+ t a+
therefore by (iii) in Lemma 2.3.4again,u (;a)=v u ( +ta+ t), whence ().
Letusnow x > Oandv >u (;b ). By (iii) in Lemma 2.34 X,()>Db , and by
Proposition 5.1.1,

u( +t) M) =X+ X ()+ _t>b+ it

so that, by (iii) in Lemma 2.3.4again,v>u ( +tb+ _t ). Sincev is arbitrarily close to
u(;b ), wededucethatu (;b ) u ( +tb+ _t ), and obtain (ii) by taking the limit
of this inequality when vanishes.
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The proof of Theorem2.4.5 and in particular Proposition 4.3.1, shows that, for the probabilistic
solutions u obtained there, there exists a probability measure 2 M such that

(5.8) 8 2f1;:::;dg; 8(t;x)2[0;+1) R; utx)=H —(x):
It is therefore natural to wonder if, for any probabilistic solution u, there exists 2 M such

continuous sample-paths inRY, such that forall 2f1;:::;dg, forallt 0, the function u (t; ) is
the CDF of the random variable X (t)? Proposition 5.1.1 provides a constructive positive answer
to this question.

Corollary 5.1.3 (Probabilistic representation of probabilistic solutions). Under Assumption (C),
let u be a probabilistic solution to(1.5) satisfying the assumptions of Proposition5.1.1. Let be a

uniform random variable on (0; 1), and let us de ne the stochastic proces$X(t);:::;X%(t)); o by
8t 0; 8 2f1;:::;dg; X (t):= X (b):
Then the sample-paths of( X1(t);:::;X9(t)); o are almost surely continuous, and the law 2 M

that the image 2 M of the Lebesgue measur&) on (0;1) by v 7! (X 2(t);:::;Xd(t)); o satis es
(5.9).

Remark 5.1.4. The condition in Proposition 5.1.1that t 7! u(t; ) be continuous in L} (R)¢
is automatically satis ed if there exists — 2 M such that (5.8) holds. Indeed, in this case the
Dominated Convergence Theorem implies that the mapping 7! —, is weakly continuous in P(R),
and by Lemma 2.3.6 for all t 0, u (t;x) converges tou (to;x), dx-almost everywhere. Since

these functions are uniformly bounded, then the convergere holds in Lﬁ)C(R)d.

Remark 5.1.5. Let u be a probabilistic solution to (1.5) obtained in Theorem 2.4.5as the limit
of the empirical CDFs of the MSPD along some subsequendgi[x(n-)])- 1. We a priori have two
probabilistic representations for u: by the probability measure — de ned in Proposition 4.3.1 as
the weak limit of [x(n)] in M, and by the probability measure provided by Corollary 5.1.3 Let
us check that these two probability measures actually coinidle. For any continuous and bounded
function fZ S(RHY® ! Randany0 t; t» t,, we have, for alln 1,
1
fd g xml= - f utx(m)(ta; ) Hv)snulx(m)(te; ) H(v);

(R)* v=

Therefore — has the same nite-dimensional marginals as . Since a probability measure inM is
determined by its nite-dimensional marginals, — =

5.2. Renormalised solutions and identi cation of the velocity. Given a probabilistic solu-
tion u to the system (1.5) satisfying the assumptions of Proposition5.1.1, we now want to provide
a dynamical description, similar to (4.2), of the evolution of the trajectory (X(t)): o de ned
in (5.1). To this aim, we rst need to introduce the notion of a renormalised solution to (1.5) in
the -th coordinate, which is adapted from DiPerna and Lions P9).
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De nition 5.2.1  (Renormalised solution to (1.5)). Under Assumption (C), a probabilistic solution
u to the system(1.5) is said to be arenormalised solution to (1.5) in the -th coordinate if, for
all C? increasing functions :[0;1]! R such that (0) =0 and (1) =1, for all test functions
' 2CLo0;+1) R;R),
zZ,,Z z
@ (t;x) (u (t;x))dxdt + "(0;x) (ug(x)dx

t=0 R X2 R
7Rz

= "(tx)  fug(t;x)dx(  u )(tx)dt;

t=0 x2R

wheredy(  u )(t;x) refers to the probability measure with CDF (u (t; )).

Recall that, if u is a probabilistic solution to (1.5) satisfying the assumptions of Proposition5.1.1,
then with the notations of Subsection 5.1, dv-almost everywhere in(0; 1), the process(X (1)): o
is Lipschitz continuous and, for all 2 f1;:::;dg, _ X, (t)  , dt-almost everywhere. For
trajectories associated with renormalised solutions to {.5), this description is strengthened as
follows.

Proposition 5.2.2  (Trajectories associated with renormalised solutions) Under Assumption (C),

tion 5.1.1. Then, forall 2f1;:::;dg, u is a renormalised solution to (1.5) in the -th coordinate
if and only if, dv-almost everywhere in(0;1), the process(X, (t)): o de ned in (5.1) is Lipschitz
continuous and

(5.9) X, ()= fug(t; X, (1) dt-almost everywhere.

Proof of necessity. Let us rst X 2 f1;:::;dg and assume thatu is a renormalised solution
in the -th coordinate. Let us also x vp 2 (0;1). Let us prove that, for all functions 2
CLiY([0;+1) R;R),forallt O,
Z .
O: Xy @)+ @ (EXy )+ TUgEX (D@ (X (1) dt=0;
so that, for all 0 t; t,, taking smooth and compactly supported approximations (t;x) of
X1lfy, 1 1,9 Yields

Z,,
Xy (tz2) Xy, (ta) = fug(t; X, (t)dt:
t:tl
For such a function ,let' := @ . Forall > 0,let :[0;1]! [0;1] be an increasingC?!
function, such that (0)=0, (1)=1 and, forall v2 (0;1),
(5.10) Iiga (V) = Lty vog:
Sinceu is a renormalised solution, we have, for all > 0,
zZ,,Z z
@ (t;x) (u (t;x))dxdt + "(0;x)  (up(x))dx
t=0 22R X2R
+1 z
= "(t;x)  fug(t;x)dx( u )(t;x)dt:
t=0  x2R
On account of (5.10), the Dominated Convergence Theorem gives
zZ,,Z Z,.Z7
lim @ (t;x) (u (t;x))dxdt = @ (X)Liy (tx)) vogdxdt
#0 =0 x2R t=0 2R
z +1 +1
= @ (t;x)dxdt
t=0 X=Xyq (1)
Z .

@ (L X, ())dt;

t=0
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likewise, 7
lim "(05x)  (ug(x))dx = (0;X,,(0)):
#0 2R

However, passing to the limit in the right-hand side is more cklicate as, for allt 0, the proba-
bility measure with CDF  (u (t; )) converges weakly to the Dirac distribution in X, (t), and the
function  fug(t; ) may be discontinuous at this point.

To handle this issue, we rst x t 0 and remark that the function  fug(t; ) is continuous
outside of the countable set

This fact is obtained by writing
1
fug(t;x) = ulx);in @ Ju (x )+ u (Ex);iinud(tx) d
=0
and noting that, for all 2 [0; 1], the integrand is continuous onR n X.
We can now assert thatvy is in exactly one of the three following cases:
(1) Xy, (1) 62X
(2) X\, (t)2X and xu (t; X, (1)) > 0,
Q) X, ()2X and yu (t;X, (1) =0.
In case (1), we deduce from the discussion above that fug(t; ) is continuous at X, (t), and
therefore by [3, Exercise 2.10 (a)], we have
z

lim "(t;x)  fug(t; x)dy( u )(tx)="(X, (1) fuglt X, (1):
#0 2R

In case @), we also have ( u )(tX,,(t) > 0and
z

"(tx) fug(tx)dx(  u ) (tx)
x2R Z

= "(tx) fug(tx)dx( u )(tx)
X6 Xy, (1)

(X, (1) fugt X, (1) (U (65X, (1) (U (EXy, () ) -

By (5.10, if u (t; X, (t) ) <vo, then (u (t;X,, (1)) (u (X, (t) )) converges tol when
goes to0, while the integral over RnfX, (t)g vanishes due to the boundedness ¢f and  fug.
On the other hand, the setV,(t) of values ofvy such that u (t; X, (t) ) = vo, is countable. We
nally prove that the set V,(t) of values ofvy corresponding to case §) is also countable. Indeed,
in the latter case, X, (t) belongs to the countable setX. Assuming that there exists vy 6 Vo such
that ng(t) = X, (t) implies that yu (t; X, (t)) > 0 and therefore is a contradiction with the
fact that vq is in case @). As a consequence, one can associate eact2 X with at most one vg in

case () such that x = X, (t), and therefore the setV,(t) is countable.
As a conclusion, for allt 0, we have constructed a countable seW/(t) := Vi(t) [V 2(t) such
that, for vy 2 (OZ; 1) nV(t),
lim ZR' (tx) fug(tx)dx(  u )(tx)=" (X, (1) fugltX,,(1):
X
By the Fubini Theorem, there exists a negligible setV  (0; 1) such that, for all vo 62 V we have
Vo 62 \(t), dt-almost everywhere. As a consequence, fap 2 (0; 1)nV, the Dominated Convergence
Theorem yields
z +1 z z +1
lim C(x) fug(tx)dx( u ) (tx)dt = FEX (1) fug(t X, ()dt;
#0 =0 x2R t=0
which completes the proof.

Proof of su ciency. We assume that, for allv 2 (0; 1), the process(X, (t)): o is Lipschitz con-
tinuous and satis es (5.9). Let :[0;1]! R be aC? increasing function such that (0) =0 and
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(1)=1,andlet’ 2 C1°(0;+1) R;R). Letus dene
+1
(tx):= " (ty)dy:
y=x
Forall v2 (0;1), forall T O,
Z
(T; X, (M) = (0;X,(0)) + . (@ (X, )+ @ (X, () fugt;X,(t))dt:
t=
Taking T large enough to cancel the left-hand side, multiplying by Yv), integrating over (0; 1)
and performing the change of variablew = (v), we obtain

Z,
0= 0; X 1(W)(O) dw
MZ:Ol z +1
+ oo oo @ tX 1(W)(t) +@ tX 1(W)(t) fug(t; X 1(W)(t)) dtdw
Z zZ,.,Z
= O0;x)dx (U )(O;x) + (@ (tx)+ @ (tx) fugt;x)dx( u )(tx)dt
X2R t=0 X2R
thanks to Lemma 2.3.5.
By the Fubini Theorem,
Z Z
(0;x)dx( u )(0;x) = "(ty) (Ug(y)dy
X2R y2R
and similarly,
zZ,,Z7 zZ,,Z7
@ (tx)dx( u ) (tx)dt = @ (ty) (u (ty)dydt
t=0 x2R t=0 y2R
On the other hand, it is straightforward that
zZ,,Z
@ (t;x) fug(tx)dx( u )(tx)dt
=0 x23 7
+1

= "(tx)  fug(tx)dx( u )(tx)dt;
R

t=0 X2
which concludes the proof.

Combining (4.2) with Proposition 5.2.2, we see that, for allx 2 DY, the vector of empirical
CDFs u[x] of the MSPD started at x is a renormalised solution to (L.5) in all its coordinates. Note
that it is also easy to give a direct proof of this fact, by replacing the weight 1=n of the particle

sk with  (k=n) ((k  1)=n) in the proof of Proposition 4.2.1 which actually amounts to
mimicking the proof of su ciency above.

As a consequence, if the set of renormalised solutions enjgy a closedness property of the same
nature as Proposition4.1.1, then one would expect the approximation procedure describd in Sec-
tion 4 to imply that the probabilistic solutions constructed in Th eorem?2.4.5are also renormalised
solutions in all their coordinates, and therefore that the mrresponding trajectories(X(t));: o sat-
isfy the characteristic equation (5.9). However, it seems to us that the set of renormalised solutins
does not enjoy such a closedness property, and therefore we dot know, in general, whether prob-
abilistic solutions obtained by Theorem 2.4.5 are renormalised solutions. The following lemma
describes a situation in which this is actually the case.

Lemma 5.2.3 (Renormalised solutions obtained from Theorem2.4.5). Under Assumptions (C)
and (USH), let u be a probabilistic solution to (1.5 obtained by Theorem2.4.5. For all 2

renormalised solution in the -th coordinate.

Monotonicity conditions on the function ensuring that, dt-almost everywhere, the function
u (t; ) is continuous on the real line, will be discussed in Sectio®.
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Proof. Let u = (u';:::;u%) be a probabilistic solution to (1.5) obtained by Theorem 2.4.5 so
that there exists a sequencéx(n-))- 1 of initial con gurations such that the sequence of empiricd
measures [x(n-)] converges weakly, when grows to in nity, to some probability measure =2 M
such that u (t;x) = H 7, (x). In the sequel of the proof we drop the index™ and assume for
convenience that [x(n)] converges weakly to— when n grows to in nity. Recall that we denote
by u[x(n)] the vector of empirical CDFs of the MSPD started at x(n). We furthermore assume
that 2 f1;:::;dgis such that, dt-almost everywhere, the functionu (t; ) is continuous on the
real line.

Given a C! increasing function :[0;1]! R such that (0) =0 and (1) =1 and a test
function ' 2 CL9([0;+1 ) R;R), the discussion above yields

zZ,,Z z
@ (t;x) (u [x(nM](t;x))dxdt + " (0;%) (u [x(n)](O;x))dx
22R 7 X2R
+1

= R' (tx)  fulx(mlgtx)dx(  u [x(n](tx)dt;

t=0 X2

t=0

and to prove Lemma5.2.3 we have to take the limit of this equality when n grows to in nity.
First, since by Corollary 2.4.6 u [x(n)](t;x) convergesdx-almost everywhere tou (t;x), for all
t 0O, the Dominated Convergence Theorem yields
Z,.,Z z
lim @ (tx) (u [x(m](t;x))dxdt + F(05x) (u [x(m](0;x))dx
nt +1 40 y2R 7 x2R
+1
= @ (t;x) (u (tx))dxdt + " (0;x) (u (0;x))dx:

t=0 X2R X2R
The function  being continuous and increasing, it admits a continuous andncreasing inverse 1
and for any CDF F on the real line, the CDF (F) is such that, for all v 2 (0;1), ( (F)) *(v) =
F 1( %(v)). Therefore, by Lemma2.3.5 for any bounded and measurable functiorf on the real
line,

z Z, Z,
f(x) (F(x))dx = f(F Y Yw))dw= f(F Y(v)) Yv)dv:
X2R w=0 v=0

Therefore, to conclude the proof, it is enough to check that ér any t 0 such that u (t; ) is
continuous,

Z,

lim Cotu XMt ) V) fulx(n)lg tu (Mt ) f(v)  Av)dv

n +1 =0
1
= "tu () Yv) fug tu () Y(v) Yv)dv:
v=0
Owing to Lemma 2.3.6 ' (t;u [x(n)](t; ) *(v)) converges to' (t;u (t; ) *(v)), dv-almost every-
where. Therefore, by the Dominated Convergence Theorem, ihow su ces to show that, dv-almost
everywhere, fu[x(n)g(t;u [x(M](t; ) *(v)) converges to fug(t;u (t; ) *(v)). Sinceu (t; )
is continuous, then LemmaA.2.2 already yields, for all °6

. !inJ]l u 0[x(n)] tu [x(M)(t; ) Y(v) =u ° tu () Yv) ; dv-almost everywhere.

Besides, applying LemmaA.2.2 with F and G both equal to the continuous function u (t; ), one
obtains that, dv-almost everywhere,

imou x()] tu xMIE) YY) =u tu(6) HY)
imou x()] tu x(MIE) Yv) =utu () V)

As a consequence, we can now use the Dominated Convergenceebnem to pass to the limit in
the de nition ( 2.3) of  fu[x(n)]g(t;u [x(nM](t; ) (v)), and thereby complete the proof.
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6. Continuity of rarefaction coordinates

In this section, we discuss the continuity of probabilistic solutions to the system (L.5) obtained

by Theorem 2.4.5 under the following diagonal monotonicity conditions on the function : we
shall say that a coordinate 2f1;:::;dgis
ararefaction coordinate if, forall (u';:::;u  ;u *1;:::;u%) 2 [0;1]¢ 2, forall u; T 2 [0; 1]
with u T,
(ut;siu Lmu a9 (utiu Luu oY),
a strong rarefaction coordinate if there exists a positive constantc > 0 such that, for all
(ut:iu Lu troiud 20019 L forall u;m2 [0;1] with u - T,
(6.1) (ut;ziu Lmu troonud) (ulsinu Luu ttrnud) @ w):
Notice that this condition implies that for all (u;:::;u  L;u *1;:::;u9) 2 [0;1]° 1, for
al0 u<u v<v 1,
(6.21) z. | Z.
(ul;"';u 1;W,U+1;"';Ud)dW (ul;"';u 1,Z,U+1;"';Ud)d2
\Y M w=Vv 2 z=u
1 Z v Z u

c
- @@ = —(V+ u .

AR Z:Hc(w z)dzdw 5 (V+v U u:

In Subsection 6.1, we address rarefaction coordinates and obtain a control orthe modulus of
continuity of our solutions in terms of the initial data, whi ch follows from a uniform estimate on
the MSPD. In particular, we show that, if is a rarefaction coordinate andu, is continuous, then
u is continuous on[0;+1 ) R. In Subsection6.2, we prove that, if 2 f1;:::;dgis a strong
rarefaction coordinate, thenu is continuous on(0;+1 ) R even whenu, fails to be continuous.

6.1. Continuity of rarefaction coordinates. For rarefaction coordinates, we rst obtain the
following uniform estimate on the MSPD.

Proposition 6.1.1  (Discrete estimate for rarefaction coordinates) Under Assumptions (LC)
and (USH), let 2f 1;:::;dg be a rarefaction coordinate. Then, for alln 2, for all x 2 DY, for
alk2fl:::;n 1g,

N 06D (000 S0y %)

where
L
(6.3) =exp (d 1) Le 1
LusH
Proof. Let us x a rarefaction coordinate 2 f1;:::;dg, andn 2, x 2 D¢, and nally k 2

fl;::5;n 1g. Forall °:k%°2 PY suchthat °6 , we denote by[T ( %: k9;T*( °: k9] the
time interval on which the particle °: k° lies between the particles :k and : (k +1). More
precisely, if °< | then

Bho. w(x) i (%K% k) 2 R(x),

T (%k9:=
( 0) 0 otherwise,
and
THOO Ky e ke gy 0O T COTKS (k1)) 2 R0),
Y0 otherwise;
while for 9>
O e el O (kD)3 01K 2 RO,
Y0 otherwise,
and
TH( K9 = c:O|l|; opo(¥) i (ks 2:k9) 2 R(x),

0 otherwise;
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so that we nally have, forall t 0O,
6.4) T (%KY t<T*( %KY ifandonlyif L(X51) kg(x;t)< ag (X5 ):

We rst prove the following estimate: for all °:k°2 P9 such that °6

1
LusH

If T*( °:k%9 =0 then the inequality is trivial. If T*( °:k% > 0, then assuming that °< and
using (6.4), we obtain, forall t 2 [T ( °:k9; T*( °: k9],

e 0G0 o)

(6.5) 8t2 [T ( %:k9;T*( %:KkY; t T (%KY e G Gt

0 Zt 0
= ebGT (N E va(xis)ds
Zst— ( %kO) 0
COGT (%KY + e Vio(X; S)ds
7, =T 0
= (x;t) Vv (X;s)ds + Vio(X; 8)ds;
s=T ( %k9) s=T ( %k9)
so that z 0
e (G (6 et om Vio(X;8) v (x;s) ds  Lusu(t T ( °:K9);

which yields (6.5). The case °>  works similarly.
Letusnow x 0 t; t,. Certainly,

Z,,
(6.6) ka1 (X5 12) (Xt) = g (X t) (X5 t) + (Va1 (X58) v (x;8))ds:
s=t;
For all s 2 [t1;to], either | (X;8) = ., (X;s), in which casev, (X;s) = v,,, (X;s); or there exist
k kandk k+1 suchthatclu(x;s)= :k K, clu,, (x;s)= :(k+1) Kk, and thanks
to the fact that is a rarefaction coordinate, we have
1 kK 1. k.4
Vi (X;) = PLOas)inn @ )= St ((xs) d
=0
k
h(Cxis)in s G ((xis)
as well as
21 k kK
Vi (38) = ey ((x58)5:005 @2 )p gt Y ke ((x58) d
Py (Cx59)siins =it 4y ((X;9)
In both cases, we deduce that
k
Vs (69) Vi (X;9) ey (Cxi)ins it e (%))
k
e (X))
x 0 0
Lic ! ey ((X9) 1 4 ((%:9))
08

owing to Assumption (LC). Besides, it follows from (6.4) that, for all °6

0 0 1
A(k+1) (( X;S)) ! :k(( X;S)) = H lir ( %K% s<T *( %k%g»
k0=1
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which we plug into (6.6) in order to get
(6.7)
ke (Xit2) (X5 ta) ke (Xit2) (X5 t2)

Lic X t2
— i1 ( oo s<T *( oKk0)gdS

L X
- Tk Nt T (°:K9
n %k%2pd; %
T ( %kY<t ;7% ( %K%t 4
Lic X v, 0 A — A
1 OGTT( 2 KY 1) COGTHC 2K )
nLusw %k%2pd; %

T (%K<t ;T ( %KkY>t
where the last inequality follows from (6.5).
Let M 2 f0;:::;n(d  1)g refer to the number of particles °: k® 2 PY such that ° 6
and T (°: k%) <t,. LetT T, Twm refer to the nonincreasing reordering of the
corresponding quantitiesT*( °: k9~ t,, and letusdene Top:=t; Tiand Ty+ =0 Ty.

k1 (G Tm) (X5 Tm)

L
K+1 (X; To) k(X;TO) + LLC K+1 (X; Tmo) k(X;TmO)
L usH moT, o>T m
L 1
w1 (GTo) (X To) + ——= 1 G Tmo) (X Tio)
NLusk oy
which yields, forallm2f1;:::;M +1g,
LLC m 1
k1 G Tm) (G Tm) 1+ ——— ko1 (X To) (X To)
nL usH
In particular, for m=M +1,
L
Xear Xk = e (50) 4 (x50) 1+ nLIL-JZH ka1 (X5 12) K (X5 t2)

a1 (Gt2)  ((Xt)

Sincet, 0 is arbitrary, the proof is completed.

Let us recall that, given a bounded functionF : R! R, the modulus of continuity ! ¢ of F is
de ned by

8 > 0 e ()= sup IF(X)  FWi;
Xy 2Rijx yj

see B, p. 80]. In particular, if F is the CDF of the probability measure m on R, then
Pe()=supF(x+ ) F(x)=supm((x;x + ]):
x2R x2R

Proposition 6.1.1 yields the following control of the modulus of continuity for rarefaction coordi-
nates.

Corollary 6.1.2 (Control of the modulus of continuity for rarefaction coordinates). Under the
assumptions of Proposition6.1.1, let 2 f 1;:::;dg be a rarefaction coordinate. Letu be a prob-
abilistic solution to the system (1.5 obtained by Theorem?2.4.5, and let (X (t)): o, Vv 2 (0;1) be
the trajectories associated withu de ned by (5.1).

(i) Forall s 0Oandallv;v2(0;1) such thatv v,

1

tinfS Xg () X, (1) Xg(s) Xy(s) ;

where we recall the de nition (6.3) of
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(i) If for some s O, u (s;) is continuous on R, then u is continuous on[s;+1) R.
(i) Forall > O,forallt s O !y «)() !'u(s)( )

Proof. In the proof, for notational simplicity, we do not consider subsequences and assume that
[x(n)] converges weakly to— such that u (t;x) = H —; (x) whenn grows to in nity.

Proof of (i). Letus x v;Vv 2 (0;1) with v v, and let n be large enough to ensure thabnvc 1.
By Propositions 3.2.8and 6.1.1, we have, forallt s 0,

e D oKD D LX) (XS

that is to say

o) P ) b

n

Dumons) s ) P

n

Letus xt s 0,v2(0;1)and > Osuchthatbothu (s;) *andu (t; ) ! are continuous at
vandv . Then for n large enough,

bnvc
\' - V;
n
so that by Lemma 2.3.6 and the monotonicity of u (s; ) 1,
u(s) Mv ) liminfu x(m(s;) * POV
n! +1 n
limsupu [x(M](s;) * bave u(s;) Hv);
nto+1 n

and the same inequality holds at timet. Letting vanish but keepingu (s;) *andu (t; ) ?!
continuous atv  , we deduce that

Jimu ks ) T =0 () A= X, (9)
Jimu e ) Y =) = X,

We deduce that dvdv-almost everywhere onfv  vg,
1
XV(t) Xl(t) - XV(S) XM(S) ;

and sincev 7! (X, (s); X, (1)) is left continuous, this inequality actually holds for all v;v 2 (0; 1)
with v V.

Proof of (ii). It follows from the de nition of the pseudo-inverse of a CDF F that F is continuous
if and only if F ! is increasing. As a consequence, if (s;) is continuous, thenv 7! X, (s) is
increasing, so that by (), v 7! X, (t) is increasing, and thereforeu (t; ) is continuous onR, for all
t s. By the Dini Theorem, we conclude thatu is continuous on[s;+1) R.

Proof of (iii). Letus x > Oandt s 0. Forall x2 Rsuchthatu (t;x) <u (t;x+ ), let
v;v 2 (0;1) such that u (t;x) <v. Vv=u (x+ ). By (i) in Lemma 2.3.4 X, (t) >x and
Xg(t)  x+ , which, by (i), implies

Xg(s) Xy (s)< ;
and thereforeu (s;Xy(s)) u (s;X,(s) ) !'u (s;)( ) so that, by (ii) in Lemma 2.3.4
utx+ ) v Iy )
Taking v arbitrarily close to u (t;x), we deduce that
ux+ ) ux) lueH( )
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which nally yields
!u(t;)() !u(s;)( )
sincex is arbitrary.

6.2. Strong rarefaction coordinates. We now address strong rarefaction coordinates. A key
point in the proof of Proposition 6.2.1 below is the remark that, if 2 f1;:::;dg is a strong
rarefaction coordinate, then, for alln 2, for all x 2 DY, forall k 2f1;:::;n 1g, the particles
:kand : (k+1) never meet at positive times in the MSPD started at x. Indeed, these
particles have distinct positions just after the initial ti me and if there existedt > 0 such that
(Xt =, (x;t), then this would imply that there is a particle © : k° of another type
colliding with  :k and :(k+1) at the same time, and such that

(69 < a9 < (9)

shortly before the collision. This is a contradiction with A ssumption (USH).

Proposition 6.2.1  (Continuity of strong rarefaction coordinates). Under Assumptions (LC)
and (USH), let 2 f1;:::;dg be a strong rarefaction coordinate. Letu be a probabilistic solu-
tion to (1.5 obtained by Theorem2.4.5. Then u is continuous on (0;+1) R, and if ug is
continuous on R, then u is actually continuous on[0;+1 ) R.

Proof. In the proof, for notational simplicity, we do not consider subsequences and assume that
[x(n)] converges weakly to— such that u (t;x) = H —; (x) whenn grows to in nity.

Let 2f1;:::;dg be a strong rarefaction coordinate andc denote the constant in (6.1). By
the Dini Theorem, it is clear that Proposition 6.2.1 follows if we show that, for allt> 0, u (t; )
is continuous on the real line. The point (i) in Corollary 6.1.2 ensures that it is enough to
prove that u (t; ) is continuous dt-almost everywhere. Let us check this continuity property by
using the MSPD. To this aim, we recall thf(;}t, by Proposition 4.3.1, dt-almost everywhere, for all

02f1;:::;dg, the jumps of u (t; ) and u (t; ) occur at distinct positions, and x such a t> 0.
Let us assume thatu (t; ) is discontinuous,i.e. that there exist v;v 2 (0; 1), with v < v, such that
X, (1) = Xg(t) =1 y:

By the choice oft, there exists > 0 such that
X 0 . o(v V)
ju ty+ ) u @ty )N g
o Lc

and by the Portmanteau Theorem [3, Theorem 2.1, p. 16], there existsn; 1 such that, for all
n ni,

ov V).

ju xMIEY ) I ) i Ty

og
On the other hand, the left continuous function v 7! X, (t) is constant, and therefore continuous,
on [v; V). Up to replacing v with (v + v)=2, we may assume thatv 7! X, (t) is continuous on[v; v].
De ning, for all v2 (0;1), foralls O,
X" (8) = u (It ) H(v);
we deduce from Lemma2.3.6 that
H n — H n — .
iy XE O = lim X (=Y
so that there existsn, 1 such that, forall n  n,,
y 3 XM X)) y+ >
As a consequen)t(:e, we deduce from Corollary.1.2 that
. 0 . 0 . .
ju xMIs;iXg" () u X(MI(si X" ()]
8
c(v

ju XMy + ) u MG ) )i :ELLCV);

%8
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assoonasn n;_npands tissuchthatt s =(4Lc.1 ). Now if n is large enough to
ensure thatv v > 1=n(sayn ns), then the processegX," (s))s o and (X" (S))s o describe
the motion of two distinct particles in the MSPD started at x(n). In particular, according to the
discussion at the beginning of this subsection, for als > 0, we haveX," (s) < X ;" (s) so that
u x(MI(s;Xg" () ) u [x(MI(s; X" (s)).

Forall s2 [0;t]suchthatt s =(4Lc.a )andn ni_nz_ns, we now recall the de nition (2.3)
of fu[x(n)lg(s;X," (s)) and (6.2) to write

fulx(nlg(s; X" (s))  fulx(n)g(s; X," (s))

2 U XOISXT (9) U KOS (9) )
£ 2 U XOISXS (9) U XMISX ()
X 0 _ 0 .
e u OIS X" () u TS X" (s)

0g

The last term of the right-hand side is larger than c(v v)=3, while Lemma 2.3.4allows to bound
the sum of the rst two terms by

(—2: u x(MI(s;Xg" () ) u XMI(s; X" () )+ u x(MI(s; X" () u x(MI(s; X" ()

g u x(MI(s;Xg" (s) ) v+ Vv u x(n)](s;X," (s)) (Vv v:

NI O

As a conclusion,
fulx(n)lg(s; X" (s)) fulx(n)lg(s; X" (s)) g(v v);
so that, xing sp 2 [0;t) such thatt s, =(4Lc.1 ) and using (4.2), we obtain
XSO X0 X" (s0) X" () +(E s (VW)

which is a contradiction with the fact that limp, 41 X " (t) X" (t) = 0. As a consequence,
u (t; ) is continuous and the proof is completed.

Part 2. Stability estimates and construction of semigroup solutio ns
7. Uniform LP stability estimates on the MSPD

This section is dedicated to the proof of Theorem2.5.2 In the scalar case, the latter result
immediately follows from Proposition 3.1.9, with L, = 1 for all p 2 [1;+1 ], and holds under
Assumption (C) instead of the stronger Assumption (LC).

Throughout the section, we therefore always implicitely asume thatd 2. The heart of the
proof consists in establishing the followingL! and L stability estimates: for all x;y 2 DY,

f»ug)jj (x;t)  (y;tiia L oajix  yija;
(7.1) . . . N

Supjj (x;t)  (y;tjia L oajix yiia s
for some constantsL; and L1 that do not depend onn.

We shall assume rst that x and y satisfy the following conditions:

they belong to the set ofgood con gurations, which is introduced in Subsection7.1 and
implies that the topology of the trajectories of the associded MSPD can be encoded by
elementary algebraic structures,

they are locally homeomorphicin the sense that the trajectories of the associated MSPD
are described by the same algebraic structures.

Under these conditions, we translate the problem of estimang jj ( x;t) ( y;t)jiz andjj ( x;t)
( y;t)jj1 into a purely algebraic problem, that we solve in Subsectiori.2to obtain a local version
of (7.1).

We then extend this result to a global estimate by constructing paths joining arbitrary con gu-
rations x andy in D¢ that can be decomposed into small portions, on which our lockestimate can
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be applied and then integrated along the path. This requiresa detailed analysis of the geometry
of the trajectories of the MSPD, that we carry out in Subsection 7.3.

We nally derive Theorem 2.5.2 from (7.1) using the boundedness of the velocities for the
temporal estimate, and a classical interpolation argumento obtain stability in all the LP distances.

7.1. Collisions, self-interactions and good con gurations. This subsection is dedicated to
the introduction of a few notions that shall allow us to desciibe the trajectories of the MSPD.
Following the construction made in Section3, in the MSPD, the velocity of a particle is likely to

be modi ed by two types of events: collisions with particlesor clusters of the same type, to which
we shall refer asself-interactions, and collisions with particles or clusters of a di erent type, to
which we shall refer ascollisions.

7.1.1. Collisions and self-interactions. Let x 2 DY, with N(x) 1. Recall that, for all ( : i

j) 2 R(x), the collision time C‘:’i';' j(X) 2 (0;+1) was dened in ¥3.2.4 We now de ne the
associatedspace-time point of collision

De nition 7.1.1  (Space-time point of collision). Let x 2 DY with N(x) 1. Forall ( :i;

j) 2 R(x), we denote by
Ca0)= %00 g (%) 2R (0i+1)
the space-time point of collision between the particles : i and :j in the MSPD started at x,

where
Cc’|” ) (X) = i (X; C(:)il;l ;j (X)) = j (X; C(:)il;l ) (X)) 2R

For all x 2 DY, we denote by
190 (x) = £ 0 () ( i 1)) 2 R(x)g
the set of space-time points of collisions in the MSPD startd at x. Of course,|®® (x) is the empty
setif N(x)=0.
We now de ne space-time points of self-interactions as the gace-time points at which two

particles of the same type collide with each other. Our de ntion relies on the notion of left limit
of a cluster.

De nition 7.1.2  (Left limit of clusters) . Let x 2 D¢ and :k 2 PZ. For all t> 0, let
to:=inffs2 [0;t): 8r 2 [s;1);N(( x;r)) =N(( x;9)0:
Then we de ne theleft limit in t of the clusterclu, (x;t) by
clu (x;t )= clu, (x;s):
s2[tost)
The fact that, at time t > 0, two particles : k and : k° of di erent types collide with each
other is exactly described by the conditions
Gt = () = and clu (x;t ) 6cluo(x;t ),

and we shall say that( ;t) is a space-time point of self-interaction for : k and : k% Let us

underline the fact that, while Assumption (USH) ensures that two particles of di erent types can

collide at most once, it is generically possible that two paticles of the same type stick together
into a cluster, then that this cluster be split by a collision with a cluster of another type, and that

the two particles collide again with each other.

X5t = o(xst) = and clu (x;t ) 6 cluo(x;t ):

Although the set IS‘?,'I; o(X) may contain more than one element, the particles : k and : k°
cannot collide more than once between each collision with pécles of other types. Since there is
only a nite number of such collisions, it is clear that the set 1% . o(x) always contains a nite
number of elements.
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We nally de ne the set of space-time points of self-interacions in the MSPD started at x as
d [n
15 (x) := 1% ko(x):
=1 kko=1

7.1.2. Con gurations with no collision at initial time. We de ne the subsetD of D¢ as follows.

De nition 7.1.4  (Con gurations with no collision at initial time) . The setD is the set of con g-
urations x 2 D§ such that, for all ( :i; :j)2 (P)> with < , thenx; 6 x; .

Certainly, D is a dense open subset oDY. Further properties of the set D are discussed in
Lemma A.1.2 in Appendix A.

7.1.3. Good con gurations. We now de ne the set G of good con gurations as follows.

De nition 7.1.5  (Good con gurations). The set of good con gurations G D¢ is de ned by
x 2 G if and only if x 2 D and either N(x) =0, or N(x) 1 and:

() forall ( :i; :j)i( %:i% %92 R(X), @ ;(x)= % ojo(x) implies °= and
0—

(i) the sets 1< (x) and I%¢f(x) are disjoint.

The point (i) expresses the fact that collisions arebinary, i.e. they never involve particles of
more than two types. The point (ii) means that two clusters of the same type cannot collide with
each other at the same time as they collide with a cluster of a derent type: self-interactions are
separated from collisions, see Figure.

Figure 2. The left-hand side of the picture shows the trajectory of the MSPD
started at a good con guration, since self-interaction space-time points are sepa-
rated from collisions. On the contrary, the right-hand side of the picture shows
the trajectory of the MSPD started at a con guration that can not be good, since
two distinct clusters of the same type have a self-interactbn at the same time as
they collide with a cluster of another type.

Subsection7.2 provides detailed topological properties of the trajectoies of the MSPD started
at a good con guration, while Subsection 7.3 rather addresses the geometric properties of these
trajectories.

7.2. Local stability estimates. In this subsection, we establish the estimates {.1) for initial
con gurations x and y satisfying particular properties. In order to formulate th ese properties,
we rst introduce in Y7.2.1 some algebraic structures encoding the topology of the tragctory
of the MSPD started at good con gurations. In particular, we de ne the collision graph of a
good con guration as the oriented graph describing the orde of collisions of each particle in the
associated MSPD.

In Y7.2.2, we say that two good con gurations satisfy the Local Homeonorphic condition (LHM )
if they have the same collision graph and also satisfy a few nte technical properties. For such
a choice of inital con gurations x and y, we are able to derive in ¥.2.3 a system of recursive
inequations, indexed by the collision graph, on the distanesjj ( x;t) ( y;t)jj1 andjj ( x;t)
(y;t)jj» at the instants of collisions. The transcription of this system into a purely algebraic
problem is made in ¥.2.4, and the latter problem is solved in ¥7.2.5
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7.2.1. Trajectories of the MSPD started at good con gurations. We rst introduce a few notions
to describe the topology of the trajectory of the MSPD started at good con gurations.

Collisions. Let x 2 G, with N(x) 1. We de ne the equivalence relation on R(x) by, for all
(choi)( %% %9 2 RKx),

C :ip :j) (%% %9  ifandonly if b ()= Qo oj0(X):
Let C(x) := R(x)= refer to the set of equivalence classes anill(x) 1 denote the cardinality
of C(x). Each equivalence clasg 2 C(x) is naturally associated with a space-time point

(x;9=( (X;0;T(x;9) 2R (0;+1);
de ned by
(x;0:= 9 ;(x) forany( :i; :j)2c

In addition, the point (i) of De nition 7.1.5implies that, for all ¢ 2 C(x), there exist ; 2
f1;:::;dgsuchthat < and, forall ( °:i% °2:j92¢c %= and %= . Letting

a=f :i2P3:9 :j2P%( :i; :j)2cg;

b:i=f :j2P3:9 :i2P%( :i; :j)2cg;
it is easily checked thatc = a b. Note that, due to the point (ii) of De nition 7.1.5 for all
(5 j)2a bcly(xT(xc )= aandcly (x;T(x;0 )= b However, the clustersa

and b can be splitted at the collision if the velocities of the particles after the collision do not
satisfy the stability condition ( 3.1), therefore we generally only havecly; (x; T(x; ) a and
cly (x;T(x;0) b

In the sequel, we shall simply refer to the equivalence class ascollisions, and say that a
generical clusterc is involved in the collisionc=a bifc=aorc=h.

If x 2 G and N(x) =0, we simply de ne M(x) =0.

Collision graph. Letx 2 G. Forall :k2 P¢, we denote byC . (x) the subset ofC(x) composed
by the collisionsc=a bsuchthat :k 2 a[ b Note that C .x(x) is empty if the particle : k
does not collide with a particle of another type in the MSPD started at x. Clearly, two distinct
collisions & ¢ 2 C .x(x) have distinct instants of collision T(x;® 6 T(x;c), since two distinct
collisions involving the same particle : k cannot occur at the same time. As a consequence, the
increasing order of instants of collisions induces a total @er on the setC .x(x), to which we shall
only refer as the order of collisions.

Forall 2f1;:::;dg, for all &c2 C(x), we shall write

0

c! C

the order of collisions onC .(x). The collision graph of a good con guration x is now de ned as
the oriented graph with set of vertices C(x), and set of arcs induced by the relations®! c. If
N(x) =0 then the collision graph of x is nothing but the empty graph.

By construction, an arc is naturally associated with at leag a type 2 f1;:::;dg, and since
Assumption (USH) ensures that two particles of distinct type can only collide once, each arc
actually has a unique type. Besides, sinc&® ! ¢ implies that T(x;® < T (x;0), there is no
oriented cycle in the collision graph.

Numbering the collisions. Let us now explain how to number the collisionsc 2 C(x) in a
consistant fashion with the partial order induced by the orientation of the collision graph.

Lemma 7.2.1 (Numbering the collisions). Under Assumptions (C) and (USH), let x 2 G, with
M = M(x) 1. Then the set of collisionsC(x) can be numbered in such a fashior;:::; oy

Cmo! Cm
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Proof. Let us call leavesthe collisionsc 2 C(x) such that there is no®2 C(x) pointing toward ¢
in the collision graph. Clearly, cis a leaf if and only if, for all :k 2 P{ such that c2 C (x),
c is the minimal element of C .(x) for the order of collisions. Since there is no oriented cyclén
the collision graph, the set of leaves is nonempty, and this pperty remains true for all nonempty
subgraphs of the collision graph obtained by removing a leaénd its adjacent arcs.

We now proceed as follows: we choose one leaf, calldt, remove it from the graph together
with all the adjacent arcs, and restart the construction as long as the graph is nonempty. At the
m-th step, the selected collisionc,, is minimal, for the order of collisions, among the remaining
elements of all the setsC . to which it belongs. This ensures that the numbering is constent
with the partial order induced by the orientation of the coll ision graph.

Remark 7.2.2. An e ective way to proceed as in the proof of Lemma7.2.1is to number the
collisions in the increasing order of collision times. If seeral distinct collisions have the same
collision time, then they cannot involve the same patrticle; therefore, any local ordering of these
collisions leads to a numbering satisfying the conclusionfoLemma 7.2.1

Last collision time.  Forall :k2 PY, we nally de ne TM&(x) by
TMX(x) =0
if C .x(x) is empty, and
TMX(x) = T(x;
k()= max  T(:9
otherwise.

7.2.2. Statement of the local stability estimates.Two con gurations x;y 2 D¢ are said to satisfy
the Local Homeomorphic condition (LHM) if:
(LHM-1) x;y 2Gand R(x) =R(y) = R,
(LHM-2) x andy have the same collision graph, which in particular impliesC(x) = C(y) =: C,
(LHM-3) forall c2 C, letting T (¢):= T(X;9" T(y;0 and T*(c):= T(x;0 _T(y;0),
(@) forallarcs ! ¢, T* (D <T (0,
) If T (=T(x;0<T(y;0= T+Ec), thenforall ( :i; :j)2c=a b,
clu; (x;t) =clu; (X; T(x;0);

8t 2 [T(x;0;T(y;0l; el (x;1) = olu, (< T(x;9);

cly, (y;t) =clu; (y; T(x;0);
cly; (y;t) =clu; (y; T(x;0);
and a symmetric statement holds in the casel (c)= T(y;0 <T (x;¢) = T* (0.

The time intervals [T (©); T* (c)] shall be referred to ascollision intervals.

Condition (LHM-3b) only expresses the fact that no self-interaction occurs orcollision intervals.
We are now able to state our local stability estimates.

8t 2 [T(x;0;T(y;0);

Proposition 7.2.3  (Local stability estimates). Under Assumptions (LC) and (USH), for all
x;y 2 DY satisfying Condition (LHM),

tsugjj (x;t)  (y:tiia L oajix  yjia;
f»ug)jj (x5t (ystijin L oajix vy
whereL; and L; are dened in (2.9).

The proof of Proposition 7.2.3is detailed in Y7.2.3 Y7.2.4and Y7.2.5below. Throughout these
paragraphs, we x x;y 2 DY satisfying Condition (LHM) and adopt the notations of Condi-
tion (LHM) by denoting by R the set R(x) = R(y), by N = N(x) = N(y) its cardinality, by
C the set of collisionsC(x) = C(y) and by M = M( x) = M( y) its cardinality. Besides, Condi-
tion (LHM-2) ensures that, for all :k 2 PZ, the setsC .x(x) and C .(y) are the same, with the
same order of collisions. These sets are denoted Iy .. We nally denote

TORE =T I0) _ TTRA(Y):
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Forallt Oand :k2PY, we dene

d k() :=] ((x;t) MOADIE

so that
X

TOxit)  (yitiis =

Sl

du();  JOxit)  (y;ja = sup dw(b):
k2Pg k2P

In Y7.2.3we provide local (in time) estimates on the growth ofd . (t) inside and outside collision
intervals. In Y7.2.4 we introduce anauxiliary systemthat shall allow us to integrate these estimates
along the whole sequence of collisions, and we explain howithauxiliary system can be coupled
with the family of processesf (d ««(t)): o; :k 2 Pdg. InY7.2.5 we obtain a bound on the auxiliary
system that is transferred to the original processegj ( x;t)  ( y;jjr andjj ( x;t)  ( y;t)jj1
thanks to the coupling argument developed in Y.2.4

7.2.3. Preliminary estimates. Let us rst collect the following preliminary estimates on t he joint
evolution of the family of processed (d ««(t)): o; :k2 Plg.

Lemma 7.2.4 (Preliminary estimates). Let the assumptions of Proposition7.2.3 hold.
(i) Forall c=a b2C,forall t2[T (0;T*(d],

o1 X X _
maxd ;i(t) 1+ i & md (T @+ — :ijd i (T (9);
o1 X X _
rT:}%d i 1+ —jaj 5 :ijd (T (D+ — :izad (T (9);

where we recall that =3 L c=LysH.
(i) Let c=a b2C,c2fa;bgand :=type(c). Forall :k2c letusdenet®, = T (I

if there exists®2 C . such that®! ¢, and t°, := 0 otherwise. Then, forallt T (¢,
X X

lipto, gd «(t) Lit o gd w(t%);

k2c¢ k2c

sup Lipp o gd «(t)  sup 1H>t°kgd:k“0*):
k2c ' k2c ’

(i) Forall t O, forall inf1;:::;dg,
X0 xX nax
Lt max gd ik (t) Liest macgd i (T77);
k=1 k=1
SUP Liey maxgd w(t)  SUP Ly max gd o (T™RF):
1 kn ' 1 kn '

Let us highlight the fact that t°., and T™& play similar roles in the respective casesii) and (iii ).
Proof of Lemma 7.2.4. We rst address (i) and x ¢= a b2 C. We assume thatT (¢ =

T(x;0) T(y;0 = T* (0, the opposite case is symmetric. Let us denot&®:= ( x;T(x;c) and
yO:= ( y;T(x;0). Forall t 2 [T(x;0);T(y;0)], we rst remark that the value of

i (= TG+t Ty (v T(x:0)
does not depend on the choice of :i 2 a. Indeed, ; (x;T(x;0)) is the location of the collision c
in the MSPD started at x, while Conditions (LHM-3a) and (LHM-3b) ensure that, forall :i 2 a,
1 X
Vi (i T(G9) = — o(y9):
i02a

We shall use the following facts, the proofs of which are pogtoned below.
Fact 1: the processed , (x;t): :i2agandf ;(t): :i 2 ag follow the Local Sticky
Particle Dynamics on [T (x;0); T(y; 0], with respective initial velocity vectors (=, (x9) .i2a and

(5 (Y9) iza
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Fact 2: forall :i 2 a,
S0 0 b
Fact 3: forall :i; :i°2 @, forall t2 [T(x;0);T(y;0)l,
PGD D] 2T(9 Ta9) St

Fact 4: the nonnegative quantity To(y; 0 T(x;c) satises L

X X
T(y;09 T(x;0 i@i d,(T(x;0)+ i d i (T(x;Q)A :
Lusi Jb a
j2b ii2a
Taking these facts for granted, we now x :i 2 aand write, for all t 2 [T(x;0); T(y; 0],
(7.2) d.i(t) j 05t s Oj+] ;) (O

On the one hand, it is clear from Conditions (LHM-3a) and (LHM-3b) that the value of ; (y;t)
does not depend on the choice of :i 2 a, and that ; (y;t) and ; (t) evolve at the same velocity,
so that

. o . 1 X
73)jiy;t) i Wi=i ;T (TXx9)j=d.i(T(x;0)= Py d :io(T(x;0):
i%2a

On the other hand,

. o1 X o .

it M fi 0G0 G+ (Xt e(D)ig;

18 ii%2a
and combining Facts 1 and 2 with () in Proposition 3.1.9vyields
X
Joio(t) ()]

ii%2a

X
Jo0GTG9) (TGO +(t T(x;0) To(x9) Tie(y?)

ii%2a ii%2a
Lic. ...
—Cjajbi(t  T(xi0):
while Fact 3 gives
: . Lic. ...
PGt e0a] 2=alibit T(x;0):
ii%2a
As a consequence of the two previous inequalities,

. . Lic.,.
P0Gt O 3=kt T(x9)
i 1
X i X
—@" 4 T+ 2T da(TG)A;
n _ a
j2b [i02a
where we have used Fact 4 at the second line. Then the conclusi is obtained by plugging this
inequality and (7.3) into ( 7.2), and the uniform bound ond . (t), :j 2 bin (i) follows similarly.

We now prove the Facts 1, 2, 3 and 4 used above.
Proof of Fact 1. The processf ; (t) : : i 2 ag follows the Local Sticky Particle Dynamics
on [T(x;0); T(y;0)], with initial velocity vector (7 (y9) :i2a, as a straightforward consequence of
its de nition. Let us use (ii) in Lemma 3.2.11to prove that the processf ; (x;t): :i 2 ag
follows the Local Sticky Particle Dynamics on [T (x;C); T(y;¢)]. By Condition (LHM-3b), for all
ti2a,cly (x;T(y;0) @, andthe setT .i(x) as is de ned in (3.11) has an empty intersection
with (T(x;0);T(y;0). As a consequence, Lemma.2.11 asserts that the process ; (x;t) :
i 2 ag follows the Local Sticky Particle Dynamics on [T (X; ©); T(y; ©)], with initial velocity vector
(~i (XO)) i2a-

Proof of Fact 2: Let us rst check that, for all 112 a,
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forall 62f; g,! ,(x9%="1 .(y9,
j! :i(XO) ! |(y0)J J tj:n-
By the de nition of ! . (x%9 and! . (y9, the rst point above easily follows if we prove that, for

al :k2P%suchthat 62f, g(say < ),
xp <x? ifand only if  y) <y?:

But let us assume for instance thatxg <x? and yg y? . Then by Condition (LHM-3a), the
collision with  : k comes aftercin C .j(x), while it is either notin C .i(y), or it comes beforec.
This is a contradiction with Condition ( LHM-2). As far as the second point above is concerned, the
same argument shows that the particles :j that do not belong to b have the same contribution
in

1 X
! :i(XO): n 1fxi° xiog

j=1
and in
1 X
bL9)= o Ly g
j=1
which is enough to ensure thatj! ;(x9 ! . (y9j j b=n. As a consequence, it follows from the
de nition of ~ and Assumption (LC) that, for all :i 2 a,

S0 09

which completes the proof of Fact 2.
Proof of Fact 3: Let us write a= :i 1 and rst remark that, for all dir 1192 a, for all
t2 [T(x;0;T(y;0l,

NS RIS 9 I ¢4 ) B (S O P

and, by Conditions (LHM-3a) and (LHM-3b),

G )=t T(x9) v (GT(Xx0) v (X T(x;0)

(T(y;9 T(x;0) vr(X;T(x;0) v (X;T(x;0)

If clu; (x;T(x;0) = clu; (X;T(x;0), then v- (x;T(x;0) = v (X;T(x;c)) and Fact 3 is trivial.
Otherwise, let us write clu; (x; T(x;0Q) = i i®and clu- (x; T(x;0) = 70 Towith i i%<
i° 1. Then

0 v (x;T(x;0) vi (x;T(x;0)

1 X 1 -
IO i+1 i(XO) I— I—O I(XO)
L =i oo
1 )éo _ 0 _
- I_ij i+1 - |(X0) I_ij +1 - |(yo)
1 X 1 X
+ mi:i_ i(yo) ﬁisz’ i(yo)
1 X 1 X
t —F— T — 0 T (x
T 041 . %) © 941 - (x9

y
e 0O SO0 e 00 O3
S | i+1
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where Conditions (LHM-3a) and (LHM-3b) allow us to use Lemma3.1.7 and get

.0 le

1 1
0 - A = - 0 _ T 0:
I_O |_+1 i i (y()) i i0+1 . i (y())

We now deduce from Fact 2 that each sum in the right-hand side hove is lower than 2jbjL | ¢ =n,
which completes the proof of Fact 3.

Proof of Fact 4: Note that ; (y; T(y;¢) = ; (y;T(y;0), which rewrites
Z T(y;c)
P (s T509) G (ysT(x;0) = (vi (yis) v (y;s))ds
s=T(x;c)

owing to (3.2). On account of (3.10, the right-hand side above is larger thanLysy (T (y;©)
T(x;0), so that

THi0 TKO TG (iT(60)
USH
=|_U13H P (T T+ (GTX0) 5 (Y T(x50)
Ll T ese) 5 GTGI+] i (GTx:9) 4 (Y T(X;09)j
USH
= A (TGO + d 4 (TOxi0)
USH
where we have used the fact that ; (x; T(x;¢)) = ; (x;T(x;0)). Taking the sum of both sides on
( :i; :j)2a band then dividing by jajjbj, we obtain
0 1

1 1 X
T(y;0 T(x:0 m@jﬁ

which completes the proof of Fact 4 and () at the same time.

1 X
d j(T(x;0)+ i d i (TOGA;

j2b ii2a

Proof of (ii) and (iii). Letus x c=a b2 C,c2fa;bgand :=type(c). As a preliminary step,
let us point out the fact that, for all  : k 2 c, the quantity t°., de ned above easily rewrites

P =maxf(T () T «x(x):(T (@) T «(¥)g;

where we recall the de nition (3.1 of T T (x) and T "T .(y). As a consequence, on the
time interval (t°,;T (0), the particle : k does not collide with any particle of another type,
neither in the MSPD started at x nor in the MSPD started at y.

Let us denote by t9 < < t? the ordered elements of the sefft®,; : k 2 cg. For all
| 2 f1;:::;rg, we denote byc the set of particles : k such that t°, = t°% We also de ne
t%, == T (9 >t?2. Thanks to Condition (LHM-3b), forall | 2 1;:::; rg, the processes

.....

f o (x;t): k2cet t gg and f y;t): k2t t ag

follow the Local Sticky Particle Dynamics on [t t°,, ], with the same initial velocity vectors. As a
consequence, if in Proposition 3.1.9yields, for all t 2 (t%t,; ],

X
Lt °:kgd k() = d (1)
:k2c k2cit t ¢
X X X
d .k (t) = d o (t) + d 4 (t%);
k2cit t ¢ k2cit t ¢ 1 :k2¢

therefore we obtain by induction that, forall t T (0,

X X 0 X o
1ot °:kgd «(t) d(ty) = d o (t):
:k2c 1=1 :k2¢ :k2c
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Applying (i) in Proposition 3.1.9instead of (i), we similarly obtain

Sup lipto gd w(t)  supd x(t%):
k2c ' k2c

Sticky Particle Dynamics on [T}; Ti+1 ) (where we take the convention thatT,,; =+ 1), with the
same initial velocity vector. The conclusion follows in the same fashion as for i().

provided by Lemma 7.2.1 Following the estimations of Lemma7.2.4, forall m 2f1;:::;Mg, for

all :k2am[ bn,d (T (cn)) is intuitively expected to be bounded by the quantity e, ( : k)
de ned as follows: forall :k 2 PY, eg( :k):= d .(0); while, forall m2f1;:::;Mg,

forall :i2 an,
(= b = ST )
em( :i):= + —jbnj — en 1( i)+ — em 1( :J);
n J8m] 102 ap n 1j 2 bm
forall :j 2 by,
1
en( :j):= 1+ —jamj — em 1( ]9+ — em 1( :i);
n Jhﬂj :j 92 by n i2am

forall :k62a, [ by,
em( :k):=-en 1( :k):
The sequence of functiongen)o m m on P is called the auxiliary system. Let us note that we

X ) X _ X ) X _
(7.4) en( :i) em 1( :i); em( :j) em 1( :j):
li2am ii2am j2bm :j 2 bm

The total mass of the auxiliary system is the nondecreasing sequendg&n)o m v de ned by

X
Em = em( k)
k2pPd
in particular,
i N Eo
(7.5) X ylia = =

The coupling between the auxiliary system and the family of pocesse$ (d .« (t)): o; :k 2 Pig
works as follows.

Lemma 7.2.5 (Coupling with the auxiliary system) . Let us assume that the conditions of Propo-
sition 7.2.3 hold.

() Forall m2f1;:::;Mg, forall t2 [T (cn);T*(cn)l,
8 :i2am; d.i(t) em( :i);
8 j2bn;  dy(t) en( :j)
(i) Forall t O,

d :k(t)
k2pd

Text)  (yitiis =

Sl

X i
-
(i) Forall t O,

jOxit)y  (y:tijz = sup d «(t) sup sup em( :Kk):
k2pd 0 m M :k2P¢d
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8 :i2ano d(t) emo( :i);
8 :j 2 byo; d;(t) emo( :j):
Letus X :i2ay.By(i)inLemma 7.2.4 forallt2 [T (cn);T* (cm)],
o 1 X X
d (t) 1+ —jbnj — d.io(T (CGn))+ — d (T (cn));
n Jam] [i92an n 5] 2 b
and by (i) in Lemma 7.2.4
X X o X X 0
d io(T (cm)) d jo(t ;iO); d il (T (cm)) d i (t :j);
02 am [0 am :j 2 bm :j 2 bm

wheret?., is T* (&) if there exists ®2 C .jo such that ! ¢, and 0 otherwise;t‘):j in the second
inequality is de ned similarly.

Let mq;:::;mg m 1 be the indices of all the collisions® such that @! ¢, and for all
k2f1;:::;Kg, let us denote byaﬂ]k the cluster of type involved in the collision ¢y, . Then

X X X
d :io(t%0) = d o(T™ (G, )) + d :i0(0):

[i%2am k=1 :i%2af [i%am :t% 4=0

Forall k2f1;:::;Kg,mg m 1so that
X X

X
d o(T* (Gny ) em,( 119= emea( 1105 = en 1( :i9;
ii%2ayg ii%2ag ii%2ag ii%2af
k k k k
while, for all  :i%such thatt®,,=0,
do0)= e :i%)=e( :i)= =em 1( :i%

As a conclusion, for allt 2 [T (cn); T (cn)l,

A 14 o (e ()= em( :)

q(t + —jbnj — em 1( i+ — em 1( j)=emn( :i);
n J8m] 102 am n :j 2 bm

and the bound ond ;j(t), :j 2 bn,t2[T (Gn);T" (Gn)], follows from the same arguments.

We now address {{) and (iii). Letus x t 0 and note that, at time t, a particle :k2 Pdis
in exactly one of the following cases:

(1) there existsc2 C  suchthat T (¢) t T* (o),
(2)t Tm and, forallc2 C , t 6T (0);T*(d].
(3) t>T M.

If the particle : k is in case (), let us note that, by Condition ( LHM-3a), there is only one
c2C xsuchthatT (90 t T*(0. Let {( :k) denote the number of the collisionc. By (i),
dw®) e, x( k).

In case @), let us denote by c the rst collision c¢2 C . (for the order of collisions) such that
t<T (0. Let t°, be dened as in Lemma7.2.4 If t°, =0, then we let ( :k)=0 so that

d .« (t%) = e ( ux( :k). Otherwise, there existsc’2 C . such that ¢! ¢, in this case we let
(1 k) refer to the number of the collision & and (i) yields d «(t°,) e (k). Letus
now note that, calling c the generical cluster of type involved in the collision ¢, for all :k°2 ¢
such that t°,, <t, then :k%is also in case 2), and (ii) in Lemma 7.2.4yields
X X
Lt o ,qd wwo(t) Listo g€ k0( : k9;
k%2 ¢ k%2 ¢

SUP Lo, g0 wel)  SUD Liou o g0 (ol 1KO:



52 Benjamin Jourdain and Julien Reygner

In case @), if C .x is empty, we dene ( : k) =0 sothatd «(T") = e (.( :Kk),
otherwise, we denote by {( : k) the number of the last collision in C ., and then (i) yields
d .« (T") e x0( :k). Similarly, (iii) in Lemma 7.2.4yields

X X
Lir maygd wko(t) Lot m g€ (ko KO
ko=1 ko=1
. Sklépn Lir maygd wko(t) . Skl{)pn Lipt moge (ko ( - k9:
As a consequence, we have constructed a function, : P¢ ' f 0;:::;M g such that
X X
(7.6) d k() e (x( k) sup d (t)  sup e ( 4( k)

k2P g k2P g k2P k2P

The point (iii) easily follows from the second inequality of {.6). We also obtain
. o1 X
BOxt - (v — sup em( :K)
kepa 0 M M

as a straightforward consequence of the rst inequality, bt the sum and supremum are in the
reverse order compared with {i). Hence we need to work a little more on the rst inequality.
Let us de ne —,( :k) as the index of the rst collision in C . with number strictly larger than
t( k), or M +1 if there is no such collision. We now check that the function ; satis es the
following two conditions, which will enable us to conclude tanks to Lemma7.2.6 below.

(*1) forall :k2 P%suchthat ( :k)2fZ1;:::;Mg, thenc (k) 2 C ok,
(*2) forall = 0, there is no path
(o S N S
such that
mo2f—( %:k%; °:k%2 PYg; m-2f ( :k); :k2Pig
in the collision graph, where the case = 0 is understood as the condition that the two
sets above be disjoint.

It follows from the construction of ; that the latter satis es ( *1) as well as the property that, for
al :k2Pg,

As a consequence, if there exists a path
Cno ! Gn, ' 1 G

in the collision graph, with mg = —,( °: k9, m- = ( :k), for some °:k% :k2 PZ, then
either * =0 in which caset<T (Gn,) tisabsurd, or Condition (LHM-3a) yieldst<T (Gn,) <
T (cn.) t, which is also absurd. As a conclusion, there is no such patmithe graph, and
satis es (*2).

Following Lemma 7.2.6 below, Cog(ditions (*1) and (*2) imply that

e (x( k) Ewm;
k2pPd
which allows us to complete the proof by injecting this inequality into the rst part of ( 7.6).

The proof of (ii) in Lemma 7.2.5relies on Lemma7.2.6below. Before stating the latter, we rst
introduce a few notions. For all functions :Pd!f 0;:::;Mg,wedene~:PI!f 1;:::;M +1g
by, for all :k2 Pd,

“( :k):=Emin(f ( ck)+1;: ;Mg\ micn 2 C Q)
if the set in the right-hand side is nonempty, and
( :k)=M+1
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otherwise. Note that, forall :k2 P%, —( :k)> ( :k)and
(7.7) e tK=euwu( 1K= =e(x 1( k)

and (*2) introduced at the end of the proof of Lemma7.2.5above. For 2 M , combining (7.7)
with (7.4), we now remark that the group of particles : k such that =( : k) is minimal satis es
X X

€ ( :k)( - k) €~ :k)( k),

so that one obtains an upper bound onP k2pg € ( k) ( k) if one replaces ( : k) with =( :k)
for those particles. lIterating the argument until all the qu antities —( : k) reach the maximum
value M + 1, we nally obtain the expected upper bound Ey . The rigorous formulation of this
iterative argument is detailed in Lemma 7.2.6

Lemma 7.2.6 (Property of the set M ). For all functions : PZ ! f 0;:::;Mg in the set M
introduced above, we have X

e (:k)( :k) E M -
k2pd

Proof. For all functions :Pd!f 0;:::;Mg, let us de ne
— = mn —( :k)2f1;:::;M +1g;

k2pd
and let us denote byM the set of functions 2 M suchthat™ M. Then we have the following
property: forall 2M ,forall :k2Pg,
(7.8) -( k=7 if and only if ¢ 2C

Indeed, the direct implication is a straightforward consequence of the de nition of —. The reverse
implication stems from the following argument: if : k 2 PY is such that c- 2 C y, then the

minimality of — implies that =( : k) — . Assume that =( : k) > —, then by (*1) and the
de nition of —, we have that — ( : k). As a consequence, there exists a path
c ! I ¢ ( k)

in the collision graph, which is a contradiction with (*2).

Forall 2M ,wenowdene :PY!f O;:::;Mghy,forall :k2Pg,
(k) ifT( ik)y> 7,
(K= _( ) ._(.)__
it~ k)=~ .

Let us note that, for all :k 2 P¢ such that =( :k) > —,then —( :k)= —( :k)andasa
consequence,
(7.9) - >

We now prove that 2 M . The fact that satis es (*1) easily follows from (7.8) combined

with the fact that  satis es (*1). As far as (*2) is concerned, let us assume by contradiction that
there exists a path

(o S N
in the collision graph, with mg= —( °: k9, m- = ( :k), for some °:k% :k2 Pg. Then
(:k=m me="(%k) — >—;

where the last inequality follows from (7.9). As a consequence, we deduce from the construction

0
of that m- = ( :Kk), while mg is either =( °: k% or suchthat c- ! gy,. In both cases, there
is a contradiction with the fact that  satis es (*2).
The introduction of the operator allows to obtain the following key property: forall 2 M
X X

e x( 1K) e (w0l k)

k2pd k2pPd
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To prove this inequality, it su (>:<es to check that

e (ux( k) e~ ( :k);
k2pd k2P
—( k)= —( k)=

which follows from t?(e sequence of assertions

e k)= e 1( :Kk)
k2pd k2pd
—( :k)=— —( :k)=—
( k) S( ) | X
= e~ 1( i)+ e~ 1( )
i2a— j2b—
. X .
e~ ( i)+ e~ ( )
li2a— j2b—
where we have used{.7) at the rst line, ( 7.8) at the second line, and (7.4) at the third line.
As a conseq)u(ence, forall 2M e;'gher — =M+1in Whic>r(1 case (/.7) yields
el k)= ek 1( k)= evw( k)= BEu;
k2pPd k2pPd k2pd
or 2 M and by (7.9, the operator can be applied a nite number r of times to obtain
T =M +1,in which C)?SE we recover
e (xl( k) er (w( k)= Bu;
k2pPd k2pd

which completes the proof.

7.2.5. Bounding the total mass. As a consequence of Lemm&.2.5 the local stability estimates

of Proposition 7.2.3 are derived from the following estimation on the total mass d the auxiliary
system.

Lemma 7.2.7 (Estimation on the total mass). Under the assumptions of Proposition7.2.3, the
total mass of the auxiliary system satis es

Ev L 1Eo;
whereL; is de ned by (2.9). Besides,

sup  sup en( :k) L 1 sup e( :Kk);
0m M :k2pd k2pgd
whereL; is de ned by (2.9).
The conclusion of Proposition7.2.3easily follows from the combination of Lemmas/.2.5and 7.2.7
with (7.5).
In order to prove Lemma 7.2.7, let us introduce a few notions and notations. Given a sequete

of particlesg = ( :ky;::i; k)2 (P9, with L 1, and a particle  : k.41 2 P9, we denote
by g::( :ki+1) the sequence :ki;:::; :kis1)2 (P9,
Forall m2f0;:::;Mgandforal :k2PJ we rstdenetheset . ( :k) of sequences of

particles as follows:
forall :k2PJ, the set ,( :k) contains the single element :k),

. . [ . .
8 :i2am; m( )= fg0:( )02 |, 4( %
102 am
8 1] 2bm; m( )= fg®( 1i)id’2 o 19
1j 92 by
8 k62, [ by; m( 1K) =, 1 K)o
In other words, ,( :Kk) contains the set of sequenceg = ( : Ko;:::; : ki), such that there
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Gn, is the rst element of C .,
forall 12f1;:::;L 1g, Gn, and Gy,,, are consecutive elements o€ .,
:k. = :kandcy, is the last element ofC .« with number lower than m.

Note that the sequence of collisiongcn,;:::;Gn, ) is uniquely determined by the conditions above.
An element g of some set ,,( : k) shall be called atype path as it describes an oriented path
in the collision graph with all edges having the same type. Foall g 2 ,( : k), we denote

F(g) = . ko. Besides, for allm® 2 f0;:::;mg, we de ne cno(g) as follows: if there exists
| 2 f1;:::;Lg such that m®= m,, then cyo(g) is the generical cluster of type involved in the
collision ¢y, ; while otherwise, cino(g) = : kj, wherel is the largest index inf0;:::;Lg such that

m® > m, (we take the convention that my = 0). We nally de ne the weight of a type path
92 m( :k)by

Y 1

Wi (g) . . ijO(g)j .

This quantity has the following interpretation: given m 2 f1;:::;Mgand :k 2 PZ, let c be
the last collision in C . with number lower than m. Select a particle : k° uniformly at random
among the particles of type involved in the collision c. If it exists, call & the collision preceding
cin C .o, and move fromcto ® This motion is backward with respect to the orientation of the
collision graph. Now repeat the random selection and backwal motion as long as possible. Then,
the sequence( :k; :k%:::) of selected particles at successive collisions is the rewer of a type
path g2 ,( :Kk), and its weight w,, (g) is the probability of selecting this path. In particular,
we deduce that, for allm 2f0;:::;Mg, forall :k2 P,

X
(7.10) w,(g)=1:
92 m( k)
We now de ne the history of a type pathg2 ., ( :k) as follows. In the casem =0, we let
0 1 0 1
[ [
Ho( k)= @ f(0; %:k9Y:( °: k% :K)BRgA[ @ f(0; % kY:( :k; °: k9 62RgA ;
0< 0>

in other words, Ho( : k) contains all the pairs (0; °: k% where ©°:kCis a particle that will never
cross the particle :k. Nowforall m2f1;:::;Mg,

forall :i2ay,forallg2 ,( :i),

Him(9) = Hm 1O [f (M :j); :j 2 bng;
whereg®2 [ jopa, ( ;19 issuchthatg= g%: ( :i);
forall :j2by,forallg2 ,( :j),

Hm(g) == Hm l(go)[f (m; :i); 12 ang;
whereg®2 [ oz, m 1( 119 issuchthatg= g ( :j);
forall :k62an[ by, thenforallg2 ,( :k)= , ( :Kk),

Hm(g): Hm 1(9):

In other words, Hp, (g) records the pairs(m% ©: k9 such that at the collision Gy, the particle
contained in the path g has crossed the particle °: k°
The setsH, (g) have the following properties.

Lemma 7.2.8 (Properties of Hy,(g)). Let m2f0;:::;Mg, :k2PSandg2 ., ( :Kk).

(i) Forall (m% °:k% 2 Hy(g), we have °6
(i) Forall (m% ©9:k9;(m% ©0:k% 2 H.,(g) such thatm®6 m% we have °: k%6 ©0: k%

m® mand °:k%2 ¢, then for all ©: k%2 ¢, there existsm®2 f 0;:::;mg such that
m% mand (m% ©9:k% 2 H,(g).
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Despite its seemingly technical formulation, Lemma7.2.8is quite intuitive, and instead of de-
tailing its proof, we rather give a formal explanation of ead result. Coming back to the MSPD

started at x (or indierently y), one can associateg = ( : ko;:::; : k_) with the continuous
path (G(t)): o starting from x, , then joining the space-time points of collisions ( x;Gn,) and
( X;Cm,, ) following the trajectory of the particle  : kj, and such that G(t) = | (x;t) for
t T(X;Gn,)

Then Hy, () is the set of pairs(m®% °: k9 such that the particle °: k° have crossed the path
G at the collision Gyo, with m° lower than m, or in the virtual past for m®= 0. The point (i)
is therefore obvious. The point (i) means that, along the path G, one cannot cross the same
particle twice; since G remains supported by the trajectories of particles of the seane type , this
is a straightforward consequence of Assumption{SH). Finally, the point ( iii) expresses the fact
that if two particles of the same type are involved in a colligson Gy such that m  m, which is not
located along the path G, and at least one of these particles has crossed (possibly in the virtual
past), then the other one has necessarily crosse@ too. This is a consequence of the continuity of
G combined with the properties of the numbering of the collisbns.

The proof of Lemma 7.2.7 relies on the intermediary Lemmas7.2.9and 7.2.10Q
Lemma 7.2.9 (Integration along paths). Under the assumptions of Lemmar.2.7, for all m 2
fo;:::;Mg, forall :k2Pg,
(7.11) 8 9
X Hm (9)] < X =
en( k) 1+ - W (). eo(F (@) + — eme 1( %K.
92 m( K) (MO %k%)2Hn (g) '

where we take the convention that, for all °: k°2 P9, e 1( °: k9 =0.

letm2f1;:::;Mgsuch that (7.11) holds true upto m 1. Then for all :k 62ay [ by,
em( 1k)=emn 1( k)

8 9
X Hm 1(9) < X e
1+ - Wy 1(9). eo(F(Q)+ — emo 1( %1 k9.
92 . ,( K g (Mm% %k)2Hm 1(g) ’
X jHm (9)] < X =
= 1++ W (9). e(F(9)+ o emo 1( %1 K9
92 m( K) (MO %k%)2Hm (g) '

as o, 1( k= L k)yand forallg2  ;( :k), we haveHy 1(9) = Hm(g) and
W, 1(9) = W, (9). Now forall :i2 an,

. o1 X . X .
em( :i)= 1+Fjbmj — em 1( :|°)+F em 1( :j)

Jam] [i92an 5] 2 b
X X jbmj*+iHm 1(g%i
1+ —
%2 am g°2 L( 00 n
" 9
1 < X o =
T 1(9) . eo(F(g9) + o emo 1( %1 k9.
Jam] ' (Mm% %k0)2Hm 1(g°) ’
X .
+ — em 1( 1))
:j 2 bm
where we have used the elementary inequality
(7.12) 8x 0; 8k 1, 1+kx (1+x)

Let us remark that each type pathg2 ., ( :i) writes g% ( :i) with g°2t jo2a, m 1( :i9,
and that jHm(9)j = jHm 1(99] + jbmj, Wm(9) = Wy 1(g9)=amj, and F(g) = F(¢%). We deduce
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that
X X jomj+iHm 1(g9] 1
1+ n =7 W 1(@9e0(F (9%)
102 am 92 . (9 Jam]
X jHm (9)]
= 1+~ Wn, (9)eo(F (9));
92 m( :i)
while, for all  :i°2 ay, (7.10) yields
X X jbmj+iHm 1(g%]
1= W, 1(99) Wy, (g9 1+ o
g2 . (9 g%2 . (9
so that
X X ibnj*iHm 189 4
1 1+ o 2 Wm 1(9)
ii%am go2 w109 J8m]
and therefore
X X ibni+iHm 19 1 X o
1+ = jam—ij l(go)ﬁ emo 1( %: k9
i%2am g2 ( :i9) (m0 %k%)2Hm 1(g%)
x -
+ — em 1( :j)
:j 2 bm
X jHm (9) X
1+ — Wi (9) = emo 1( %1 k9;
n
92 m( ) (M0 %k%2Hn (g)

which completes the proof.

Lemma 7.2.10 (The L' L?! estimate). Under the assumptions of Lemma7.2.7, we have the
LY L! estimate: for all m2f0;::: ;8M g forall :k2Pg,

9
<X X =
(7.13) em( :k) exp((d 1), eo( k9 Ltk (o= kogWin (9) + —Em.
| ko=l 92 m( k) '
Proof. Let us note that, for all m 2 f0;:::;Mg, for all : k 2 PZ, the points (i) and (i) of

Lemma 7.2.8yield, forall g2 ., ( :k),

jHm(9)j n(d 1)

and therefore ' ,
jHm (9)j

1+ o exp((d 1)):

Furthermore, we rewrite

X X
W, (9)eo(F (9)) = eo( :ko) Lir(g)= :ko%Wm (9):
92 m( k) ko=1 92 m( k)
k),
)21( )
(7.14) emo 1( %: kY E m;
(m0 0k%)2Hn (g)

We shall now prove that, for all g 2

which leads to the expectedL® L! estimate (7.13 when combined with (7.11).
Letus x m2f0;:::;Mg, :k2PYandg2 ,,( :Kk). We rst prove by induction on

X
(7.15) eno 1( °: K9 em( %KY
(m®% *K9)2Hp (9) (m® k32 Hm (o)
m® m me m
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The casem = 0 follows from the convention that e 1( °: k% = 0, see Lemma7.2.9 Now let

X 0 X 0 X 0
emo 1( %: k9 = emo 1( %1 kO + emo 1( 9: k9
(m% %k%2Hn (g) (m% %k%2Hn (9) (m% %k92Hn (9)

m® m mo m 1 mO=m

X 0

em 1( 3k0);
(m% %k%2Hn (9)
m® m

and we just have to check that

X 0 X 0
(7.16) em 1( %1 k9 em( %: K9:
(m?% °k%2Hm (9) (m% %k%92HR (9)
m® mr m° mr

To this aim, we note that, for all °:k°2 P¢:

either °:k®62ay [ by, in which caseerr 1( °: k9 = en( °: K9,

or there existsc 2 f anr; brg such that °: k°2 c, in which case the point (i) of Lemma7.2.8
ensures that all the quantities e 1( ©: k%, for 9: k%2 ¢, appear in the sum at the
left-hand side of the inequality (7.16). But by ( 7.4),

X
em 1( %1 k% em( %:K%:
0:k002 ¢ 0:k002 ¢

The inequality (7.16) follows immediately, and the proof of (7.15 is completed. Applying the
latter inequality with ™ = m and using the point (ii) of Lemma 7.2.8 we conclude that

X 0 X 0
€mo 1( :ko) € ( :ko) E m;
(m0 %k%2Hm (9) (m0 %k%2Hm (9)

and thereby obtain (7.14).
We are now ready to complete the proof of Lemma7.2.7. We rst address the L! estimate.

Derivation of the L estimate in Lemma7.2.7. We use ourL? L' estimate (7.13 to obtain a

0 1
2 . X o X .
En = En 1+7C@mel €m 1( 1)+ jam]j em 1( :J)A
li2am j2bm
4 2
1+ ?JamllbmleXp(( d 1) En 1
2 X 4 X X
+ 7exp(( d 1))jbmj eo( 1|0) Lie(g= :i9gWm 1(0)
i0=1 i2am g2 )
2 X 4 X X
+—ep((d 1L)jan] el :j9 LiF(g= 5%Wm 1(9);
jo=1 q2bm g2 ()

where we have used {.13 for the inequality. Using the elementary inequality (7.12) again, we
obtain

P o
M jamiibm]

2
B 1+ exp((d 1) Fo+ Zexp((d 1)(Aw +Bu) :
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where
b4 X X X
Am = jbmj e :i9 lir(g= :i%gWm 1(9);
m=1 i0=1 i2am g2 (D)
b4 X X X
Bm = jam] eo( JO) Lir(g= :jo9Wm 1(9):
m=1 jo=1 J2bm g2 m 1)

Foral m2f1;:::;Mg,an by is a subset ofR with cardinality jamjjbmj, and form®<m, the
subsetsamo bnho= gpoanda, by = ¢, are disjoint. As a consequence, foralin 2f1;:::;Mg,

oo o . Ldd 1
jamiibmj J Rj f ( ci i) 2P < gj= nz%;
m=1
therefore
4 2 m:l jam jjbmj
1+ Fexp(( d 1) exp 2 %d(d L)exp((d 1)) :
It now remains to obtain estimates on the g(uantities An and By, . To this aim, we rewrite
Am = eo( :io)l 0,
i2pd
where, forall  :i°2 PZ,
oo X X
I o= jbmj ltF(g= :i%gWm 1(9):
m=1 li2am 92 ., L D)

Letus x :i%2 P,? and obtain an estimate onl .0. We rst note that, forall m2f1;:::;Mg,
forall :i2 an, the mappingg 7! g: ( :i) establishes a one-to-one correspondance between
the sets G

fg2 , o( :):F(@= :i%
li2am
and B
fg2 ( :D:F@= :i%;

and that, in addition, for all g in the rst set above,

- 1
w_ (g ( D))= —w :
m(@( 1)) i m 1(9)
X X X o
lip(g= :i9gWm 1(9) = lie(g)= :i%)@mJWn, (9)
128m g2 () 92 m( )
X
= Lk (g= :i%Wm(9):
2am g2 m( D)

so that

As a consequencel, .o rewrites

o X X
I o= jbm] ltF (g)= ;iong(g)Z
m=1 d2am g2 ()

We now de ne the set ( :i9 by
- G : ,
( %= fg2 ,( :):F@= :i%
i=1
A type path g = ( :ig:ii; tip) 2 (@ i9 is associated with a sequence of collisions

w,, (7) of the type path g has the following interpretation: start from the particle  :i°and move
to the rst collision ¢y, in C .o if it exists. This motion is forward with respect to the orientation
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of the collision graph. Now select a particle uniformly at random among the particles of type
involved in the collision cy,, and repeat the motion forward and random selection as long &
possible. Thenw(g) is the probability of selecting the type path g; therefore,
X

(7.17) w(g) =1:
g2 ( :i9
Besides, we have the identity, for allm 2f1;:::;Mg, forall :i2 an,
X 1 X
lir(g= :i%gWm(9) = — 1t g2a ,, gW(D)
. lam) __
92 m( 1) g2 (9
whereAp, is the set of type pathsg=( :io;:::; :ip), associated with the sequence of collisions

X oo X X ) _
I o= w@)  jbm] ligeA mg w(@jHu (@) n(d 1)
gz_( :i0) m=1 H2am gz_( ii9)

where we have usedi{) of Lemma 7.2.8as well as {7.17) in the last inequality. We conclude that
X
Ay n(d 1) eo( :19=nd )&
;io2pd
and, similarly,
Bwm n(d 1)E:
As a consequence,
Ev Eo(@+4( d 1exp((d 1))exp 2 2dd 1exp((d 1) ;
which is the L! estimate By L 1Ey wherel is given by (2.9).

Derivation of the L' estimate in Lemma 7.2.7. Injecting the L! estimate above into (7.13), we
obtain, forall m2f0;:::;Mg, forall :k2 PZ,

8 9
<X X =
en( :k) exp((d 1) el :K9 Lk (= wegWm(9)+ —LiFo,
T ko=1 . ’
8 92 m( k) 9
< X =
exp((d 1)), Wn(g)+d L1 sup ey °:k9
: v 0k02pd
92 m( k) "
=exp(( d 1)fl+d Lig sup e °:K9;
0:k02 P d

thanks to (7.10), whence theL! estimate

sup  sup en( :k) L 1 sup e :k)
0m M :k2pPd k2pd

with L1 given by (2.9).

7.3. From local to global stability estimates. In this subsection, we explain how to remove
Condition (LHM) from Proposition 7.2.3 namely, we prove the following result.

Proposition 7.3.1 (Global stability estimate). Under Assumptions (LC) and (USH), for all
x;y 2 DY,

f»ugjj(x;t) (yitiia L oajix  yiia;

f»ugjj(x;t) (yitiia L 1jix i1,

whereL; and L; are given in Proposition 7.2.3.
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The subsection is organised as follows. Propositiory.3.1 is derived from the local stability
estimates of Proposition7.2.3 by integrating the latter along a continuous path joining ar bitrary
initial con gurations, that can be decomposed into small portions on which Proposition 7.2.3
applies. Geometrical tools allowing the construction of seh a path are introduced in ¥7.3.2,
and the global interpolation procedure is described in ¥.3.3 The whole argument relies on the
nondegeneracy condition (D) introduced in Y7.3.1, and an approximation procedure of degenerate
characteristic elds by nondegenerate ones is detailed in ¥3.4

7.3.1. The nondegeneracy condition.Let us introduce the following nondegeneracycondition on
the functions 1;:::; 9.

(ND) Forall x 2 D¢, forall 2f1;:::;dg, for all k < k in f1;:::;ng such that

— 0 0
8 96 ; 8k2fk;:::;kg; P 00=1 (x);
we have
8k 2fk k 1 X (x) 6 1 X (x)
Koo 1g; — To(X) 8 =—— Teo(X):
K K+1|<0=|< Ko K om e

This condition expresses the fact that two clusters of the sme type with no particle between
them cannot have the same velocity. Note that the condition s written for a xed value of n and
therefore only depends on the nite number of values of™, (x), x 2 Ddand :k2 P4 We wil
use the following consequence of ConditionND).

Lemma 7.3.2 (Continuity of the composition of clusters). Under Assumptions (C) and (USH),
and Condition (ND), for all x 2 DY, for all t 2 (0;t (x)) such that

8 :k2PZ clu (x;t ) =clu (x;t);
there exists > 0 such that, for ally 2 B1(x; ),
8 :k2PS; clu, (y;t) = clu  (x;1):

Proof. Let x 2 DY andt 2 (0;t (x)) satisfying the properties above. Let us rst x t°2 (0;t)
such that, for all s 2 [t%t], forall :k 2 PZ, clu, (x;s) = clu (x;t); in other words, there is no
self-interaction in the MSPD started at x on the time interval [t%t]. We shall denotex?:= ( x;t9.

Letus x > 0 small enough to ensure that, for all : k and °: k°such that clu, (x;t) 6

clukg(x;t),
85215t [ (9 i (i9+ N[ elis) 5 etie)* 1= 5;
On the other hand, by Lemma A.1.2, one can choose ° small enough to ensure that, for all

y92 B1(x% 9, theny®2 D, R(y)=R(x% andt (y9 >t° t. By Lemma 3.2.2 combined with
the ow property of Proposition 3.2.8 these conditions imply that, for all y°2 B1(x% 9,

8s2 %t Ji(y%s ) (x9iin i y® x%i. °
We nowwantto x °small enough to satisfy the conditions above, and such thatforall :k 2 PZ,
if y°2 B1(x% 9, then clu, (y%t t9 =clu,(x;t).
We rstrequire that © =n, sothatif y°2 B1(x% 9, thenforall :k2 PY, forall s2 [t%t],
i c%s 1) a9 nii (y%s ) (x;9)iin
and therefore | (y%s t9= I(g(yo;s t9 only if clu, (x;t) = clu kg(x;t).
Letusnow x k2 P2 If clu (x;t)= :k, then for all y°2 B1(x% 9, the assertion above
implies that clu, (y;s t9= :kforall s2 [t%t]. On the contrary, if clu, (x;t)= :k k with
k < k, then the stability condition ( 3.1) combined with Condition (ND) yield, for all k k < k,

1 X
(7.18) m o ko(XO) >

0 X ,
k kO=k+1
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and the same inequality holds if one replacex® with y° since R(x% = R(yY. By the same
arguments as above, we havg> y; 20 ° 2. Let us write, for all s2 [t%t],

Zg o
(Os t=yp + v (y%rdr;
77
0. _ 0 0. P\ p-
y%s )=y + » v (y%r)dr:
Letus x s2 [t If (y%s 9= _(y%s 19 thencly(y%s 9= :k k and this

remains the case up to timet  t% Otherwise, we have, for allr 2 [0;s  t9, |, (y%r) < E(yo; r)
and therefore . a

clu (y%r= :k kK% cu(y%r)= :k Kk
for somek k%< Kk Arguing as in the proof of Lemma 3.1.7, but where the stability

condition (3.1) is replaced with the stronger condition (7.18), we getv, (y%r) > VF(yO; r). Since
k%and EO can only take a nite number of values, we deduce that there eists > 0 such that, for
alr2[0s t9 v (y%r) v (y%r) . Asaconsequence, if ,(y%s t)< (y%s 19 then
we necessarily have
Z o
(s 19 v (%) ve(y%r) dr<y? yp 20 ©
r=0 - -

By contraposition, we deduce that if we choose °<  (t t9=(2n), then the self-interaction between
the particles :k and :k in the MSPD started at y° occurs before the timet t° which implies
clu (y%t t9= :k k.

Taking the minimum of such admissible ° on all the particles : k 2 P9, we conclude that,
for all y 2 DY such that ( y;t9 2 B1(x% 9, we haveclu, (y;t) = clu, (x;t), forall :k 2 PJ.
By Proposition 3.2.9, there exists > 0 such that, forall y 2 B1(x; ), ( y;t9 2 B1(( x;t9; 9;
which completes the proof.

The nondegeneracy condition (D) implies that the set of good con gurations is dense inDY.

Lemma 7.3.3 (Density of G). Under Assumptions (C) and (USH), and Condition (ND), the set
Gis dense inDY.

The proof of Lemma 7.3.3is postponed to SubsectionA.3 in Appendix A.

7.3.2. Radial blow-up of singularities. Given a con guration x 2 D¢ and a good con guration y in
the neighbourhood ofx, we now want to construct a path joining x to y that can be decomposed
into small portions on which Proposition 7.2.3 can be applied. To this aim, we callsingularity a
space-time point at which a non binary collision, or both a cdlision and a self-interaction, occur in
the MSPD started at x. Note that a con guration y 2 D is good if and only there is no singularity
in the MSPD started at y. Then we remark that, if y 2 G is close enough tax, singularities in the
MSPD started at x areradially blown upin the MSPD started at y, in the sense that if one shrinks
the the trajectory of the MSPD started at y around the singularity, one obtains the trajectory of
the MSPD started at x.

In this paragraph, we rst give a proper de nition of the noti on of locally homothetic con gura-
tions x andy corresponding to the description above, then we use the radl blow-up of singularities
property to construct paths joining x to y with the expected properties.

For all space-time points =( o; o) 2R (0;+1),forall 2R, 2(0; o), we shall denote
by

=[o ot ] fo ot 1 R (0;+1)
the ( ; )-boxaround . The open segmentqy ¢ ;ot ) f o gand( o pot )
f o+ g shall be referred to as thehorizontal sidesof the box.

De nition 7.3.4  (Proper covering of 1°°" (x)). Let x 2 D, with N(x) 1. A proper covering of
[ (x) is a pair ( ; ) such that:
>0, 2(0;t (x)),
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forall ; 22 1°%"(x) suchthat 6 © then the intersecton  \ ©: ofthe( ; )-
boxes around and Cis empty,
forall =( o; o) 2 1°"(x),
for all :k 2 PY such that there existst 2 [ o ; o+t ]suchthat | (x;t) 2
[o i ot ] then
(X5 0)= o

i.e. all the particles passing in the box are involved in the collisn associated with ,
for all particles : k in the box,

(X5 0 )2 (o yo+t ) and (X5 0+ )2(o ot )
i.e. the particle enters and exits the box by the horizontal side; bdss,
8t2[o 7 o); clu (x;t) =clu, (x;( o ) )
and
8t2[0; ot I clu, (x;t) =clu (X; o);

i.e. self-interactions in the box can only occur at the space-tira point

Given a proper covering( ; ) of I°0(x), the set of ( ; )-boxes around the points ofl %" (x)
is drawn on Figure 3. Examples of boxes around space-time points of collisionsyith dimensions
that do not de ne a proper covering, are shown on Figure4.

2

—

{2

Figure 3. An example of set of( ; )-boxes around the points ofl¢" (x).

Figure 4. The box on the left-hand gure contains a self-interaction at a distinct
space-time point from the collision. On the central gure, a particle enters the
box by a vertical side. The box on the right-hand gure is crossed by a particle
that is not involved in the collision.

Let us note that a proper covering of I°°" (x) always exists. Indeed, since the sets®'f(x) is
nite, one can construct 2 (0;t (x)) small enough to ensure that, for all = ( o; o) 2 1°"(x),
the particles involved in the collision associated with do not have self-interactions on the time
interval [ o ; ot ] (except possibly at time ). Besides, since the velocities are bounded
by Lc.1 , given a choice of , any choice of such that

(719) > LC;l
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ensures that particles enter and leave the box by the horizotal sides. Finally, one can shrink
and keep satisfying (7.19 accordingly to obtain boxes small enough for being disjoihand not
being crossed by particles not involved in the correspondig collision.

We can now give a de nition of locally homothetic con gurati ons.

De nition 7.3.5  (Locally homothetic con gurations) . Let x 2 D. A con guration y 2 D¢ is said
to be locally homothetic to x if y 2 D and either N(x) = N(y) = 0, or R(x) = R(y) and there

exists a proper covering( ; ) of 1°(x) such that, for all o= ( o; o) 2 1°°"(x),
forall :k2PZ suchthat (X; 0)= o,
kWio  )2(o0 ot ) culy; o )=clu(xi o)
kWio+ )2(o0 s o* )i cluly; ot )=clug(x; o+ )
forall ( :i; :j) 2 R(x) such that C"!' j(X) = o, the space-time point of collision
% ,(v) belongs to the( ; )-box around o, and for all 2 [0;1],
(7.20) @ x+ y)=@ ) o+ %)

forall 2f1;:::;dg, for all k;k®2f 1;:::;ng such that o 2 58] (x), the intersection

E) ; )\ IS(:al|<f; ;ko(Y)
is either empty or contains a unique element .. .xo(y); in the latter case, for all 2 (0;1],
the intersection
S (@ )x+y)

contains a unique element . ko((1 )X+ y) and we have
(7.21) koko(@ o )x+ y)=@ ) ot e welY):
We shall sometimes precise thaty locally homothetic to x with respect to the proper covering
(5 )

Let us remark that if N(x) = 0 then any con guration y 2 D such that N(y) = 0 is locally

homothetic to x.

Lemma 7.3.6 (Radial blow-up of singularities). Under Assumptions (C) and (USH), and Con-
dition (ND), let x 2D.

(i) If N(x) =0, there exists > 0 such that, forally 2 By(x; ), y 2D and N(y) =0 so
that y is locally homothetic to x.

(i) If N(x) 1, then for all proper coverings( ; ) of 1% (x), there exists > 0 such that,
forall y 2 By(x; ),y is locally homothetic toy with respect to( ; ).

Proof. The point (i) is a straightforward consequence of ij in Lemma A.1.2.
The proof of (ii) works by induction on N(x) 1. Letus x N 0 such that the lemma
is satised for all x 2 D such that N(x) N. Let x 2 D with N(x) = N +1; in particular,

t (x)<+1.Let( ; ) beaproper covering ofl° (x).
Using LemmaA.1.2 again, we rst obtain 1 > 0 such that, for all y 2 B1(x; 1),y 2D and
R(x) = R(y).

Without loss of generality, let us assume that is small enough to satisfy
9=t (x)+ <t X))+t (x) :

and take  small enough to satisfy (7.19), so that ( ; ) remains a proper covering ofl " (x).
Then, on the time interval [0;t (x)+ ], the only collisions in the MSPD started at x occur at time
t (x), possibly at di erent locations. Besides, ( x;t9 2D, N(( x;t9) N,andif N(( x;t9) 1,
then ( ; ) remains a proper covering ofi® (( x;t9). As a consequence, there exists®> 0 such
that, for all y°2 B1(( x;t9; 9, then y°is locally homothetic to ( x;t% (with respectto ( ; )
if N(( x;t9)  1). By Proposition 3.2.9 there exists , > 0 such that, for all y 2 Bi(x; »),
(y;t92Ba(( x;t9; 9.

Combining Proposition 3.2.9 and Lemma A.1.2, we obtain 3 > 0 such that, for all y 2
Bi(x; 3),
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(y;t (x) )2D and R(( y;t (x) ) =R(( x;t (x) )
(y;t (x)+ )2D andR(( y;t (x)+ ) =R(( x;t (x)+ ),

and, forall :k2Pg,

if the particle : k is involved in a collision at the space-time point( ¢;t (x)) in the MSPD
started at x, then for all t 2 [t (x) )+ 1L (i) 2 (o v ot ),

if the particle : k is not involved in a collision at time t (x) in the MSPD started at X,
then in the MSPD started at y, the particle : k does not cross any of thg ; )-boxes
around points of 1<°" (x) on the time interval [0;19.

These conditions ensure that, for all particles : k involved in a collision attime t (x) in the MSPD
started at x, the corresponding particle enters and exits the ; )-boxaround( (x;t (x));t (X))
by horizontal sides in the MSPD started at y; besides, all the collision and self-interaction space-
time points in which it is involved remain in the box.

Combining Proposition 3.2.9 LemmaA.1.2 and Lemma7.3.2 we nally construct 4 > 0 such
that, for all y 2 By(x; 4), forall :k2Pg,

clu (y;t (x) ) =clu, (x;t (x) ); clu (y;t (x)+ )=clu, (x;t (x)+ ):
Note that, on account of Condition (ND), Lemma 7.3.2 can be applied since the fact that( ; )
is a proper covering of1¢ (x) implies that, on the time interval (t (x);t (x)+ ], there is no
self-interaction in the MSPD started at x.
We can now dene = minf 1;:::; 4gand x y 2 Bi(x; ) and 2 [0;1]. To complete
the proof, we have to check that the homothetic relations {.20) and (7.21) are satis ed for all
0=1(o0; 0) 2 I°(x). We address the casesg = t (x) and o >t (x) separately, and shall
proceed in three steps. In Step 1, we prove that

@  x+ yit(x) )= H(xit(x) )+ (y;it(x) )
In Step 2, we establish the homothetic relations {.20) and (7.21) for o =t (x), and we check that

(7.22) @ x+ yit )+ )=@10 )(xt(x)+ )+ (y;t(x)+ )
Finally, we apply an inductive argument to address the case >t (x) in Step 3.

Step 1. Sincet (y) >t (x) , then for all t 2 [0;t (X) L, (x;t) = T ~(X¥)](x;t) and
(y;t) = T ~(¥)I(y;t). Besides,R(x) = R(y) so that ~(x) = ~(y). Let :k 2 P¢ and let us
denote
c:=clu, (x;t (x) )=clu, (y;t (x) ):
Note that jjx (1 )x+ Vy)jji= jix Vi 4, thereforec=clu, (1 )x+ y;t (x) ).
Let us now remark that the processesf ,(x;t): :k 2 cg, f  (y;t): :k 2 cgand

f (@ )x+ y;t): :k2cgfollow the Local Sticky Particle Dynamics on [0;t (x) ], with
the same initial velocity vector. As a consequence, the cen¢ of masses

1% t 1 X t 1% 1 t

L e T e T + v-t)

9 e 0 Y Y

travel at the same constant velocity

1 -~
ij k2c k(X)
on [0;t (x) ]- Thus,
1 X _ 1 X 3
id e @ )x+ oyt (x) )= S . @ X+ Y () ) TX)
1 1% t 1% t
( )JCJ k2c k(x' (X) ) JCJ k2c k(y, (X) )'

which of courses rewrites, for all :k 2 c,

(@ )x+ oyt (x) )=@0 ) (st () )+ it (x) )
and completes Step 1.
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Step 2.Let :k 2 PY. Ifthe particle : k does not collide with a particle of another type between
timest (x) andt (x)+ =:t%n the MSPD started at x (or equivalently y or (1  )x + ),
then the same arguments as in Step 1 using the Local Sticky Péicle Dynamics ensure that

(@ x+ yit)=@ ) 06t (yitd:
Otherwise, there exists a unique space-time point
02f O L00:( i 1)) 2R(x); g

D j(X) 2t (x) it x)+ g

such that all the collisions with particles of another type and all the self-interactions of the particle

: k between timest (x) andt (x)+ in the MSPD started at x occur at the space-time
point . By the de nition of , the particle : k collides with the same particles of another
type and have the same self-interactions in the MSPD startedat y, and the corresponding space-
time points of collisions and self-interactions belong to he ( ; )-box around ; but of course,

Forall 1 2f1;:::;Lg, we nally denote by S;;+1 the space-time segment connecting (j t0  (j+1) ,
and let So;1 refer to the space-time segment connecting | (y;t (x) )t (%) )to (1, and
St +1 refer to the space-time segment connecting (1) to ( , (y;t (x)+ )t (x)+ ).

h=Cor m=a ) o+
and similarly denote by S? ,; the space-time segment connecting {, to 2, while S, refers
to the space-time segment connecting(1 ) (X;t (x) )+ (it (x) );t (X) ) to
ty and SP; ., refers to the space-time segment connecting? , to (1 ) ,(x;t (x)+ )+

st )+ )t (x)+ ).

are parallel. As a consequence, if 2 (0; 1], then the process (,2 denedon [t (x) it (x)+ ]
by

812f0;::Lg;  Sha = @iit20 &) (uylo
(where (%) =t (x) , (°|_+1) =t (x)+ ), has the same slope as the process, (y; ) on
each corresponding linear part, see Figuré. Besides, if two particles : k and : k% are in the
same cluster on some linear part in the MSPD started aty, then it is clear that the corresponding
trajectories E , Eo coincide on the corresponding linear part.

t(x)+

t (x)

Figure 5. The trajectory of the MSPD started at x is plotted on the left-hand
side of the gure, while the trajectory of the MSPD started at y is plotted on the
right-hand side. The trajectory of the process Cis plotted in dashed lines. Each
linear part is parallel to the corresponding part in the trajectory of the MSPD
started at y. The black lines represent the horizontal sides of the box.
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As a conclusion, the processesg t (00 N, t2[t (x) it (x)+ ], forall :ksuch
that
(Ot ()it (X)) = o
exactly describe the motion of the particles in the MSPD stated at (1 )( x5t (X) ) +
Y(y;t () ). Thanks to Step 1, we conclude that

820t (x) t()+ L R®= (@ x+ y;t);
which yields (7.20), (7.22) for all the collision and self-interaction space-time ponts for the particle
: k on the time interval [0;t; besides,

(@ x+ yit)= R9= ) Wt (it
This completes the proof of Step 2.

Step 3.Let ( :i; :j)2R(( y;t9)=R(( x;t9), so that

cc:)il;I ] (X); C(:)il;l ] (y)! C(:)il;l ] ((1 )X + y) >t O:
Then, by the ow property of the MSPD,
U@ x+oy)= 0@ )x+ yit9)

= O (@ H(xt)+ (y;t9

=(1 ) CO||,I :j(( X;to))+ CO||,I :j(( y;to));
where we used Step 2 at the second line and the fact tha( y;t% 2 B1(( x;t9; 9 at the third
line. Using the ow property for the MSPD again, we conclude that the right-hand side above
rewrites (1 ) %, (x)+ % ,(y). The very same arguments allow to address self-interactio

l; NN
as well, and also yield

U@ x+ oy)= @ x+ yit) ot
=@ ) GOt O G (Cyst)
=L ) 00+ ;s
which completes the proof.

We now explain how to construct a path joining a con guration x to a good con guration y
close tox, along which pairs of con gurations satisfy the Local Homeanorphic Condition (LHM).
For the sake of understandability, we rst describe the casex 2 G in Lemma 7.3.7 below. Then,
the situation is actually very simple as, fory close enough tox, the locally homothetic property
implies that y 2 G and x;y satisfy Condition (LHM ). The case of an arbitrary con guration x 2 D
is addressed in Lemmar.3.8

Lemma 7.3.7 (Construction of locally homeomorphic con gurations, good case) Under the as-
sumptions of Lemma7.3.6, let x 2 G, and if N(x) 1, let ( ; ) be a proper covering ofi® (x).
Let > O be given by Lemma7.3.6. For all y 2 B1(x; ), the con guration y belongs to the seG
and the con gurations x andy satisfy Condition (LHM).

Proof. If N(x) = 0, then there is nothing to prove. Let us assume thatN(x) 1,let( ; ) bea
proper covering of 1" (x) and let > 0 be given by Lemma7.3.6 so that y is locally homothetic
to x with respectto ( ; ). In particular, R(x)=R(y) and if ( :i; :j);( °:i% 9:j9 2 R(y)
are such that

COII B (y) = c%l:lio; 0 0()/);
then it necessarily holds

co!l ' (X) = c%l:lio; 0:j0(x):
Sincex 2 G, this implies that y 2 G. Besides, on account of the de nitions of proper coverings iad
good con gurations, in the MSPD started at x, there is no self-interaction in the ( ; )-boxes
around space-time points of collisions. Since the clusterat entry and exit of these boxes have the
same composition in the MSPD started aty, we deduce that self-interactions are separated from
collisions in the MSPD started at y. As a consequencey 2 G.
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We have already checked thatx and y satisfy Condition (LHM-1). Condition (LHM-2), which
asserts thatx and y have the same collision graph, is an easy consequence of tlality of clusters
at entry and exit of boxes. Now if two collisions @ and c are such that®! ¢, then the fact that

(%) 7V ((x0) 7 =5 (vid2((xD) 5 (v;902(((x;0) 7 5
implies that
T'(@A=TXAA_TY:) T+ <T(x;9 <T(X9NT(y;9=T (0

which yields Condition (LHM-3a). Finally, Condition ( LHM-3b) is also a consequence of the
identity of the compositions of of clusters at entry and exit of boxes.

When x is not a good con guration, one can obviously not expect Condtion (LHM) to hold for
x and y chosen as in Lemmar.3.7. As is plotted on Figure 6, singularities can lead this condition
to fail even for the locally homothetic good con gurationsy and (1  )x + y when is too far
from 1. However, based on the radial blow-up of singularities proprty described in ¥7.3.2, we prove
in Lemma 7.3.8 below that, for < 1 with close tol, y and (1 )x + y actually satisfy
the Local Homeomorphic Condition (LHM ). Iterating the argument starting from (1 X+ y
instead ofy, we obtain that the geometric sequencd ™), o has the property that, forall m 1,
the congurations (1 ™ YH)x+ ™ lyand(l ™)x+ ™My satisfy Condition (LHM).

Figure 6. The con gurations y and y°:= (1 )x + 'y are both good con g-
urations and they are locally homothetic to x. In their collision graph, ¢ ! ©;
however, for the choice of on the gure, T(y%c) > T (y; ), therefore Condi-
tion (LHM-3a) is not satis ed by the pair y;y°.

Lemma 7.3.8 (Construction of locally homeomorphic con gurations, bad case) Under the as-
sumptions of Lemma7.3.6, let x 2D, and if N(x) 1, let ( ; ) be a proper covering ofi® (x).
Let > 0 be given by Lemmar.3.6. For all y 2 B1(x; )\G, there exists 2 (0;1) such that, for
alm 1 ,thecongurations (1 ™ Yy+ ™ Ixand(1 ™M)y+ Mx satisfy Condition (LHM).

Proof. Lety 2 Bi(x; )\G. Forall 2 (0;1], it follows from Lemma 7.3.6that the collisions locally
look alike in the MSPD started at y and at (1  )x + y. This impliesthat (1 )x+ y 2G;
and, forall ; °2 (0;1, R((1 )x+ y)=R((1 9%+ Y)and(1 I)x+ y,(1 Ox+ Y
have the same collision graph, so that they satisfy Conditios (LHM-1) and (LHM-2).

Let us now explain how to construct 2 (0;1) in such a way that, for all m 1, the con gu-
rations (1 ™ Hy+ ™M™ Ixand(1 ™M)y + ™x satisfy Conditions (LHM-3a) and (LHM-3b).
Let us denoteC := C(y). Forall c2 C, it follows from Lemma 7.3.6that there exists a space-time
point (c) such that

8 2 (01} @  x+ y;9=1 ) o9+ (y:0);
and in particular, the collision times satisfy
8 2(0;1 T(@ )x+ y;9=(@1 )T+ T (y;0);
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where we denote ¢(¢) = ( 0(0); To(c)). Therefore, for all 2 (0;1], (1 )x + y andy satisfy
Condition (LHM-3a) as soon as, for allc® c2 C such that !

(@ T+ T _T:)< (@ )To(Q+ T (y;0) " T(y;0);

which is always the case if o(®) 6 (0 and reduces to

To(9 T(y:9

To(9 T(y:c)
if o(® = o(c) and either T(y;®) < T (y;0) < To(0) or To(c) < T (y;d < T (y;0). We denote
by .1 the inmum of the set of 2 (0;1) satisfying these conditions; then, for all > 1,
(1 )x+ vy andy satisfy Condition (LHM-3a). Very similar arguments combined with the fact
that y 2 G allow us to construct ., 2 (0;1) such that, forall > ., (1 )x+ y andy satisfy
Condition (LHM-3b).

As a conclusion, let us de ne  to be any number such that
a1_ p2< <L

Then we have proved that the pair of con gurationsy and (1 )x+ vy sati es Condition (LHM).
To complete the proof, we apply the same arguments startingrom (1 )X + y instead ofy.
We obtain that, for all 2 (0; 1], the con gurations

1 x+ (@ x+oy)=(1 X+ oy and (1 X+ oy
satisfy Condition (LHM-1) and (LHM-2). Besides, Condition (LHM-3a) holds as soon as
To(9 T(( X+ yi9 _ To(@ T(y;9
To(@ T(@ )x+ y;&) To(9 T(y:c)
forall c2 C((1 X+ y)= C(y) suchthat ®! ¢ o(® = o(c and either
T(@@ X+ oy <T@ )X+ Y0 <To(O);
which reduces toT(y; ) < T (y; 0 < To(0), or
To(9) <T ((2 X+ oy <T@ X+ yi0);

which reduces to To(0) < T (y;® < T (y;0. As a consequence, the conditions on are the
same as above and taking the in mum over the admissible valug of yields the same quantity

1. Likewise, to ensure that(1  2)x + 2y and (1 )X + y satisfy Condition (LHM-3b),
we obtain the same quantity ., as above, therefore taking = again, we conclude that the
con gurations (1  ?)x+ 2y and(1 )x+ y satisfy Condition (LHM). The proof is completed
by induction.

7.3.3. Interpolation procedure. In this paragraph, we describe the interpolation procedureallowing
to derive global stability estimates from the local stability estimates of Proposition 7.2.3 under
Condition (ND). The latter condition is removed in the next subsection.

Lemma 7.3.9 (Global stability estimate under Condition ( ND)). Under Assumptions (LC) and
(USH), and Condition (ND), for all x;y 2 DY,

?ugjj (x5 (y:tijs L oaix  yijs
?ugjj (x5t)  (ystjjn L oajix Y,
whereL; and L; are given in Proposition 7.2.3.

Proof. Let us begin by mentioning that the arguments of the proof do rot depend on the choice
of the distance; in particular, continuity and density results are valid whatever the choice of the
distance since these distances are equivalent. Thereforthe notation jj jj shall indi erently refer
tojj jijzorjj ji1 . The corresponding stability constant shall simply be dended L.

We rst recall that D is dense inDY and, by Proposition 3.2.9 for all t 0, the mapping
(x;y) 7V ( x;t)  ( y;b)jj is continuous on(DY)2. As a consequence, it su ces to prove that,
forallt O forall (x;y) 2D? jj( x;t) (y:;t)i Lj x vi.
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We x X;y 2 D and proceed by interpolation as follows. In Step 1, we split he segment

(7.23) S=f@Q s)x+sy;s2][0;1]g

into a nite number of segments

(7.24) Sk = f(1 s)x+ sy;s 2 [sk;Sk+1]0; k2f0;:::;Kg;

where 0 =: 55 < 571 < < Sk < Sk+1 .= 1 are such that, for all k 2 f0;:::;Kg, for all

S2 (Sk;Sk+1), (1 sS)x+sy 2D. InStep 2, forallk 2f0;:::;Kgand > 0 small enough, we
de ne the segmentS, by
(7.25) S, =f(1l s)x+5sy;s2[sk+ ;Sk+ lg;

and construct a piecewise linear and continuous path joinig the extreme points ofS, , with length
arbitrarily close to the length of S, , and allowing to apply Lemma 7.3.8on a nite number of linear
parts of the path in Step 3. We let vanish and complete the interpolation procedure in Step 4.

Step 1. Let S be de ned by (7.23. Forall s2 [0;1], (1 s)x + sy 62 Dif and only if there exists
( :i; :j)2(PH?suchthat < and
(1 s)x; +sy; =1 9)x; +8Y;
which rewrites
(X Xi vy V)= X X
where we recall thatx; x; 60 sincex 2D. As a consequence, eithex; X; +y; y; 60 in

which case there is at most one solutiors 2 [0; 1] to the equation above, orx;  x; +y; y; =0
in which case there is no solution. We deduce that there is a iite number K 0 of points
s 2 [0;1] such that (1 s)x + sy 62 Dand we index these points by their increasing ordering:
0<s; < < sk < 1. For the convenience of notation in the sequel of the proof, & de ne
Sp:=0 andsk+ :=1,sothatforall k2f0;:::;Kg, forall s2 (sk;Sk+1), (1 S)x+sy2D. We

Step 2. Inthisstepwe x k2f0;:::;Kgand > Osuchthatsgc+ <sy+1 . Then, the segment
S, de ned by (7.29 is a compact subset ofD. Its length is worth

B@ (s PxH(seen )y (@ (st DX (St )yl =(sksr s 2)iix il
Let us write

[
Sy Bi(z; (2));
228,

where, for allz 2 S, we x a proper covering of [l (z) if N(z) 1 and let (z) be given by

2f1:::;Lg, z 2 S writes (1 DX+ 1y with s¢ + 1 < < L Sk+1 . We also
dene o= sSc+ , L+ = Sku1 andzo:=(1 o)X+ oy, ZLs1 =(1 La)X+ Lay.

and contains the set

fL sx+sy;s2(i+ (21); 1 (21))G
We nally x > 0 and use the density of the setG (see Lemma7.3.3 to construct

b
iz itz 2wl (e s 2)iix yii+ o
1=0
The quantities introduced in Step 2 are summarised on Figurey.

supjj ( zi;1) (2000 Uiz Zi.ai;
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Figure 7. The segmentSy is drawn in dashed line, while the segmentS, is
drawn in solid line. Gray circles stand for the open ballsB1(z; (z)). The points

between the length of the red path and the length(sx+1 sk 2)jjx yjj of S,
be smaller than .

and similar arguments shall also yield
tSU(l?J'j (zsit)  (Zhati Uiz 20
By Step 2,z 2D and zﬁ, +1 2 Bai(zi; (z1))\G. As a consequence, Lemmad.3.8implies that there

exists 2 (0;1) such that, forallm 1, (1 ™ Yz + ™ 1z}, and(1 Mz + Mz,
satisfy Condition (LHM). Therefore, for all m 1, Proposition 7.2.3yields, for allt 0,

i@ Mzi+ Mzt (@ " Dz M R0l L (Mt Miiz 2
We nally deduce from the triangle inequality that, forall M 1,
i@ "“zi+ Mz (20l

i@ Mz Mzhast) (@ " Dz ™ i
m=1

LC™ Y Miize Zhaii=L@  Miz z.aii
m=1
and use Proposition3.2.9to conclude that

supjj ( zi;1) (2000 Li 2 zjaii:

Step 4. We nally complete the interpolation procedure described in the introduction of the proof.
First, it follows from Step 3 that

b
tSU(E)J'J' (20;t)  (zL+1:0)j tSUg) iCzot) (i + i (zh.:)  (zies )i
1=0
X- e O . e O .
L Hzi zpali+tiizig  zisld
1=0
L ((sk+1 sk 2)jix yjj+ ):

Recalling that zo = (1  (sk+ ))x+(sk+ )yandzi+1 =(1  (Skv1 )X +(Sk+1 )y, and
letting  vanish, we obtain

SUpjj (L (Scr Nx+(sc+ Jys) (L (Sen Nx*(Se YOI L (S s 2)ix Y

Taking the limit of both sides when vanishes and using Proposition3.2.9, we nally write

S (1 sdx+ syit) (L Se )X+ Sy L (S siix Vil
t

and complete the proof thanks to the triangle inequality agan.
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7.3.4. Approximation of degenerate characteristic elds. We now complete the proof of Proposi-
tion 7.3.1by removing Condition (ND) from the statement of Lemma 7.3.9. We use the following
approximation argument.

Lemma 7.3.10 (Nondegenerate approximation of degenerate characterist elds). Let us assume

that the function = ( 1;:::; 9) satis es Assumptions (USH) and (LC). Then, for all n 1,
there exists a sequence of functions!® = ( [di1;:::; laid) q 1, satisfying Assumptions (USH)
and (LC) as well as Condition (ND), such that, whenq grows to in nity:

(i) for all x 2 DZ, forall :k2 P, (714, (x) converges to™, (x),

(i) for all 2 f1:::;dg, sup,zpo.qp ) [al: (u)j converges tosup,,0.1¢ ] (U], the Lipschitz
continuity constant LE_‘E of 4 converges to the Lipschitz continuity constantL c of

and the uniform strict hyperbolicity constant L[?]SH of @ converges to the uniform strict
hyperbolicity constant L ysy of

(iii) for all x 2 DY, for all t 0, the con guration [d(x;t) at time t of the MSPD started at
x with velocity vectors determined by @ converges to the con guration ( x;t) at time t
of the MSPD started atx with velocity vectors determined by .

The conclusion of the proof of Proposition7.3.1is now straightforward: applying Lemma 7.3.9
to the MSPD with velocity vectors determined by @ we obtain, for all x;y 2 Dd and for all
t 0,
i Dect Eysoin L Yix yii
i Weaty Myt L ¥ix yjia
where the meaning olelq] and L is obvious. Since these stability constants are continuous

functions of L[,_qg and L{T]SH, there is no diculty in taking the limit when q grows to in nity of
both inequalities and thus obtaining Proposition 7.3.1

Proof of Lemma 7.3.10. The proof is decomposed into two independent parts: in the st part, we
construct a particular sequence of functions [a] satisfying Condition (ND) as well as the points ()
and (ii). In the second part, we prove that any sequence of functions [a] satisfying the points (i)
and (ii) necessarily satis es the point (ii).

Construction of . Letus x x 2 P4, 2f1;:::;dgandk < Kk in f1;:::;ng, such that

8 % ; 8k2fk;:::;kg; ! ?k(x)=! :l(x):
Then, forall k 2fk;:::;k 1g, forall > 0, we have
Z o
1 )4( k"=n n (0}
k k+1 (0 1) Y OO HEREEL N 09 HVH BN 0 RS ALY ¢'9) wdw
LAY k0=K w= =n
n Lk n . . " ) o
el G PR ot o )sws b ()i 9 (x) w  dw
n w= =n
1 k2 (k 1)
_ W) — (k 1)
kK k+1,, 20k k+1
1 X = k+k
- mkozk kO(X) %( TK 1)'
and similarly
1 )4? Z k°=n n 1 1 (0]
e n - Pho0)st Lo 0O0ws ! 25t G(x) wo dw
Ko=k+#1  WT =n
L K+ k
Kk ko(X) %( + K):

kO=k+1
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