W. E. , B. Engquist, X. Li, W. Ren, and E. , Vanden-Eijnden, Heterogeneous multiscale methods: A review, Communications in Computational Physics, vol.2, pp.367-450, 2007.

A. Abdulle, W. E. , B. Engquist, and E. Vanden-eijnden, The heterogeneous multiscale method, Acta Numerica, vol.21, pp.1-87, 2012.
DOI : 10.1017/S0962492912000025

URL : https://hal.archives-ouvertes.fr/hal-00746811

M. Geers, V. Kouznetsova, and W. Brekelmans, Multi-scale computational homogenization: Trends and challenges, Journal of Computational and Applied Mathematics, vol.234, issue.7, pp.2175-2182, 2010.
DOI : 10.1016/j.cam.2009.08.077

URL : http://doi.org/10.1016/j.cam.2009.08.077

T. Hou and X. Wu, A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, Journal of Computational Physics, vol.134, issue.1, pp.169-189, 1997.
DOI : 10.1006/jcph.1997.5682

A. Gloria, Numerical homogenization: survey, new results, and perspectives, ESAIM: Proceedings, pp.50-116, 2012.
DOI : 10.1051/proc/201237002

URL : https://hal.archives-ouvertes.fr/hal-00766743

L. Durlofsky, Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resources Research, vol.31, issue.5, pp.699-708, 1991.
DOI : 10.1029/91WR00107

X. Wu, Y. Efendiev, and T. Hou, Analysis of upscaling absolute permeability, Discrete and Continuous Dynamical Systems, pp.185-204, 2002.

X. Wen, L. Durlofsky, and M. Edwards, Use of border regions for improved permeability upscaling, Mathematical Geology, vol.35, issue.5, pp.521-547, 2003.
DOI : 10.1023/A:1026230617943

Y. Chen, L. Durlofsky, M. Gerritsen, and X. Wen, A coupled local???global upscaling approach for simulating flow in highly heterogeneous formations, Advances in Water Resources, vol.26, issue.10, pp.1041-1060, 2003.
DOI : 10.1016/S0309-1708(03)00101-5

X. Yue and W. , The local microscale problem in the multiscale modeling of strongly heterogeneous media: Effects of boundary conditions and cell size, Journal of Computational Physics, vol.222, issue.2, pp.556-572, 2007.
DOI : 10.1016/j.jcp.2006.07.034

S. Baxter and L. Graham, Characterization of Random Composites Using Moving-Window Technique, Journal of Engineering Mechanics, vol.126, issue.4, pp.389-397, 2000.
DOI : 10.1061/(ASCE)0733-9399(2000)126:4(389)

L. Graham-brady, E. Siragy, and S. Baxter, Analysis of Heterogeneous Composites Based on Moving-Window Techniques, Journal of Engineering Mechanics, vol.129, issue.9, pp.1054-1064, 2003.
DOI : 10.1061/(ASCE)0733-9399(2003)129:9(1054)

K. Acton and L. Graham-brady, Elastoplastic Mesoscale Homogenization of Composite Materials, Journal of Engineering Mechanics, vol.136, issue.5, pp.613-624, 2010.
DOI : 10.1061/(ASCE)EM.1943-7889.0000100

W. Lian, ContributionàContribution`Contributionà l'homogénéisation numérique du comportementélastique de matériauxmatériaux`matériauxà microstructure complexe caractérisés par imagerie, 2011.

F. and D. Paola, Modélisation multi-´ echelles du comportement thermo-´ elastique de compositesàcomposites`compositesà particules sphériques, 2010.

X. Blanc and C. L. Bris, Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings, Networks and Heterogeneous Media, vol.5, issue.1, pp.1-29, 2010.
DOI : 10.3934/nhm.2010.5.1

URL : https://hal.archives-ouvertes.fr/inria-00387214

H. Moulinec and P. Suquet, A fast numerical method for computing the linear and non linear properties of composites, Comptes Rendus de l, Académie des Sciences, vol.2, pp.1417-1423, 1994.

S. Brisard and L. Dormieux, FFT-based methods for the mechanics of composites: A general variational framework, Computational Materials Science, vol.49, issue.3, pp.663-671, 2010.
DOI : 10.1016/j.commatsci.2010.06.009

URL : https://hal.archives-ouvertes.fr/hal-00722339

C. Huet, Application of variational concepts to size effects in elastic heterogeneous bodies, Journal of the Mechanics and Physics of Solids, vol.38, issue.6, pp.813-841, 1990.
DOI : 10.1016/0022-5096(90)90041-2

M. Ostoja-starzewski, Micromechanics as a basis of random elastic continuum approximations, Probabilistic Engineering Mechanics, vol.8, issue.2, pp.107-114, 1993.
DOI : 10.1016/0266-8920(93)90004-F

W. E. , P. Ming, and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Am. Math. Soc, vol.18, pp.121-156, 2005.

A. Abdulle, ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY, Mathematical Models and Methods in Applied Sciences, vol.16, issue.04, pp.615-635, 2006.
DOI : 10.1142/S0218202506001285

P. Suquet, A simplified method for the prediction of homogenized elastic properties of composites with a periodic structure, Comptes-rendus de l'Académie des sciences série II, pp.311-769, 1990.

Z. Hashin and S. Shtrikman, On some variational principles in anisotropic and nonhomogeneous elasticity, Journal of the Mechanics and Physics of Solids, vol.10, issue.4, pp.335-342, 1962.
DOI : 10.1016/0022-5096(62)90004-2

R. Zeller and P. Dederichs, Elastic Constants of Polycrystals, Physica Status Solidi (b), vol.241, issue.2, pp.831-842, 1973.
DOI : 10.1002/pssb.2220550241

S. Brisard and L. Dormieux, Combining Galerkin approximation techniques and the principle of Hashin and Shtrikman to improve two FFT-based numerical methods for the homogenization of composites, Computer Methods in Applied Mechanics and Engineering, vol.217, pp.220-197, 2012.

R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato et al., Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 1994.

C. Paige and M. Saunders, LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares, ACM Transactions on Mathematical Software, vol.8, issue.1, pp.43-71, 1982.
DOI : 10.1145/355984.355989