Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Macroscopically consistent non-local modelling of heterogeneous media

Abstract : Within the framework of the homogenization of heterogeneous media, a non local model is proposed. A field of non-local filtered stiffness tensor is introduced by filtering the solution to the homogenization problem. The filtered stiffness tensor, depending on the filter to heterogeneity size ratio, provides a continuous transition from the actual micro-scale heterogeneous stiffness field to the macro-scale homogenized stiffness tensor. For any intermediate filter size, the homogenization of the filtered stiffness yields exactly the homogenized stiffness, therefore it is called macroscopically consistent. The non-local stiffness tensor is intrinsically non symmetric, but its spatial fluctuations are smoothed, allowing for a less refined discretization in numerical methods. As a by-product, a two step heterogeneous multiscale method is proposed to reduce memory and computational time requirements of existing direct schemes while controlling the accuracy of the result. The first step is the estimation of the filtered stiffness at sampling points by means of an oversampling strategy to reduce boundary effects. The second step is the numerical homogenization of the obtained sampled filtered stiffness.
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-01076820
Contributeur : Sébastien Brisard <>
Soumis le : jeudi 23 octobre 2014 - 11:48:00
Dernière modification le : vendredi 17 juillet 2020 - 17:09:10
Archivage à long terme le : : samedi 24 janvier 2015 - 10:17:44

Fichier

Bignonnet2014-NonLocalModel.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

François Bignonnet, Karam Sab, Luc Dormieux, Sébastien Brisard, Antoine Bisson. Macroscopically consistent non-local modelling of heterogeneous media. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2014, 278, pp.218 - 238. ⟨10.1016/j.cma.2014.05.014⟩. ⟨hal-01076820⟩

Partager

Métriques

Consultations de la notice

441

Téléchargements de fichiers

375