I. Araya, G. Trombettoni, and B. Neveu, Exploiting Monotonicity in Interval Constraint Propagation, Proc. AAAI, pp.9-14, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00654400

I. Araya, G. Trombettoni, and B. Neveu, A Contractor Based on Convex Interval Taylor, LNCS, vol.7298, pp.1-16, 2012.
DOI : 10.1007/978-3-642-29828-8_1

URL : https://hal.archives-ouvertes.fr/hal-00733848

P. Belotti, Couenne, a user's manual (2013). www.coin-or

F. Benhamou and F. Goualard, Universally Quantified Interval Constraints, Proc. CP, Constraint Programming, pp.67-82, 2004.
DOI : 10.1007/3-540-45349-0_7

URL : http://arxiv.org/pdf/cs/0007002v1.pdf

F. Benhamou, F. Goualard, L. Granvilliers, and J. F. Puget, Revising Hull and Box Consistency, Proc. ICLP, pp.230-244, 1999.

C. Bliek, Computer methods for design automation, p.MIT, 1992.

G. Chabert and N. Beldiceanu, Sweeping with Continuous Domains, Proc. CP, pp.137-151, 2010.
DOI : 10.1007/978-3-642-15396-9_14

URL : https://hal.archives-ouvertes.fr/hal-00915701

G. Chabert and L. Jaulin, Contractor programming, Artificial Intelligence, vol.173, issue.11, pp.1079-1100, 2009.
DOI : 10.1016/j.artint.2009.03.002

URL : https://hal.archives-ouvertes.fr/hal-00428957

H. Collavizza, F. Delobel, and M. Rueher, Extending Consistent Domains of Numeric CSP, Proc. IJCAI, pp.406-413, 1999.

A. Goldsztejn, Définition et applications des extensions des fonctions réelles aux intervalles généralisés: nouvelle formulation de la théorie des intervalles modaux et nouveaux résultats, 2005.

DOI : 10.1016/B978-0-12-505630-4.50021-3

R. B. Kearfott, Rigorous Global Search: Continuous Problems, 1996.
DOI : 10.1007/978-1-4757-2495-0

Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J. Merlet, Efficient and Safe Global Constraints for Handling Numerical Constraint Systems, SIAM Journal on Numerical Analysis, vol.42, issue.5, pp.2076-2097, 2005.
DOI : 10.1137/S0036142903436174

URL : https://hal.archives-ouvertes.fr/hal-00907765

Y. Lin and M. Stadtherr, LP Strategy for the Interval-Newton Method in Deterministic Global Optimization. Industrial & engineering chemistry research 43, pp.3741-3749, 2004.

D. Mcallester, P. Van-hentenryck, and D. Kapur, Three Cuts for Accelerated Interval Propagation, 1995.

F. Messine and J. L. Laganouelle, Enclosure Methods for Multivariate Differentiable Functions and Application to Global Optimization, Journal of Universal Computer Science, vol.4, issue.6, pp.589-603, 1998.

F. Messine, Méthodes d'optimisation globale basées sur l'analyse d'intervalle pour la résolution desprobì emes avec contraintes, 1997.

R. E. Moore, Interval Analysis, 1966.

A. Neumaier, Interval Methods for Systems of Equations, p.24, 1990.
DOI : 10.1017/CBO9780511526473

J. Ninin, F. Messine, and P. Hansen, A reliable affine relaxation method for global optimization, 4OR, vol.55, issue.3???4, 2010.
DOI : 10.1007/s10288-014-0269-0

URL : https://hal.archives-ouvertes.fr/hal-01194735

W. Oettli, On the Solution Set of a Linear System with Inaccurate Coefficients, Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, vol.2, issue.1, pp.115-118, 1965.
DOI : 10.1137/0702009

J. Rohn, Inner solutions of linear interval systems, Proc. Interval Mathematics 1985, pp.157-158, 1986.
DOI : 10.1007/3-540-16437-5_15

S. Shary, Solving the linear interval tolerance problem, Mathematics and Computers in Simulation, vol.39, issue.1-2, pp.53-85, 1995.
DOI : 10.1016/0378-4754(95)00135-K

M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach to global optimization, Mathematical Programming, vol.14, issue.2, pp.225-249, 2005.
DOI : 10.1007/s10107-005-0581-8

G. Trombettoni, I. Araya, B. Neveu, and G. Chabert, Inner Regions and Interval Linearizations for Global Optimization, pp.99-104, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00648085

G. Trombettoni and G. Chabert, Constructive Interval Disjunction, Proc. CP, LNCS 4741, pp.635-650, 2007.
DOI : 10.1007/978-3-540-74970-7_45

URL : https://hal.archives-ouvertes.fr/hal-00936654