E. Melan, Theorie statisch unbestimmter Systeme aus ideal-plastischen Baustoff, Sitz, Berl.Ak.Wiss, vol.145, pp.195-218, 1936.

P. S. Symonds, Shakedown in continuous media, J. Appl. Mech, vol.18, pp.85-89, 1951.

W. T. Koiter, General problems for elastic solids, Progress in solid mechanics, 1960.

K. Dangvan and I. V. Papadopoulos, Introduction to fatigue analysis in mechanical design by the multiscale approach, pp.57-88, 1999.

D. C. Pham, On shakedown theory for elastic-plastic materials and extensions, J. Mech. Phys. Solids, vol.56, pp.1905-1915, 2008.

Q. S. Nguyen, On shakedown analysis in hardening plasticity, Journal of the Mechanics and Physics of Solids, vol.51, issue.1, pp.101-125, 2003.
DOI : 10.1016/S0022-5096(02)00058-3

A. Corigliano, G. Maier, and S. Pycko, Dynamic shakedown analysis and bounds for elastoplastic structures with nonassociative, internal variable constitutive laws, International Journal of Solids and Structures, vol.32, issue.21, pp.3145-3166, 1995.
DOI : 10.1016/0020-7683(94)00265-X

G. Bodovillé and G. D. Saxcé, Plasticity with non-linear kinematic hardening: modelling and shakedown analysis by the bipotential approach, European Journal of Mechanics - A/Solids, vol.20, issue.1, pp.99-112, 2001.
DOI : 10.1016/S0997-7538(00)01109-8

Y. J. Ahn, E. Bertocchi, and J. Barber, Shakedown of coupled two-dimensional discrete frictional systems, Journal of the Mechanics and Physics of Solids, vol.56, issue.12, pp.3433-3440, 2008.
DOI : 10.1016/j.jmps.2008.09.003

M. Peigney, Shakedown theorems and asymptotic behaviour of solids in non-smooth mechanics, Eur, J. Mech. A, vol.29, issue.5, pp.784-793, 2010.

J. Zarka, J. Frelat, and G. Inglebert, A New Approach to Inelastic Analysis of Structures, 1988.

H. Maitournam, B. Pommier, and J. Thomas, D??termination de la r??ponse asymptotique d'une structure an??lastique sous chargement thermom??canique cyclique, Comptes Rendus M??canique, vol.330, issue.10, pp.703-708, 2002.
DOI : 10.1016/S1631-0721(02)01516-4

V. Carvelli, Z. Cen, Y. Liu, and G. Maier, Shakedown analysis of defective pressure vessels by a kinematic approach, Archive of Applied Mechanics (Ingenieur Archiv), vol.69, issue.9-10, pp.9-10, 1999.
DOI : 10.1007/s004190050254

M. Peigney and C. Stolz, Approche par contrôle optimal des structuresélastoviscoplastiquesstructuresélastoviscoplastiques sous chargement cyclique, C.R.Acad.Sci. Paris, II, vol.329, pp.643-648, 2001.
DOI : 10.1016/s1620-7742(01)01381-2

M. Peigney and C. Stolz, An optimal control approach to the analysis of inelastic structures under cyclic loading, Journal of the Mechanics and Physics of Solids, vol.51, issue.4, pp.575-605, 2003.
DOI : 10.1016/S0022-5096(02)00104-7

J. Simon and D. Weichert, Shakedown analysis of engineering structures with limited kinematical hardening, International Journal of Solids and Structures, vol.49, issue.15-16, pp.2177-2186, 2012.
DOI : 10.1016/j.ijsolstr.2012.04.039

K. V. Spiliopoulos and K. D. Panagiotou, A direct method to predict cyclic steady states of elastoplastic structures, Computer Methods in Applied Mechanics and Engineering, vol.223, issue.224, pp.186-198, 2012.
DOI : 10.1016/j.cma.2012.03.004

D. Weichert and A. Ponter, A Historical View on Shakedown Theory The History of Theoretical, Material and Computational Mechanics-Mathematics Meets Mechanics and Engineering, pp.169-193, 2014.

G. Borino, Consistent shakedown theorems for materials with temperature dependent yield functions, International Journal of Solids and Structures, vol.37, issue.22, pp.3121-3147, 2000.
DOI : 10.1016/S0020-7683(99)00114-6

J. König, A shakedown theorem for temperature dependent elastic moduli, Bull. Ac. Pol. Sci., Ser. Sci. Techn, vol.17, issue.3, pp.161-165, 1969.

B. Halphen and S. Di-domizio, Evolution des structuresélastoplastiquesstructuresélastoplastiques dont les coefficients d'´ elasticité dépendent de la température, 17ème congrès français de mécanique, 2005.

S. Hasbroucq, A. Oueslati, and G. D. Saxcé, Inelastic responses of a two-bar system with temperaturedependent elastic modulus under cyclic thermomechanical loadings, Int. J. Solids. Struct, issue.14, pp.47-1924, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00484238

S. Hasbroucq, A. Oueslati, and G. D. Saxcé, Analytical study of the asymptotic behavior of a thin plate with temperature-dependent elastic modulus under cyclic thermomechanical loadings, International Journal of Mechanical Sciences, vol.54, issue.1, pp.95-104, 2012.
DOI : 10.1016/j.ijmecsci.2011.09.011

URL : https://hal.archives-ouvertes.fr/hal-00656052

J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, Journal of Differential Equations, vol.26, issue.3, pp.347-374, 1977.
DOI : 10.1016/0022-0396(77)90085-7

H. Brézis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland, 1972.

R. T. Rockafellar, Convex analysis, 1997.
DOI : 10.1515/9781400873173

R. Hill, The mathematical theory of plasticity, 1950.

H. Lanchon, Elastic-plastic torsion of a cylindrical shaft with simply or multiply connected cross section, J. Mecanique, vol.13, pp.267-320, 1974.

B. Halphen, Elastic perfectly plastic structures with temperature dependent elastic coefficients, Comptes Rendus M??canique, vol.333, issue.8, pp.617-621, 2005.
DOI : 10.1016/j.crme.2005.07.018

URL : https://hal.archives-ouvertes.fr/hal-00174662

B. Halphen, Stress accommodation in elastic-perfectly plastic and viscoplastic structures, Mechanics Research Communications, vol.2, issue.5-6, pp.273-278, 1976.
DOI : 10.1016/0093-6413(75)90057-9

J. Baillon and A. Haraux, Comportement a l'infini pour les equations d'???volution avec forcing p???riodique, Archive for Rational Mechanics and Analysis, vol.29, issue.1, pp.101-109, 1977.
DOI : 10.1007/BF00280830

E. Wesfreid, Synopsis, Proc. Roy. Soc. Edin. A, pp.3-4, 1981.
DOI : 10.1016/0022-247X(78)90129-4

P. Ballard, Frictional Contact Problems for Thin Elastic Structures and Weak Solutions of Sweeping Processes, Archive for Rational Mechanics and Analysis, vol.26, issue.3, pp.789-833, 2010.
DOI : 10.1007/s00205-010-0373-z

O. Débordes and B. Nayroles, Sur la théorie et le calcuì a l'adaptation des structuresélastoplastiques structuresélastoplastiques, J. Mecanique, vol.15, issue.1, pp.1-53, 1976.

W. Rudin, Real and complex analysis, 1987.

L. Schwartz, Analyse mathématique, 1967.

B. Mercier, Sur la théorie et l'analyse numérique deprobì emes de plasticité, 1977.

M. Orlowski and M. Pachter, Linear programming in R3 and the skeleton and largest incircle of a convex polygon, Computers & Mathematics with Applications, vol.13, issue.4, pp.401-405, 1987.
DOI : 10.1016/0898-1221(87)90008-3