Numerical assessment of the macroscopic strength criterion of reinforced soils using semidefinite programming - École des Ponts ParisTech Access content directly
Journal Articles International Journal for Numerical Methods in Engineering Year : 2014

Numerical assessment of the macroscopic strength criterion of reinforced soils using semidefinite programming

Abstract

The macroscopic strength properties of reinforced soils, regarded as periodic composite materials, are investigated by means of a fem-based formulation of both the static and kinematic approaches of yield design applied to the reinforced soil's unit cell. Since the reinforced soil's individual constituents obey a 3D Mohr-Coulomb strength condition, such a numerical problem can be treated trough an optimization procedure using semidefinite programming. The whole numerical procedure is applied to the derivation of both lower bound and upper bound estimates to the macroscopic yield surface of a soil reinforced either by columnar inclusions (stone columns) or a double array of trenches (cross trench reinforcement). The so-obtained results highlight the efficiency of the proposed numerical method.
Fichier principal
Vignette du fichier
Preprint_nme4716.pdf (895.62 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01052946 , version 1 (29-07-2014)

Identifiers

Cite

Maxime Gueguin, Ghazi Hassen, Patrick de Buhan. Numerical assessment of the macroscopic strength criterion of reinforced soils using semidefinite programming. International Journal for Numerical Methods in Engineering, 2014, 99 (7), pp.522-541. ⟨10.1002/nme.4716⟩. ⟨hal-01052946⟩
132 View
336 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More