Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Optimal transport bounds between the time-marginals of a multidimensional diffusion and its Euler scheme

Abstract : In this paper, we prove that the time supremum of the Wasserstein distance between the time-marginals of a uniformly elliptic multidimensional diffusion with coefficients bounded together with their derivatives up to the order $2$ in the spatial variables and Hölder continuous with exponent $\gamma$ with respect to the time variable and its Euler scheme with $N$ uniform time-steps is smaller than $C \left(1+\mathbf{1}_{\gamma=1} \sqrt{\ln(N)}\right)N^{-\gamma}$. To do so, we use the theory of optimal transport. More precisely, we investigate how to apply the theory by Ambrosio, Gigli and Savaré to compute the time derivative of the Wasserstein distance between the time-marginals. We deduce a stability inequality for the Wasserstein distance which finally leads to the desired estimation.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-enpc.archives-ouvertes.fr/hal-00997301
Contributeur : Aurélien Alfonsi <>
Soumis le : jeudi 19 mars 2015 - 10:40:44
Dernière modification le : lundi 24 août 2020 - 14:14:10
Archivage à long terme le : : lundi 22 juin 2015 - 07:12:59

Fichiers

Optimaltransportbounds2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00997301, version 2
  • ARXIV : 1405.7007

Collections

Citation

Aurélien Alfonsi, Benjamin Jourdain, Arturo Kohatsu-Higa. Optimal transport bounds between the time-marginals of a multidimensional diffusion and its Euler scheme. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2015. ⟨hal-00997301v2⟩

Partager

Métriques

Consultations de la notice

542

Téléchargements de fichiers

293