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Abstract

Monitoring and controlling flatness during the rolling process becomes critical for ensuring the product quality.
Flatness defects are due to highly three-dimensional phenomena. Indeed, strips with different widths are rolled
during the same campaign and cooling systems are heterogeneous along the axial direction to modify the ther-
mal expansion of the roll. Therefore this paper presents a fully three-dimensional inverse analytical method to
determine the temperature field and heat fluxes (especially at the surface of the roll) by interpreting measurements
of temperature done with several thermocouples fully embedded in the roll body and aligned along the axial di-
rection. Since the method is dedicated to on-line interpretation and designed as a tool for adapting the rolling
parameters during the rolling process, iterative methods are not studied to avoid long computation times, which
justifies the development of an analytical solution of the problem. The computation time displayed by Scilab 5.3
with a quadcore 2.8 GHz is around 0.5 second by cycle for accurate computation and 0.07 second by cycle for
rough computation. This paper improves a previous work (2D and relying on four assumptions designed for the
prediction of wear). In the present contribution the 3D unsteady heat equation of the rotating roll is solved analyt-
ically with only one assumption in order to deal with the restriction of the measurement system (i.e., measurement
according to successive times). Therefore not only radial and tangential heat fluxes are taken into account but also
axial heat flux. The solution is validated by comparing the outputs of the method and some prescribed analyt-
ical temperature fields. Good agreement is obtained. Noise sensitivity is estimated by adding artificial random
numbers to the inputs, and good accuracy is observed. Moreover sensitivity to sensor depth is estimated and
demonstrated to be not compromising.
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Rs Outer radius (radius of the surface of the roll)
Rm Inner radius (radius of the measurements)
e Error of the sensor depth
ω Rotation speed
r Radial position
θ Angular position
z Axial position
t Time
k Index of the current cycle
tk Time at the beginning of thekth cycle (= tk−1 + 2π/ω)
tk
θ

Time related to the angular position (=tk + θ/ω)
f Frequency of acquisition of the measurements
λ Thermal conductivity of the roll
D Thermal diffusivity of the roll
ǫ Percentage of error
T Temperature field (solution)
H Heat flux field (solution)
T1 First part of the temperature field (solution)
T2 Second part of the temperature field (solution)
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Tm Measured temperatures (inputs)
Ak

n,p n, p th cosine coefficient of Fourier ofTm (kth cycle)
Bk

n,p n, p th sine coefficient of Fourier ofTm (kth cycle)
Ts Temperature at the surface of the roll (outputs)
Hs Heat flux at the surface of the roll (outputs)
Tp Prescribed temperature field (validation of the method)
Ta Ambient temperature
T∗ Surrounding temperature (validation of the method)
a∗n,p n, p th cosine coefficient of Fourier ofT∗

b∗n,p n, p th sine coefficient of Fourier ofT∗

HTC Heat Transfer Coefficient (validation of the method)
N1 Order of truncation (integer)
N2 Order of truncation (integer)
P1 Order of truncation (integer)
P2 Order of truncation (integer)
Q1 Order of truncation (integer)
Q2 Order of truncation (integer)
S Number of thermocouples (integer)
Nθ Number of reconstruction points along circumferential direction
Nz Number of reconstruction points along axial direction
Ni
θ Number of interpolation points along circumferential direction

Ni
z Number of interpolation point along axial direction
ζn,p Coefficients (complex)
χn,p Coefficients (complex)
Jn Bessel function of the first kind of the ordern
α

(k)
n,p,q Coefficients (complex)
β

(k)
n,p,q Coefficients (complex)

an,p Coefficients (complex)
bn,p Coefficients (complex)
cn,p,q Coefficients (complex)
dn,p,q Coefficients (complex)
hn Auxiliary function
xn,q Successive positive zeros ofJn

yn,q Successive zero ofhn

γ Coefficient (complex)
τ Relaxation time (complex)
τn,p,q Relaxation time (complex)
υn,p,q Relaxation time (complex)
τ∗n,p,q Relaxation time (complex)
υ∗n,p,q Relaxation time (complex)
Θ Angle
u Displacement field
(λ0, µ0) Lame’s coefficients of the roll

Table 1: Nomenclature

1. Introduction

1.1. Context
In steel rolling processes, two rolls are used as tools to reduce the thickness of a workpiece. Flatness control

improvement is essential for productivity, automation andquality, since the requirements for strip crown and
flatness are more and more severe. Flatness defects origin isthe difference between the incoming strip profile
and the work roll deformed profile. The cooling system as wellas crown control devices for shape correction are
voluntary heterogeneous along the axial direction in orderto compensate the heterogeneous temperature fields.
Moreover a rolling campaign involves often many different strip widths. Therefore the mechanisms involved in
flatness problems are highly three-dimensional.
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Predictive models are very useful for the design of flatness control devices and cooling system. Thus many
studies focus on more and more comprehensive approaches of flatness during rolling process. A complete flatness
model combines thermo-mechanic models for the strip and thermo-elastic models for the roll. For example Jiang
and Tieu [1] developed a predictive 3D finite element method (FEM) which gives the contact stress between the
strip and the roll, the deformation of the roll and especially the shape of the roll generatrix and by taking into
account the shape of the incoming strip gives the longitudinal stress profile of the outcoming strip. More recently
Abdelkhalek et al. [2] proposed a comprehensive FEM which moreover takes into account the buckling of the
outcoming strip and the coupling between plastic deformation of the strip in the roll gap and the buckling of the
outcoming strip.

All the predictive models of flatness need the computation ofthe work roll deformation and especially the
thermal expansion. Therefore three-dimensional temperature fields should be computed, most of the time by
numerical methods. Several authors focus on this latter task. For example Abbaspour and Saboonchi [3] pro-
posed predictive models for the optimisation of cooling system. Thermal crown has been investigated by Zhang
et al. [4] and [5] with two dimensional FEM (radial and axial directions) by neglecting circumferential direction.
Truly three-dimensional predictive models have also been proposed by Zone-Ching and Chang-Cheng [6] or more
recently by Li et al. [7]. Montmitonnet [8] gave also a comprehensive review of predictive three-dimensional
models (by FEM and FDM) of the whole rolling process, by coupling the strip and the roll thermal behaviours
with iterative methods.

All these simulations consider very complex boundary conditions. Indeed, the contact between the strip (from
around 300 K for cold rolling conditions to around 1200 K for hot rolling conditions) and the roll (initially at the
room temperature) is responsible for conducting heat, which is often modeled with a heat transfer coefficient. This
model parameter is often assumed to be constant in the contact like in the model of Corral et al. [9]. But since
pressures are not constant in the contact, this heat transfer coefficient is actually not constant as demonstrated by
Legrand et al. [10]. The heat flux entering the roll by conduction from the strip can also be modeled by a heat flux
like in the work of Hacquin [11]. Moreover, the cooling and lubrication systems involve a forced convection at the
entry and exit of the roll gap and the surrounding air is responsible for a free convection. To a lesser extend, the
friction between the strip and the roll, the plastic deformations of the strip and radiations from the strip, are also
heat sources for the roll. This complicated thermal problemis summarized in Figure 1.

Work Roll

Conduction

Strip

Cooling

spray air/water

forced convection

Lubrication

spray oil/water

forced convection

Air

free convection

hi hf

Figure 1: Thermal conditions during rolling process

The idea of this paper is to avoid such a complicated model by replacing this kind of direct and theoretical
computations of three-dimensional temperature and heat flux fields inside the roll, by a real-time evaluation based
on temperature measurements done with several thermocouples fully embedded inside the roll body. This eval-
uation is performed by inverse analysis and does not requireexternal conditions around the roll. Temperatures
and heat fluxes at the surface are directly inferred from the temperatures measured inside the roll, regardless of
contact, cooling and lubrication conditions at the surface.

Most of inverse methods consider boundary conditions at thesurface of the roll and compute the temperature
at the radius where temperatures are measured. Then a minimization between the computed temperature and
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measured temperature is performed in order to identify the boundary conditions. The present inverse solution
does not belong to this class of methods. Indeed, no boundaryconditions are considered at the surface, and
there is no minimization process. Considering that temperatures are measured at the radiusRm < Rs (wherem
means measured andsmeans surface), a fully analytical solution of the problem is found in a sub-domain (which
the cylinder of radiusRm). Then, this analytical solution is extended by continuitytoward the surface. In this
way, temperature and heat flux fields are deduced everywhere in the roll and especially at the surface without
considering any boundary condition at the surface of the roll.

1.2. Review of inverse methods

Many authors focus on 1D or 2D inverse methods. (This is due tothe fact that most of the time numerical
computations are used, and therefore 3D inverse methods involve high stack memory capacity and long CPU
times). Among the latest contributions, Volle et al. [12] proposed a 1D analytical inverse method compared with
a 2D numerical inverse method adapted to a hot rotating cylinder cooled by a water jet. Kotrbacek et al. [13] pro-
posed a comprehensive 2D inverse method, where the sensor and temperature dependance of thermal properties
are modeled. However computation times are long. More recently Chen and Yang [14] proposed a 2D (radial
and circumferential directions) steady approach (with a refined mesh near the roll gap) based on the conjugate
gradient algorithm. However the computation times do not allow a real time evaluation, and the time dependence
is neglected. Moreover a recent two-dimensional semi-analytical inverse method adapted to rotating cylinders
has been proposed by Volle et al. [15] and used by Volle et al. [16] and Gradeck et al. [17]. The method is
based on Fourier and Laplace transforms of the unsteady heatequation, then the deconvolution is performed with
a numerical algorithm. From unknown boundary conditions assumed to be constant during each time step, the
expression of temperature is established at the radius where the measurements are done by means of a sensitivity
matrix representing the linear relationship between the unknown heat flux at the surface and the temperature at
the radius where the temperature are measured. However, practically this sensitivity matrix is ill-conditionned,
therefore a minimization, between the measured and calculated temperatures, is performed with least square meth-
ods and regularized with classical techniques. This work has been tested on cooling conditions not very singular
compared with common industrial rolling conditions. Furthermore 24 thermocouples are considered along the
circumferential direction.

Weisz-Patrault et al. [18] published very recently a fully analytical 2D (radial and circumferential directions)
inverse method considering only one thermocouple embeddedinside the roll, and deals with rolling conditions.
The method is very fast (0.05 sec by cycle) and relies on the 2Dunsteady heat equation. Weisz-Patrault et al.
[19] proposed also an experimental study to show how the thermocouple can be inserted inside the roll and how it
can be calibrated. The wires are evacuated by the center of the cylinder and signals are transmitted by inductive
system. The paper focus also on the effect of the reduction of the strip. Legrand et al. [20] proposed an other
experimental study (based on the inverse method [18]), which focuses on the influence of scale thickness and
contact resistance. Moreover a 2D analytical inverse method published recently by Weisz-Patrault et al. [21] for
the evaluation of contact stress during the rolling processcan be combined with the thermal inverse method [18]
in order to obtain the analytical 2D thermal stresses, whichhas been published by Weisz-Patrault et al. [22]. A
fast on-line experimental evaluation of thermal fatigue istherefore possible.

2. Industrial interest of 3D inverse method

The general motivation of this paper is to improve the knowledge of real three-dimensional temperature and
heat flux fields in the work roll, occurring during rolling process. Indeed, if theoretical works, which have been
cited in section 1.1, enable a good understanding of physical phenomena involved in the rolling process, and
are therefore the dedicated tools for the design of control devices, they cannot replace experimental evaluation
of real temperature and heat flux fields. Moreover, the on-line monitoring of temperature fields could improve
significantly the use of cooling systems and flatness controldevices, by adapting them in real time with a close-
loop control. Therefore this paper aims at developing the basis of an on-line industrial tool for evaluating industrial
temperature fields in real time during the rolling process byinterpreting some temperature measurements done
with several thermocouples aligned along the axial direction and fully embedded inside the roll body (see Fig.2).

As mentioned above temperature and heat flux fields are very heterogenous along the axis of the roll. That
is why Keanini [23] proposed a 3D numerical inverse model, byinserting several thermocouples at different lo-
cations in the roll. The circumferential direction is not considered in the equations, the tangential dependence is
only obtained with the rotation of the roll. Loulou and Artioukhine [24] developed a truly 3D inverse method
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interpreting measurements of several thermocouples, adapted for hollow cylinders and based on the iterative reg-
ularization method and residual functional minimization by using the unconstrained conjugate gradient method
with the regularizing discrepancy principle. However the CPU times are very long, and the work is done for a
non-rotating roll.

In order to determine by inverse analysis the heterogenous fields along the axis of the roll, the authors have
basically two choices. The first one consist in applying several times the 2D inverse method previously developed
by Weisz-Patrault et al. [18] at different axial locations (corresponding to the axial locationof each thermocouple).
The second choice is the development of a truly 3D analyticalinverse method. This latter solution has been chosen
and the interest of a truly 3D inverse method compared with a 2D inverse method applied several times should be
highlighted.

A single computation gives, for the present 3D inverse method, the analytical temperature and heat flux fields
in the whole roll, whereas the 2D inverse method used severaltimes at the different axial locations (where thermo-
couples are inserted) gives only the temperature and heat flux fields at these axial locations. The former solution
allows to compute analytically the thermal expansion including shear stress, when the latter allows only to compute
the thermal expansion for different sections of the roll assumed to be independent from each other (i.e. neglecting
shear stress in the roll), which is done for example by Hacquin [11] or Zone-Ching and Chang-Cheng [6].

In the present work the unsteady 3D heat equation is not simplified. All heat fluxes in all directions are taken
into account, which is not the case for a 2D inverse method where axial heat fluxes are neglected. This allows
the computation of the thermal expansion of the work roll (essential for flatness control) by solving the Navier’s
equation (1) which involves all the components of the heat flux in the right side term.

µ0div gradu + (λ0 + µ0)grad divu = α(3λ0 + 2µ0)gradT (1)

The lame’s coefficients are denoted byµ0 andλ0, these elastic coefficients have nothing to do withλ which is the
thermal conductivity of the roll, andu is the displacement field of the roll andα the thermal dilatation.

Another reason for developing the present 3D inverse methodis a significant improvement of the analytical
solution of the previous work of Weisz-Patrault et al. [18].Indeed, the initial condition is verified without any
assumption in the present paper when three unnecessary assumptions have been introduced in the previous work
[18]. A comparison between the present inverse solution andthe 2D inverse solution of Weisz-Patrault et al. [18]
is given for different axial positions in section 9. A slightly better accuracy is demonstrated for the present 3D
inverse method.

Moreover, using several times the 2D inverse method at different axial locations is not more efficient in terms
of computation times (around 1s/cycle for 30 thermocouples) than the present 3D inverse method, which gives
much more complete informations (temperature and heat flux fields everywhere in the roll) in 0.5 s/cycle (for
accurate computation) or 0.07 s/cycle (for rough computation).

Rs

Rm

-L L
Local Sensor (fully embedded)

hi

hf

(a) Measurement system

L

ez

ere
θ

θ

(b) Axes

Figure 2: Rolling process
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3. Validation of the method

The inputs consist in several temperature signals delivered by thermocouples aligned along the axial direction
(at locationszj where j ∈ {1; ...; S}) and located at the radiusRm with Rm < Rs (wherem means measured and
s means surface). Temperature signals are obtained for successive times (calledtkθ = tk + θ/ω) according to the
rotation speed of the roll and the indexk of the cycle. Then cubic splines are used to interpolate the input signal
along both the circumferential and axial directions. The outputs are in general the whole analytical temperature
field and therefore the radial, circumferential and axial heat fluxes. The temperature and heat fluxes are obtained
especially at the surface of the roll.

Considering the temperature in the whole roll, an analytical expansion into series (solution of the unsteady heat
equation) is written. The identification of coefficients of the series is done with the conditions available, which
are in the present case the temperatures measured inside theroll and the initial condition (room temperature).
Therefore the method only consist in finding an analytical solution of the problem in a sub-domain being the
cylinder of radiusRm , then the analytical solution is extended by continuity toward the surface of the roll. There
is no iterative matching process and no matrix inversion. Therefore all the classic problems of inverse methods
related to ill-posed problems are therefore avoided. (Regularization is done by truncation of series). The frequency
of acquisition of the thermocouples is not limited by the method as for Raynaud and Bransier [25].

No experimental data were available. The validation of the method is done as follows. An analytical unsteady
temperature field is prescribed in the roll. This field is established in Appendix B and corresponds to a roll
heated at the surface in a small angular part corresponding to a contact with a hot steel strip. The resulting
temperature field is close from typical temperature fields that occur during rolling processes as observed with
the direct predictive model of Li et al. [7] for instance. A numerical simulation could have been used, but for
simplicity this simple temperature field has been used instead.

The inputs of the inverse method presented in this paper (replacing measurements) are extracted from this
prescribed temperature field. The solution is validated by comparing the outputs of the method and the prescribed
analytical temperature at the surface of the roll. Heterogeneous prescribed temperature field along the axial di-
rection is chosen to show the ability of the method to deal with such a difficulty. The relative difference between
the outputs and the prescribed temperature is used to quantify the quality of the method. Excellent agreement is
obtained. Noise sensitivity is estimated by adding random numbers to the inputs and good accuracy is observed.

4. Principles of the inverse method

The evolution of the temperature of a material point (Lagrangian description) of the roll is very fast. The
time dependence could be difficult to describe, that is why an Eulerian description is developed in order to have
a slow evolution of the temperature field (small variations from one cycle to another). Thus, an Eulerian point
(r radial position,θ angular position andz axial position) is not material, that is to say it describes the evolution
of a succession of material points at a given position in a fixed reference. In the following, all the quantities are
calculated in an Eulerian reference.

The temperature measurements are done with respect to time (temperature known at different angular positions
at successive times). Each rotation of the roll allows temperature information on the whole cylinder of radiusRm,
but not at all times. Each angular position is known at one particular time according to the frequency of acquisition
f (Hz) and the rotation speedω.

Therefore, a natural characteristic time of the problem is the duration of each cycle. Thus, cycles are numbered
(indexk) and it is convenient to divide the total time interval in subintervals [tk, tk+1] wheretk is the time at the
beginning of thekth cycle therefore:tk = tk−1+2π/ω (considering that the rotation speedω (rad/s) is quite constant
during each cycle, it should be notedwk, but for simplicity it is notedω). Inputs are calledTm(θ, z, k) wherem
means measured. Notations are listed in Table 1.

The solution of the unsteady heat equation is denoted byT(r, θ, z, t, k) (r, θ andz being the radial, angular
and axial coordinates,t meaning time andk being the index of the cycle). It should be noted thatt andk are
related (t ∈ [tk, tk+1]). The thermal diffusivity is denoted byD (m2/s) which is assumed to be independent on the
temperature. The unsteady heat equation governing the temperature fieldT(r, θ, z, t, k) during thekth cycle is:

∂2T
∂r2
+

1
r
∂T
∂r
+

1
r2

∂2T
∂θ2
+
∂2T
∂z2
=

1
D

(
∂T
∂t
+ ω
∂T
∂θ

)
(2)
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With the set of conditions:


(r, θ, z, t, k) ∈ [0,Rs] × [0, 2π[ × [−L, L] × [tk, tk+1] × N∗

T(r, θ, tk, z, k) =

{
Ta k = 1
T(r, θ, tk, z, k− 1) k > 2

(initial condition)

T(Rm, θ, z, tkθ , k) = Tm(θ, z, k) (measured condition)
∂T
∂z

(r, θ,±L, t, k) = 0

(3)

For the first cycle, the initial condition is the ambient temperature in the entire roll. For the next cycles the
initial condition is the temperature field at the end of the previous cycle. Moreover the roll is much wider than the
strip, the edges of the roll are far from the main heat source,therefore it is reasonable to assume that the axial heat
flux vanishes at the edges of the roll (z= ±L), as in the work of Keanini [23]. The latter condition is automatically
verified as demonstrated in Section 6, therefore this condition will not appear any more.

It should be noticed that there is no condition at the outer radiusRs, since temperature and heat fluxes at the
surface are unknown and should be evaluated by the inverse method. Usually, a thermal problem needs proper
boundary conditions at the surface of the body. However, in this approach, temperatures and heat fluxes at the
surface of the roll are determined from measured temperatures at the inner radiusRm, regardless of external
conditions. This is done by splitting the domain into two sub-domainsDd andDi (d and i meaning direct and
inverse):

{
Dd = [0,Rm] × [0, 2π[ × [−L, L]
Di = ]Rm,Rs] × [0, 2π[ × [−L, L]

(4)

The first sub-domain is called the direct part and is the cylinder of radiusRm. On this sub-domain, the boundary is
at radiusr = Rm and the measured conditionT(Rm, θ, z, tkθ , k) = Tm(θ, z, k) can be expressed as a proper boundary
condition (managing a single assumption discussed in Section 6.2). Thus, it is possible to determine the analytical
temperature and heat flux fields in this sub-domain. The second sub-domain is called the inverse part and is the
hollow cylinder of inner radiusRm and outer radiusRs. The idea of the method is to extend by continuity the
analytical solution determined in the direct partDd into the second sub-domainDi , including the surface of the
roll. This extension by continuity toward the surface enables to not consider any boundary condition at the surface
of the roll at the outer radiusRs. Two new sets of conditions equivalent to 3 are defined :

(Direct part):



(r, θ, z, t, k) ∈ Dd × [tk, tk+1] × N∗

T(r, θ, z, tk, k) =

{
Ta k = 1
T(r, θ, z, tk, k− 1) k > 2

(initial condition)

T(Rm, θ, z, tkθ , k) = Tm(θ, z, k) (measured conditions)

(5)

(Inverse part):



(r, θ, z, t, k) ∈ Di × [tk, tk+1] × N∗

T(r, θ, z, tk, k) =

{
Ta k = 1
T(r, θ, z, tk, k− 1) k > 2

(initial condition)
(6)

Since the problem is linear, a well-known method is to find outan infinite family of solutions and to write a
linear combination where the coefficients are identified with the initial condition of (5) and (6) and the measured
conditions of (5). In this way, it is demonstrated (proof appended in Appendix A) that the function given by (7)
is a solution of (2).

γJn

r
√

1
Dτ
−

iωn
D
+ δ2

 exp(inθ) exp(δz) exp
(
−

t
τ

)
(7)

wheren is an integer,γ, τ andδ are complex numbers, andJn is then th Bessel function of the first kind defined
for a complex variable. It should be noted that the expression (7) remains a solution by takingδ = −δ therefore
the exp(δz) can also be replaced by cos(δz) or sin(δz).

5. Decomposition

It is very classic to divide the solution into two partsT = T1 + T2. The first partT1 is the steady solution for
thekth cycle andT2 is the transient corrective solution, as done (among many others) by Hello and Vinet [26] who
solved analytically a thermal problem related to cylindrical mirrors.
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The steady solutionT1 verifies the measured condition of (5) but takes not into account the initial condition
of (5) and (6). This verification of the measured condition atthe radiusRm is seen forT1 as a boundary condition
specified on the sub-domainDd. The transient corrective solutionT2 verifies the initial condition of (5) and (6)
minus the initial temperature field introduced byT1 and vanishes at the radiusRm (which is seen forT2 as a
boundary condition specified on the sub-domainDd) . This decomposition is summarized in Figure 3.

t=t
Ta

= +

Rm

T m(θ,z,k) 0

Solution T (r,θ,z,k)
1

T (r,θ,z,t,k)
2

Solution T(r,θ,z,t,k) Solution 

T m(θ,z,k)

k=1

k≥2k

k=1

k≥2T(r,θ,z,t ,k-1)k t=tk T(r,θ,z,t ,k-1)
k

T  -a k=1

k≥2

k

T (r,θ,z,k)
1

-T (r,θ,z,k)1

t=tk T (r,θ,z,k)1

Figure 3: Superposition for each cycle

The analytical solution of the problem is found (solution of(2) in the form of (7) and verifying the conditions
(5) and (6)), managing only one assumption due to the restriction of the measurement system (discussed in section
6). For each cyclek:

T(r, θ, z, t, k) = T1(r, θ, z, k) + T2(r, θ, z, t, k) (8)

whereT1 is given by (16) andT2 by (21).
All the components of the heat flux are obtained analyticallyby:

H(r, θ, z, t, k) = H1(r, θ, z, k) + H2(r, θ, z, t, k) (9)

whereH1 andH2 are respectively given by (18) and (31).
Therefore the outputs of the method (the temperatureTs(θ, z, t, k) or the heat fluxHs(θ, z, t, k) at the outer

radius,smeaning surface) are given explicitly by replacingr by Rs in (8) or in (9). The procedure is summarized
in Figure 4.

Inputs

T  (θ,z,k)m
k

Inputs expansion 
into a Fourier series

An,p

Outputs

T  (θ,z,t,k)s

fft method using analytical
expression (8) or (9)

H  (θ,z,t,k)s
kBn,p

Figure 4: Procedure for each cycle

6. Steady solution T1 cycle by cycle

6.1. Measurement restrictions

The solutionT is sought in the formT = T1 + T2. The solutionT1 only has to match the measurements
at the radiusRm (i.e., verifying the partial boundary conditions of (5)), and T2 only has to correct the solution
T1 in order to verify the initial condition of (5) and (6). If thetemperature on the whole cylinder of radiusRm

(sub-domainDd) was known at any time, it would have been possible to expand the measurements into a Fourier
series with time dependent coefficients. The identification of the time dependent Fourier coefficients as sums of
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time decreasing exponentials would allow to write the solution T1 in the form of solutions given by (7). However,
the measurement system being a unique line of local sensors (several sensors aligned along the axial direction)
fixed into the body of the roll at the radiusRm, it provides only the temperatures at different angular positions at
successive times. Therefore the time dependent expansion into a Fourier series of the temperature at the radiusRm

is impossible.

6.2. Assumption: Time scale

As it has been said, temperaturesTm(θ, z) are measured with respect to time, the measured condition in (3)
is therefore incomplete. This difficulty is overcome by making the following assumption. It is assumed that
during one cycle the variations of the temperature field are small. This assumption can be verified with numerical
simulations of rolling process like the model proposed by Hacquin [11]. Therefore a natural characteristic time
of the problem is the duration of one cycle. Thus, the time dependence ofT1 can be considered for increments of
time of one cycle. The temporal evolution of the solutionT1 is only obtained from one cycle to another.

Because the solutionT1(r, θ, z, k) does not depend on time in the interval [tk, tk+1], the family of solution can
be restricted to:

γJn

r
√
− iωn

D
+ δ2

 exp(inθ) exp(δz) (10)

T1(r, θ, z, k) is solution of (2) with the following measured conditions (it can be noted that these measured condi-
tions are boundary condition (well defined) forT1 on the sub-domainDd):

{
(r, θ, z, k) ∈ Dd × N∗
T1(Rm, θ, z, k) = Tm(θ, z, k) (measured conditions)

(11)

For each cycle, the measured temperatureTm(θ, z, k) is expanded into a double Fourier series, however since
the axial heat flux vanishes at the edges (see conditions (3)), the form of the expansion is adapted to obtain
automatically this condition. It should be noted that:

d
dz

[
cos

( pπz
L

)]
(z= ±L) = 0 and

d
dz

[
sin

(
(2p+ 1)πz

2L

)]
(z= ±L) = 0 (12)

Therefore the measured temperature are expanded as follows:

Tm(θ, z, k) =
N1∑

n=−N1

P1∑

p=0

[
Ak

n,p cos
( pπz

L

)
+ Bk

n,p sin

(
(2p+ 1)πz

2L

)]
exp(inθ) (13)

whereN1 andP1 are two integers andAk
n,p andBk

n,p are the Fourier coefficients of the measurements done during
the cyclek:

∀n ∈ Z, ∀p ≥ 1



Ak
n,p =

1
2Lπ

∫ L

−L

∫ 2π

0
Tm(θ, z, k) exp(−inθ) cos

( pπz
L

)
dθdz

Bk
n,p =

1
2Lπ

∫ L

−L

∫ 2π

0
Tm(θ, z, k) exp(−inθ) sin

(
(2p+ 1)πz

2L

)
dθdz

∀n ∈ Z



Ak
n,0 =

1
4Lπ

∫ L

−L

∫ 2π

0
Tm(θ, z, k) exp(−inθ) dθdz

Bk
n,0 =

1
2Lπ

∫ L

−L

∫ 2π

0
Tm(θ, z, k) exp(−inθ) sin

(
πz
2L

)
dθdz

(14)

The coefficients (14) can be computed classically from the measurements by using fast fourier transforms (fft).
The algorithms are detailed in Appendix C. However (especially for the first few cycles), it can be noted that
during a cycle the temperature field increases. Along the circumferential direction, at the end of the cycle, the
measured temperature is higher than at the beginning even ifthe temperature is measured at the same angular
position. Therefore the measured temperatureTm(θ, z, k) is not exactly 2π-periodic inθ. Indeed,T(r, θ, z, t, k) is
2π-periodic at each time, butTm(θ, z, k) = T(Rm, θ, z, tkθ , k) wheretk

θ
= tk + θ/ω, thus forθ = 0, tk

θ
= tk (being

9



the time at the beginning of the cycle) and forθ = 2π, tk
θ
= tk+1 (being the time at the end of the cycle). The

discontinuity between the temperature at the end and at the beginning of each cycle creates a Gibb’s effect in the
expansion into a Fourier series (large oscillations near the discontinuity). This well-known effect can be reduced
by applying a filter. Lanczos [27] and Acton [28, p.227] proposed a filter by multiplying by a gate function in the
expansion:

Tm(θ, z, k) ≃
N1∑

n=−N1

P1∑

p=0

sincg

(
n
N1

) [
Ak

n,p cos
( pπz

L

)
+ Bk

n,p sin

(
(2p+ 1)πz

2L

)]
exp(inθ) (15)

where the powerg is a positive number (in the followingg = 1 or 0) and sinc(x) = sin (πx)/(πx). The remaining
oscillations (at the beginning and at the end) are simply removed from the signal. For each cycle, the function (16)
is a solution of (2) in the form (7) and which matches the measurements at the radiusRm (i.e., verifying boundary
conditions (11)).

T1(r, θ, z, k) =
N1∑

n=−N1

P1∑

p=0

sincg

(
n
N1

) [
Ak

n,p

Jn(ζn,pr)

Jn(ζn,pRm)
cos

(
πpz
L

)
+ Bk

n,p

Jn(χn,pr)

Jn(χn,pRm)
sin

(
(2p+ 1)πz

2L

)]
exp(inθ) (16)

whereζn,p andχn,p are defined by:



ζn,p =

√
−

( pπ
L

)2
− iωn

D

χn,p =

√

−
(
(2p+ 1)π

2L

)2

− iωn
D

(17)

This part of the solution is exactly the solution of the steady heat equation, but updated at each cycle. It can
be noted that the axial heat flux vanishes forz= ±L (because of (13)) as required in the set of conditions (3). The
heat flux corresponding toT1 is determined analytically by:

H1(r, θ, z, k) = λ

(
∂T1

∂r
er +

1
r
∂T1

∂θ
eθ +

∂T1

∂z
ez

)
(18)

where:


∂T1

∂r
=

N1∑

n=−N1

P1∑

p=0

sincg

(
n
N1

) [
Ak

n,pζn,p
J′n(ζn,pr)

Jn(ζn,pRm)
cos

(
πpz
L

)
+ Bk

n,pχn,p
J′n(χn,pr)

Jn(χn,pRm)
sin

(
(2p+ 1)πz

2L

)]
exp(inθ)

1
r
∂T1

∂θ
=

N1∑

n=−N1

in
r

P1∑

p=0

sincg

(
n
N1

) [
Ak

n,p

Jn(ζn,pr)

Jn(ζn,pRm)
cos

(
πpz
L

)
+ Bk

n,p

Jn(χn,pr)

Jn(χn,pRm)
sin

(
(2p+ 1)πz

2L

)]
exp(inθ)

∂T1

∂z
=

N1∑

n=−N1

P1∑

p=0

sincg

(
n
N1

) −
πpAk

n,p

L

Jn(ζn,pr)

Jn(ζn,pRm)
sin

(
πpz
L

)
+

(2p+ 1)πBk
n,p

2L

Jn(χn,pr)

Jn(χn,pRm)
cos

(
(2p+ 1)πz

2L

) exp(inθ)

(19)

6.3. Commentary and edge effect

The radial variations of the temperature field are determined byJn(ζn,pr) andJn(χn,pr). RatiosJn(ζn,pr)/Jn(ζn,pRs)
andJn(χn,pr)/Jn(χn,pRs) represent the attenuation (at the radiusr) of the temperature signal considered at the sur-
face of the roll. Indeed, if temperatures at the surface of the roll were known (which is not the case) and expanded
into a Fourier series with Fourier coefficients denoted byAs

n,p andBs
n,p (smeaning surface) then the steady part of

the temperature in the roll would be:

N1∑

n=−N1

P1∑

p=0

[
As

n,p

Jn(ζn,pr)

Jn(ζn,pRs)
cos

(
πpz
L

)
+ Bs

n,p

Jn(χn,pr)

Jn(χn,pRs)
sin

(
(2p+ 1)πz

2L

)]
exp(inθ) (20)

It is therefore clear that scaling factorsJn(ζn,pr)/Jn(ζn,pRs) andJn(χn,pr)/Jn(χn,pRs) are like a low-pass filter ap-
plied to the temperature signal at the surface of the roll.

10



The figure 5 showsJn(ζn,pr)/Jn(ζn,pRs) (coefficientsJn(χn,pr)/Jn(χn,pRs) are very similar) for some values of
n and p againstr with ω = 8π (rad/s) andD = 6 × 10−6. A typical edge effect is demonstrated. The radiusRm

is chosen in order to be in the skin thickness of the roll. Beyond this skin thickness the measured signal would
be almost constant (since ratios vanishes, corresponding Fourier coefficients would be discarded from the series
expansion). It is obvious that the closer from the surface the sensor is fixed and the lower the attenuation level
of the signal from the surface is, but ratios presented in figure 5 give precisely quantitative attenuation level as
a function of the radius. It has been demonstrated by Weisz-Patrault et al. [19] and Legrand et al. [20] that it is
possible to insert a thermocouple at around 0.5 mm from the surface of the roll, that is why this depth has been
chosen in the following.

It should be noted that thep-dependence is almost negligible compared with then-dependence (forn ≥ 1).
This is due to the fact that (pπ/L)2 << ωn/D and ((2p + 1)π/(2L))2 << ωn/D. Thus, even if the temperature
signal at the surface is very heterogenous along the axial direction (corresponding to thep-dependence) 3D effects
are rather limited since the attenuation of each Fourier coefficient does not significantly depend onp. This is why
a 2D inverse method (that is to sayp = 0) gives for the reconstruction of surface temperature and heat flux good
results as detailed in section 9. However, forn = 0, coefficientsJ0(ζ0,pr)/Jn(ζ0,pRs) andJ0(χ0,pr)/Jn(χ0,pRs) are
p-dependent and do not present edge effect, as it can be seen in figure 6. Thus, forn = 0 Fourier coefficients
of the temperature signal at the surface of the roll are attenuated along the radial direction differently the ones
from the others (according top), especially in the roll core. This demonstrates a three-dimensional effect in the
roll core, according to the radial and axial directions but independent on circumferential direction sincen = 0.
These comments correspond to the analysis of Hacquin [11] who meshed the skin of the roll along the radial,
circumferential and axial directions, and meshed the core of the roll along radial and axial directions only.
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Figure 5: Edge effect
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Figure 6: 3D effect in the core

7. Transient solution T2

T1 does not verify the initial condition (room temperature) of(5) and (6). A corrective solutionT2 is therefore
needed.T2 should verify the initial condition minus the initial temperature field introduced by the solutionT1.
MoreoverT2 should vanish at the radiusRm, which is seen as a boundary condition onDd. Therefore, ifxn,q are
the positive zeros of the Bessel function of the ordern (arranged in ascending order of magnitude), thenT2 is
sought in the form of Fourier-Bessel series (and so automatically vanishes at the radiusRm):

T2(r, θ, z, t, k) =
N1∑

n=−N1

P1∑

p=0

Q1∑

q=1

[
α(k)

n,p,q exp

(
− t − tk
τn,p,q

)
cos

( pπz
L

)
+ β(k)

n,p,q exp

(
− t − tk
υn,p,q

)
sin

(
(2p+ 1)πz

2L

)]
Jn

(
xn,q

r
Rm

)
exp(inθ)

(21)
whereN2 is an integer,α(k)

n,p,q andβ(k)
n,p,q are complex numbers and the relaxation timesτn,p,q andυn,p,q are given by:



τn,p,q =
1
D


(
xn,q

Rm

)2

+

( pπ
L

)2
+

iωn
D


−1

υn,p,q =
1
D


(
xn,q

Rm

)2

+

(
(2p+ 1)π

2L

)2

+
iωn
D


−1 (22)

T2 is written by considering each cycle as an independent problem. Thus, for the first cycle the initial condition
is the room temperature. For the other cycles the initial condition is the temperature field at the end of the previous
cycle. The initial condition of (5) and (6) can be written as follows (reminding that the time at the beginning of
each cycle istk):



Q1∑

q=1

α(k)
n,p,qJn

(
xn,q

r
Rm

)
= u(k)

n,p(r)

Q1∑

q=1

β(k)
n,p,qJn

(
xn,q

r
Rm

)
= v(k)

n,p(r)

(23)
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where:


u(k)
0,0(r) = Ta − Ak

0,0 k = 1

u(k)
n,p(r) = −sincg

(
n
N1

)
Ak

n,p

Jn(ζn,pr)

Jn(ζn,pRm)
k = 1

u(k)
n,p(r) =

Q1∑

q=1

α(k−1)
n,p,q exp

(
− tk − tk−1

τn,p,q

)
Jn

(
xn,q

r
Rm

)
+ sincg

(
n
N1

) (
Ak−1

n,p − Ak
n,p

) Jn(ζn,pr)

Jn(ζn,pRm)
k > 2

(24)



v(k)
0,0(r) = −Bk

0,0

J0(χ0,0r)
J0(χ0,0Rm)

k = 1

v(k)
n,p(r) = −sincg

(
n
N1

)
Bk

n,p

Jn(χn,pr)

Jn(χn,pRm)
k = 1

v(k)
n,p(r) =

Q1∑

q=1

β(k−1)
n,p,q exp

(
−

tk − tk−1

υn,p,q

)
Jn

(
xn,q

r
Rm

)
+ sincg

(
n
N1

) (
Bk−1

n,p − Bk
n,p

) Jn(χn,pr)

Jn(χn,pRm)
k > 2

(25)

It can be noted that for thekth cycleu(k)
n,p(r) andv(k)

n,p(r) are functions of the variabler known on the whole domain of
variation ofr (i.e., [0,Rs]). Coefficientsα(k)

n,p,q andβ(k)
n,p,q are given by (26) in an analytical form (called coefficients

of Fourier-Bessel expansion) used by Sneddon [29, p.37] andpreviously demonstrated by Watson [30, pp.591-
594].



α(k)
n,p,q =

2

R2
mJ2

n+1(xn,q)

∫ Rm

0
ρu(k)

n,p(ρ)Jn

(
xn,q
ρ

Rm

)
dρ

β(k)
n,p,q =

2

R2
mJ2

n+1(xn,q)

∫ Rm

0
ρv(k)

n,p(ρ)Jn

(
xn,q
ρ

Rm

)
dρ

(26)

By using a well known result (27) given among others by Sneddon [29, p.27] and (28) given by Gradshteyn and
Ryzhik [31] the expression ofα(k)

n,p,q andβ(k)
n,p,q reduces to (29) and (30).

∫ Rm

0
ρJ0(xρ)dρ = Rm

J1(Rmx)
x

(27)



∫ Rm

0
ρJn(xρ)Jn(yρ)dρ = Rm

xJn+1(Rmx)Jn(Rmy) − yJn+1(Rmy)Jn(Rmx)
x2 − y2∫ Rm

0
ρJn(xρ)2dρ =

R2
m

2

(
Jn(Rmx)2 − Jn−1(Rmx)Jn+1(Rmx)

) (28)



α
(k)
0,0,q =

2
J1(x0,q)

Ta − Ak
0,0

x0,q
k = 1

α(k)
n,p,q =

2
Jn+1(xn,q)

sincg (n/N1) Ak
n,p

R2
mζ

2
n,px−1

n,q − xn,q
k = 1

α(k)
n,p,q = −α(k−1)

n,p,q exp

(
− tk − tk−1

τn,p,q

)
Jn−1(xn,q)

Jn+1(xn,q)
+

2
Jn+1(xn,q)

sincg (n/N1)
(
Ak

n,p − Ak−1
n,p

)

R2
mζ

2
n,px−1

n,q − xn,q
exp

(
tk
τn,p,q

)
k > 2

(29)



β
(k)
0,0,q =

2
J1(x0,q)

Bk
0,0

R2
mχ

2
0,0x−1

0,q − x0,q
k = 1

β(k)
n,p,q =

2
Jn+1(xn,q)

sincg (n/N1) Bk
n,p

R2
mχ

2
n,px−1

n,q − xn,q
k = 1

β(k)
n,p,q = −β(k−1)

n,p,q exp

(
− tk − tk−1

υn,p,q

)
Jn−1(xn,q)

Jn+1(xn,q)
+

2
Jn+1(xn,q)

sincg (n/N1)
(
Bk

n,p − Bk−1
n,p

)

R2
mχ

2
n,px−1

n,q − xn,q
exp

(
tk
υn,p,q

)
k > 2

(30)

13



In their previous work Weisz-Patrault et al. [18] solved this kind of expansion into a Fourier-Bessel series by
discretizing the problem along the radial direction which was very inelegant considering that an analytical solution
exists.

The heat flux associated withT2 is given by:

H2(r, θ, z, t, k) = λ

(
∂T2

∂r
er +

1
r
∂T2

∂θ
eθ +

∂T2

∂z
ez

)
(31)

where:


T2

∂r
=

N1∑

n=−N1

P1∑

p=0

Q1∑

q=1

[
α(k)

n,p,q exp

(
− t − tk
τn,p,q

)
cos

( pπz
L

)
+ β(k)

n,p,q exp

(
− t − tk
υn,p,q

)
sin

(
(2p+ 1)πz

2L

)]
xn,q

Rm
J′n

(
xn,q

r
Rm

)
exp(inθ)

1
r

T2

∂θ
=

N1∑

n=−N1

in
r

P1∑

p=0

Q1∑

q=1

[
α(k)

n,p,q exp

(
−

t − tk
τn,p,q

)
cos

( pπz
L

)
+ β(k)

n,p,q exp

(
−

t − tk
υn,p,q

)
sin

(
(2p+ 1)πz

2L

)]
Jn

(
xn,q

r
Rm

)
exp(inθ)

T2

∂z
=

N1∑

n=−N1

P1∑

p=0

Q1∑

q=1

−
pπα(k)

n,p,q

L
exp

(
− t − tk
τn,p,q

)
sin

( pπz
L

)
+

(2p+ 1)πβ(k)
n,p,q

2L
exp

(
− t − tk
υn,p,q

)
cos

(
(2p+ 1)πz

2L

) Jn

(
xn,q

r
Rm

)
exp(inθ)

(32

8. Validation of the solution

8.1. Direct analytical temperature field

The accuracy of the present inverse method and its noise sensitivity is demonstrated as follows. A prescribed
time dependent temperature field (solution of (2)) is considered and calledTp(r, θ, z, t), p meaning prescribed.
Therefore at the surface of the roll the temperature isTp(Rs, θ, z, t). Then the temperature at the inner radiusRm is
extracted from the temperature field. The inputs are the temperatures at the radiusRm (replacing measurements)
and at the axial positionszj ( j ∈ {1; ...; S}, whereS is the number of thermocouples) and considered for successive
times (calledtk

θ
= tk + θ/ω) according to the rotation speed of the roll and the indexk of the cycle:Tm(θ, zj , k) =

Tp(Rm, θ, zj , tkθ). Then cubic splines are used to interpolate the input signal along both the circumferential and
axial directions, thusTm(θ, z, k) is obtained. The outputs are then calculated and compared to the prescribed
temperature at the surface of the roll. The errorǫ given in (33) is used as a percentage to evaluate the quality of
the reconstruction.

ǫ = 100

√√√√√∫ L

−L

∫ 2π

0

[
Ts(θ, z, tk

θ
, k) − Tp(Rs, θ, z, tkθ)

]2
dθdz

∫ L

−L

∫ 2π

0

[
Tp(Rs, θ, z, tkθ)

]2
dθdz

(33)

The prescribed temperature field is:

Tp(r, θ, z, t) =
N2∑

n=−N2

P2∑

p=0

[
an,pJn

(
ζn,pr

)
cos

(
πpz
L

)
+ bn,pJn

(
χn,pr

)
sin

(
π(2p+ 1)z

2L

)]
exp(inθ)

+

N2∑

n=−N2

P2∑

p=0

Q2∑

q=1

cn,p,qJn

r
√

1
Dτ∗n,p,q

− iωn
D
−

(
πp
L

)2
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(
−t
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)
exp(inθ) cos

(
πpz
L

)

+

N2∑

n=−N2

P2∑

p=0

Q2∑

q=1

dn,p,qJn

r

√
1

Dυ∗n,p,q
−

iωn
D
−

(
π(2p+ 1)

2L

)2
 exp

(
−t
υ∗n,p,q

)
exp(inθ) sin

(
π(2p+ 1)z

2L

)

(34)

whereyn,q are the successive positive zeros of the functionsy 7→ hn(y) = λ(y/Rs)J′n(y) + HTC× Jn(y) andan,p

andbn,p are complex numbers given by (B.9),cn,p,q anddn,p,q are complex number given by (B.13),τ∗n,p,q andυ∗n,p,q
are given by (B.8), andN2, P2 andQ2 are integers.

The temperature fieldTp(r, θ, z, t) given by (34) is in the form of (7) and is therefore an exact solution of the
governing equation (2). Coefficientsan,p, bn,q, cn,p,q anddn,p,q are chosen such as the temperature fieldTp(r, θ, z, t)
corresponds to a roll surrounded by the ambient temperatureTa everywhere but in a part (θ, z) ∈ [π − Θ, π + Θ] ×
[−L + Z, L − Z] where the surrounding temperature is a slopeT∗(θ, z) as defined in Figure B.27 (simulating the
contact between the strip and the roll). The heat flux entering the roll is defined classically by a heat transfer
coefficient HTC. A constant HTC has been considered for simplicity(HTC = 7 × 10−4 W.m−2.K−1), because
this choice make the problem linear, a time or angular dependent HTC would not enable an analytical solution.
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This value of HTC corresponds to the contact between the rolland the strip (steel/steel) but is physically strongly
incorrect outside the contact interval (air/steel or water/steel). Therefore these boundary conditions are very simple
compared with real boundary conditions occurring during rolling processes, but for the purpose of validating the
present inverse method and its noise sensitivity, they are sufficiently severe boundary conditions becauseΘ and
T∗(θ, z) are adjusted to have a sharp temperature peak quite close from results classically obtained with predictive
models of section 1.1. Details concerning the calculation of an,p, bn,q, cn,p,q anddn,p,q are appended in Appendix
B. The surrounding temperatureT∗(θ, z) is chosen strongly heterogeneous along the axial direction (near strip
edges) to show the accuracy of the present method.

8.2. Discussion of parameters

The parameters of the problem are listed in Table 2. The rotation speed is settled to 8π (rad/s) or 6.4 m/s
considering the radius of the roll, which is the kind of speedcommonly used for industrial hot rolling conditions.
The angular partΘ where the roll is heated for the validation of the inverse solution presented in this paper cor-
responds approximately to hot rolling conditions with large reductions. The half-length of the rollL is consistent
with industrial mills. The orderg of the filter introduced in (15), is settled to 1 for the first cycle as proposed by
Acton [28, p.227], for the cycle after 10 minutes, there is nodiscontinuity of measured temperatures between the
beginning and the end of the cycle (as it can been seen in figures 11(b) and 12(b)), theng = 0 so that the filter is
removed from the development.

IntegersN2, P2 andQ2 are the truncation numbers for the prescribed temperature field. Low values forθ and
zdependences (N2 andP2) have been tested for simplicity, since any values give an analytical solution of the heat
equation. On the other handQ2 determines the quality of how the initial condition is verified, thereforeQ2 is
settled to a rather large value (as well asQ1 for the inverse solution) so that a good convergence of corresponding
Fourier-Bessel series is ensured.

Parameter Value
N1 (-) 50
P1 (-) 50
Q1 (-) 200
N2 (-) 20
P2 (-) 14
Q2 (-) 200
Nθ (-) 100
Nz (-) 30
S (-) 30
Rs (m) 0.254
Rm (m) 0.2535
D (m2/s) 6× 10−6

λ (W.m−1.K−1) 52
ω (rad/s) 8π
f (Hz) 1000
Ta (K) 293.15
HTC (W.m−2.K−1) 7× 104

Θ (rad) π/10
L (mm) 700
Z (mm) 200
g (-) 0/1

Table 2: Computing values

For the inverse solution the truncation numbersN1 andP1 are determined as follows. The Fourier coefficients
Ak

n,p andBk
n,p are amplified byJn(ζn,pRs)/Jn(ζn,pRm) andJn(χn,pRs)/Jn(χn,pRm). Thus, small errors for the com-

putation ofAk
n,p and Bk

n,p are more and more amplified whenn and p increase, until that the solution diverge.
In Figure 7, coefficientsJn(ζn,pRs)/Jn(ζn,pRm) are plotted againstn for some values ofp (similar figure could be
obtained forJn(χn,pRs)/Jn(χn,pRm)). Sharp variations can be noted according ton when coefficients seem almost
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independent onp. That is whyP1 is simply taken such as the sum has converged: it is not significant to be very
precise because coefficientsJn(ζn,pRs)/Jn(ζn,pRm) diverge very slowly according top. The choice ofP1 is shown
in Figure 8. ForN1, since coefficientsJn(ζn,pRs)/Jn(ζn,pRm) andJn(χn,pRs)/Jn(χn,pRm) strongly diverge whenn
increases, errors onAk

n,p andBk
n,p are rapidly amplified until that the solution diverge. Thus,N1 should be taken

such as errors are not amplified to much as demonstrated in Figures 9 and 10. Usually, when noise is added to the
inputs, errors made on Fourier coefficientsAk

n,p andBk
n,p increase andN1 should be reduced. However, the partic-

ular case, that is proposed in this paper in order to validatethe method, is simple enough to keep the same value
of N1 because as it can been seen in Figure 7 amplification factors begin to diverge for values ofn ≥ N1 = 50.
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8.3. Reconstruction free from noise

Using (34), the inputs are produced for two different cycles: the first cycle and the cycle after 10 minutes.
The prescribed temperatures at the surface of the roll are given in Figure 11, and the temperatures at the inner
radiusRm (replacing measurements) are given in Figure 12. In order tocompute coefficientsAk

n,p andBk
n,p given

by (14),fft are used as detailed in Appendix C. Input signal is interpolated with cubic splines.Ni
z andNi

θ
denote

the numbers of interpolation points. A compromise between accuracy and short computation times should be
found. Two sets of parameters are tested:Ni

z = 100 andNi
θ
= 1000 leading to a CPU time of 0.07 s/cycle

andNi
z = 1000 andNi

θ
= 1000 leading to a CPU time of 0.5 s/cycle. This has to be seen as a rule of thumb,

no specific study about the solution quality considering thenumber of interpolation points has been done. The
outputs of the method compared with the prescribed temperature at the surface of the roll are given in Figures 13
and 17 for the first cycle and in Figures 15 and 19 for the cycle after 10 minutes. The quantified errors are listed
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in Table 3. Excellent accuracy is observed in both cases, butaccuracy is better near strip edges for the second
set of parameters. Figures of the absolute difference between the reconstructed temperature and the prescribed
temperature (error of reconstruction expressed in Kelvin)are also given for emphasizing the reconstruction quality
near strip edges (see Fig.14, 16, 18 and 20).
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ǫ CPU time
Without noise With noise (s)

First cycle 1.1% Fig.13 1.8% Fig.21 ≃0.07
Cycle after 10 min 1.0% Fig.15 1.7% Fig.22 ≃0.07

Table 3: Quantified error forNi
z = 100 andNi

θ
= 1000

ǫ CPU time
Without noise With noise (s)

First cycle 0.7% Fig.17 1.6% Fig.23 ≃0.5
Cycle after 10 min 0.35% Fig.19 1.4% Fig.24 ≃0.5

Table 4: Quantified error forNi
z = 1000 andNi

θ
= 1000

8.4. Noise sensitivity

The measurements are carried out practically with noise. Artificial noise (uniform law and amplitude 1 K) is
added to the inputs. Then the reconstruction is calculated like in section 8.3. The outputs of the method compared
to the prescribed temperatures at the surface of the roll aregiven in Figures 21 and 23 for the first cycle and
Figures 22 and 24 for the cycle after 10 minutes. The quantified results are listed in Table 3. The reconstruction is
satisfying and therefore the noise sensitivity does not compromise the method.
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8.5. Sensor depth

Technologically the temperature sensor depth is known withan error. Therefore it is a good result if the inverse
method is not very sensitive to uncertainties about the sensor depth. Here a 10% error of the depth is considered
for each thermocouple. Therefore, inputs with random errors (magnitudee= 0.05 mm) done onRm are considered
and reported in Figure 25(a). The reconstructed temperature for the first cycle is shown in Figures 25(b) and 25(c),
and the quantified errors are listed in Table.4. Temperaturereconstruction is not very sensitive to a 10% error of
the temperature sensor depth.

ǫ CPU time
Without noise With noise (s)

First cycle 1.0% Fig.25(b) 2.0% Fig.25(c) ≃0.5

Table 5: Quantified error considering 10% error of the depth of each thermocouple, forNi
z = 1000 andNi

θ
= 1000
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Figure 25: Sensor depth sensitivity

9. Comparison with previous work

As detailed in section 2, the present inverse solution improves a previous work [18] where three unnecessary
assumptions were made. The interest of using a 3D inverse method compared with a 2D inverse solution has
been highlighted. In this section, only the improvement of analytical solution is emphasized. In figure 26, recon-
structions of prescribed temperatures for the first cycle are shown for both 2D previous work [18] and present 3D
inverse method for two values ofz. It can be noted a slightly better accuracy for the present work. The unnecessary
assumptions of the previous work [18] led to an underestimation of temperature at the beginning of the cycle and
at the exit of the roll gap.
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10. Computation time

The computation time is studied to rapidly optimise the industrial parameters during the rolling process. The
principle is to write the solution in matrix form or in hypermatrix form (considering the three levels of sum). The
matrices (or hypermatrices) can be computed off-line (i.e., before the rolling process) and be stocked in a library
(the frequency of acquisition being known). The solution (8) is written by using (16)+(21) in hypermatrice form.
The only quantities to compute on-line areAk

n,p andBk
n,p. Considering (14) it is convenient to use the Fast Fourier

Transform (fft). A well known method to improve the quality of these integrals is to interpolate the discrete inputs
with cubic spline and to apply thefft. Comparing with the two dimensional case (CPU time 0.05 secby cycle
after Weisz-Patrault et al. [18]) thesefft take more time because of the double integrals, however thenumber of
points of interpolation has been reduced to get similar computation times (0.07 sec by cycle) without comprising
the integral quality. A more accurate computation can be obtained in 0.5 second by cycle. This computation time
is promising for a real time computation and has been obtained for a Quadcore 2.8 GHz processor and is the time
displayed by Scilab 5.3. A significant improvement could be the implementation in a compiled code written for
example in C++.

11. Conclusion

A three dimensional inverse analytical method has been developed mainly to estimate the temperature distri-
bution at the surface of the roll. Heat fluxes can be derived from the method also. The temperature (and heat
flux) can be obtained in the whole roll. The method interpretsthe measurements of several thermocouples fully
embedded under the surface of the roll and aligned along the axial direction. The numerical results presented in
this paper are satisfying for an industrial rotation speed.The measurements are carried out practically with noise.
Noise sensitivity has been studied by adding artificial random numbers to the inputs, and accuracy has not been
compromised. Sensitivity to sensor depth errors has been studied and is not critical. This enables experimental
estimations for flatness and crown control. The advantages of the present truly 3D solution compared with the
previous work [18] have been highlighted. Moreover, the main advantage of this contribution, compared with the
few existing 3D iterative methods, is the very short computation times: 0.07 second for each cycle for a rough
computation or 0.5 second by cycle for a more accurate computation (CPU times are obtained for a quadcore
2.8 GHz processor and is the time displayed by Scilab 5.3). Therefore the method is promising for a real time
computation in order to optimise the flatness control devices and crown correction tools during industrial rolling
processes. An industrial sensor can be developed on the basis of this contribution as a simple tool for on-line
industrial monitoring and control of flatness and crown of the product.
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Appendix A. Family of solutions

The unsteady heat equation relative to an Eulerian reference, expressed in polar coordinates, where the thermal
properties of the material are assumed to not depend on the temperature is given by the equation:

∂2T
∂r2
+

1
r
∂T
∂r
+

1
r2

∂2T
∂θ2
+
∂2T
∂z2
=

1
D

(
∂T
∂t
+ ω
∂T
∂θ

)
(A.1)

The solution (2π-periodic forθ at any time) can be developed in Fourier series:

T(r, θ, z, t) =
+∞∑

n=−∞
Fn(r, z, t) exp(inθ) (A.2)

Thenth Fourier coefficients is sought such as:

Fn(r, z, t) = an(r)bn(z)cn(t) (A.3)

Thus:

bn(z)cn(t)

(
a′′n (r) +

1
r

a′n(r) −
n2

r2
an(r)

)
+ an(r)b′′n (z)cn(t) =

an(r)bn(z)
D

(
c′n(t) + iωncn(t)

)
(A.4)

The conditionT(r, θ, t) > 0 is verified (T expressed in Kelvin) therefore:

1
an(r)

(
a′′n (r) +

1
r
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n2

r2
an(r)

)
+

b′′n (z)

bn(z)
=

1
Dcn(t)

(
c′n(t) + iωncn(t)

)
(A.5)

Both terms are functions of independent variables, thus twocomplex numbersC1 andC2 exist such as:



1
an(r)

(
a′′n (r) +

1
r

a′n(r) − n2

r2
an(r)

)
= C1 −

b′′n (z)
bn(z)

= C2

1
Dcn(t)

(
c′n(t) + iωncn(t)

)
= C1

(A.6)

Thus:


an(r) = Jn(
√
−C2r)

bn(z) = exp(
√

C1 −C2z)
cn(t) = exp((DC1 − iωn)t)

(A.7)

whereJn is the Bessel function of the first kind of the ordern.
By introducingτ = −1/ (DC1 − iωn) andα =

√
C1 −C2 it is obtained that the following function is a solution

of (A.1).

γJn



√
1

Dτ
−

iωn
D
+ α2r

 exp
(
−

t
τ

)
exp(inθ) exp(αz) (A.8)

Appendix B. Direct analytical solution

An analytical solution is sought for the problem of a roll heated by a surrounding temperature which creates
a heat flux equal to the difference between the surrounding temperature and the temperature at the surface of the
roll multiplied by a heat transfer coefficient. Here HTC is taken constant which is discussed in Section 8. The
surrounding temperature (calledT∗) is everywhereTa but in a part (θ, z) ∈ [π − Θ, π + Θ] × [−L + Z, L − Z] where
it is slope as defined in Figure B.27.
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Figure B.27: Surrounding temperature:T∗

Therefore an expansion into a Fourier series gives:

T∗(θ, z) =
N2∑

n=−N2

P2∑

p=0

[
a∗n,p cos

(
πpz
L

)
+ b∗n,p sin

(
π(2p+ 1)z

2L

)]
exp(inθ) (B.1)

The coefficientsa∗n,p andb∗n,p are defined as follows:

∀n ∈ Z, ∀p ≥ 1



a∗n,p =
1

2Lπ

∫ L

−L

∫ 2π

0
T∗(θ, z) exp(−inθ) cos

( pπz
L

)
dθdz

b∗n,p =
1

2Lπ

∫ L

−L

∫ 2π

0
T∗(θ, z) exp(−inθ) sin

(
(2p+ 1)πz

2L

)
dθdz

∀n ∈ Z



a∗n,0 =
1

4Lπ

∫ L

−L

∫ 2π

0
T∗(θ, z) exp(−inθ) dθdz

b∗n,0 =
1

2Lπ

∫ L

−L

∫ 2π

0
T∗(θ, z) exp(−inθ) sin

(
πz
2L

)
dθdz

(B.2)

For the purpose of validating the method only a few terms are considered (i.e.,N2 = 20 andP2 = 14). Therefore
the real profile ofT∗ is given in Figure B.28
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The solution of the problem is sought in the form of (7):

Tp(r, θ, z, t) =
N2∑

n=−N2

P2∑

p=0

[
an,pJn

(
ζn,pr

)
cos

(
πpz
L

)
+ bn,pJn

(
χn,pr

)
sin

(
π(2p+ 1)z

2L

)]
exp(inθ)

+

N2∑

n=−N2

P2∑

p=0

Q2∑

q=1

cn,p,qJn

r
√

1
Dτ∗n,p,q

− iωn
D
−

(
πp
L

)2
 exp

(
−t
τ∗n,p,q

)
exp(inθ) cos

(
πpz
L

)

+

N2∑

n=−N2

P2∑

p=0

Q2∑

q=1

dn,p,qJn

r

√
1

Dυ∗n,p,q
− iωn

D
−

(
π(2p+ 1)

2L

)2
 exp

(
−t
υ∗n,p,q

)
exp(inθ) sin

(
π(2p+ 1)z

2L

)

(B.3)

wherean,p, bn,p, cn,p,q anddn,p,q are complex numbers andN2, P2 andQ2 are integers.
The boundary condition is:

λ
∂Tp

∂r
(Rs, θ, z, t) = HTC× (T∗(θ, z) − Tp(Rs, θ, z, t)) (B.4)

It is convenient to introduce:

yn,q = Rs

√
1

Dτ∗n,p,q
− iωn

D
−

(
πp
L

)2
= Rs

√
1

Dυ∗n,p,q
− iωn

D
−

(
π(2p+ 1)

2L

)2

(B.5)

It can be noted that the notationyn,q is abusive because the definition involves clearly the indexp. However, the
boundary condition (B.4) gives:

λyn,q

Rs
J′n(yn,q) + HTC× Jn(yn,q) = 0 (B.6)

Thereforeyn,q do not depend onp and are calculated numerically by taking the successive positive zeros of the
functions:

y 7→ hn(y) = λ
y
Rs

J′n(y) + HTC× Jn(y) (B.7)

Figure B.29 shows an example.
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Therefore:


τ∗n,p,q =
1
D


(
yn,q

Rs

)2

+
iωn
D
+

(
πp
L

)2

−1

υ∗n,p,q =
1
D


(
yn,q

Rs

)2

+
iωn
D
+

(
π(2p+ 1)

2L

)2
−1 (B.8)

The boundary condition (B.4) gives also for terms independent on time:



a0,0 = a∗0,0

an,p =
HTC× a∗n,p

λζn,pJ′n(ζn,pRs) + HTC× Jn(ζn,pRs)

b0,0 =
HTC× b∗0,0

λχ0,0J′0(χ0,0Rs) + HTC× J0(χ0,0Rs)

bn,p =
HTC× b∗n,p

λχn,pJ′n(χn,pRs) + HTC× Jn(χn,pRs)

(B.9)

The initial condition is:
Tp(r, θ, z, 0) = Ta (B.10)

The initial condition (B.10) gives:



Q2∑

q=1

c0,0,qJ0

(
y0,qr

Rs

)
= Ta − a0,0 = u∗0,0(r)

Q2∑

q=1

cn,p,qJn

(
yn,qr

Rs

)
= −an,pJn(ζn,pr) = u∗n,p(r)

Q2∑

q=1

d0,0,qJ0

(
y0,qr

Rs

)
= −b0,0 = v∗0,0(r)

Q2∑

q=1

dn,p,qJn

(
yn,qr

Rs

)
= −bn,pJn(χn,pr) = v∗n,p(r)

(B.11)

In their previous work Weisz-Patrault et al. [18] solved this kind of equation by descritizing, but there exists an
analytical solution which is used in the present paper. (B.11) is called a Dini expansion and is used by Sneddon
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[29, p.40] and demonstrated by Watson [30, p.596].


cn,p,q =
2y2

n,q(
y2

n,q − n2 +
R2

sHTC2

λ2

)
R2

sJ2
n(yn,q)

∫ Rs

0
ρu∗n,p(ρ)Jn

(
yn,q
ρ

Rs

)
dρ

dn,p,q =
2y2

n,q(
y2

n,q − n2 +
R2

sHTC2

λ2

)
R2

sJ2
n(yn,q)

∫ Rs

0
ρv∗n,p(ρ)Jn

(
yn,q
ρ

Rs

)
dρ

(B.12)

By using (27) and (28) the expression ofcn,p,q anddn,p,q reduce to (B.13).



c0,0,q =
2y0,q(Ta − a0,0)J1(y0,q)(
y2

0,q +
R2

sHTC2

λ2

)
J2

0(y0,q)

cn,p,q =
2y2

n,qan,p
(
y2

n,q − n2 +
R2

sHTC2

λ2

)
J2

n(yn,q)

ζn,pRsJn+1(ζn,pRs)Jn(yn,q) − yn,qJn+1(yn,q)Jn(ζn,pRs)

y2
n,q − ζ2n,pR2

s

d0,0,q =
2y2

0,qb0,0
(
y2

0,q +
R2

sHTC2

λ2

)
J2

0(y0,q)

χ0,0RsJ1(χ0,0Rs)J0(y0,q) − y0,qJ1(y0,q)J0(χ0,0Rs)

y2
0,q − χ

2
0,0R2

s

dn,p,q =
2y2

n,qbn,p
(
y2

n,q − n2 +
R2

sHTC2

λ2

)
J2

n(yn,q)

χn,pRsJn+1(χn,pRs)Jn(yn,q) − yn,qJn+1(yn,q)Jn(χn,pRs)

y2
n,q − χ2

n,pR2
s

(B.13)

Appendix C. Fast Fourier Transform Algorithm

The inverse method relies on the fast computation of following quantities (δp,0 is the Kronecker symbol):

∀n ∈ Z, ∀p ≥ 0



Ak
n,p =

1
(2+ 2δp,0)Lπ

∫ 2π

0

(∫ L

−L
Tm(θ, z, k) cos

( pπz
L

)
dz

)
exp(−inθ) dθ

Bk
n,p =

1
2Lπ

∫ 2π

0

(∫ L

−L
Tm(θ, z, k) sin

(
(2p+ 1)πz

2L

)
dz

)
exp(−inθ) dθ

(C.1)

Thefft algorithm of a signalF(xl) given forl ∈ {1; ...; NF} computes the following vector (p ∈ {1; ...; NF}):

fft [F(xl)]p =

NF∑

l=1

F(xl) exp

(
−i

2π(l − 1)
NF

p

)
(C.2)

Thus, if the measured temperaturesTm(θ, z, k) are interpolated with cubic splines atθ j = (2π/Ni
θ
)( j − 1) and

zl = (2L/Ni
z)(l − 1)− L, where the number of interpolation points areNi

θ
andNi

z, then the Riemann approximation
gives:

∫ L

−L
Tm(θ, z, k) cos

( pπz
L

)
dz ≃ Re


2L

Ni
z

Ni
z∑

l=1

(−1)pTm(θ, zl , k) exp

(
−i

2π(l − 1)

Ni
z

p

)

=
2L

Ni
z
Re

[
fft

[
(−1)pTm]

p

] (C.3)

Furthermore:

∫ 2π

0
Re

[
fft

[
(−1)pTm]

p (θ)
]
exp(−inθ) dθ ≃ 2π

Ni
θ

Ni
θ∑

j=1

Re
[
fft

[
(−1)pTm]

p (θ j)
]
exp

−i
2π( j − 1)

Ni
θ

n



=
2π

Ni
θ

fft
[
Re

[
fft

[
(−1)pTm]

p

]]
n

(C.4)
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Finally:

Ak
n,p =

1
(1+ 1δp,0)

2

Ni
θ
Ni

z
fft

[
Re

[
fft

[
(−1)pTm]

p

]]
n

(C.5)

Moreover, since∀z ∈ [L, 3L], sin((2p+ 1)πz/(2L)) = sin((2p+ 1)π(2L − z)/(2L)):

∫ L

−L
Tm(θ, z, k) sin

(
(2p+ 1)πz

2L

)
dz=

1
2

∫ 3L

−L
T̃m(θ, z, k) sin

(
(2p+ 1)πz

2L

)
dz (C.6)

where:

T̃m(θ, z, k) =

{
Tm(θ, z, k) z ∈ [−L, L]
Tm(θ, 2L − z, k) z ∈ [L, 3L]

(C.7)

Thus, the interval [−L, 3L] is divided inzl = 4L(l − 1)/(2Ni
z− 1)− L and the Riemann approximation gives:

1
2

∫ 3L

−L
T̃m(θ, z, k) sin

(
(2p+ 1)πz

2L

)
dz ≃ −Im


2L

2Ni
z − 1

2Ni
z−1∑

l=1

i(−1)pT̃m(θ, zl , k) exp

(
−i

2π(l − 1)

2Ni
z − 1

(2p+ 1)

)

= −
2L

2Ni
z − 1

Re
[
fft

[
(−1)pT̃m

]
2p+1

] (C.8)

Thus, by using again the Riemann approximation for the second integral:

Bk
n,p =

−2

Ni
θ
(2Ni

z − 1)
fft

[
Re

[
fft

[
(−1)pT̃m

]
2p+1

]]

n
(C.9)

Thus, coefficientsAk
n,p andBk

n,p are computed with doublefft. The computation time and the accuracy are very
dependent on the number of interpolationNi

θ
andNi

z. A compromise should be found. In the paper two options
are testedNi

θ
= 1000 andNi

z = 100 for a CPU time of 0.07 s/cycle andNi
θ
= 1000 andNi

z = 1000 for a CPU time
of 0.5 s/cycle.
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