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Abstract

Monitoring and controlling flatness during the rolling pess becomes critical for ensuring the product quality.
Flatness defects are due to highly three-dimensional phena. Indeed, strips with filerent widths are rolled
during the same campaign and cooling systems are hetermgea®ong the axial direction to modify the ther-
mal expansion of the roll. Therefore this paper presentdla three-dimensional inverse analytical method to
determine the temperature field and heat fluxes (espectdte surface of the roll) by interpreting measurements
of temperature done with several thermocouples fully erdbddn the roll body and aligned along the axial di-
rection. Since the method is dedicated to on-line integti@t and designed as a tool for adapting the rolling
parameters during the rolling process, iterative methodsat studied to avoid long computation times, which
justifies the development of an analytical solution of thebpem. The computation time displayed by Scilab 5.3
with a quadcore 2.8 GHz is around 0.5 second by cycle for atewwomputation and 0.07 second by cycle for
rough computation. This paper improves a previous work (8@ relying on four assumptions designed for the
prediction of wear). In the present contribution the 3D aadly heat equation of the rotating roll is solved analyt-
ically with only one assumption in order to deal with the riesibn of the measurement system (i.e., measurement
according to successive times). Therefore not only radidtangential heat fluxes are taken into account but also
axial heat flux. The solution is validated by comparing th&ats of the method and some prescribed analyt-
ical temperature fields. Good agreement is obtained. Neissitd/ity is estimated by adding artificial random
numbers to the inputs, and good accuracy is observed. Meremmnsitivity to sensor depth is estimated and
demonstrated to be not compromising.
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Outer radius (radius of the surface of the roll)
Inner radius (radius of the measurements)
Error of the sensor depth

Rotation speed

Radial position

Angular position

Axial position

Time

Index of the current cycle
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Frequency of acquisition of the measurements
Thermal conductivity of the roll
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Measured temperatures (inputs)

n, p th cosine cofficient of Fourier ofT™ (kth cycle)

n, p th sine coéicient of Fourier ofT™ (kth cycle)
Temperature at the surface of the roll (outputs)
Heat flux at the surface of the roll (outputs)
Prescribed temperature field (validation of the method)
Ambient temperature

Surrounding temperature (validation of the method)
n, p th cosine cofficient of Fourier ofT*

n, p th sine coéicient of Fourier ofT*

Heat Transfer Cdicient (validation of the method)
Order of truncation (integer)

Order of truncation (integer)

Order of truncation (integer)

Order of truncation (integer)

Order of truncation (integer)

Order of truncation (integer)

Number of thermocouples (integer)

Number of reconstruction points along circumferentia¢diion
Number of reconstruction points along axial direction
Number of interpolation points along circumferential diien
Number of interpolation point along axial direction
Codficients (complex)

Codficients (complex)

Bessel function of the first kind of the order
Codficients (complex)

Codficients (complex)

Codficients (complex)

Codficients (complex)

Codficients (complex)

Codficients (complex)

Auxiliary function

Successive positive zeros &f

Successive zero df,

Codficient (complex)

Relaxation time (complex)

Relaxation time (complex)

Relaxation time (complex)

Relaxation time (complex)

Relaxation time (complex)

Angle

Displacement field

Lame’s codicients of the roll

1. Introduction

1.1. Context

In steel rolling processes, two rolls are used as tools taaedthe thickness of a workpiece. Flatness control
improvement is essential for productivity, automation apuility, since the requirements for strip crown and
flatness are more and more severe. Flatness defects oritjie diference between the incoming strip profile
and the work roll deformed profile. The cooling system as agltrown control devices for shape correction are
voluntary heterogeneous along the axial direction in otderompensate the heterogeneous temperature fields.
Moreover a rolling campaign involves often manyfeient strip widths. Therefore the mechanisms involved in

Table 1: Nomenclature

flatness problems are highly three-dimensional.




Predictive models are very useful for the design of flathesdrol devices and cooling system. Thus many
studies focus on more and more comprehensive approachamels during rolling process. A complete flatness
model combines thermo-mechanic models for the strip annireslastic models for the roll. For example Jiang
and Tieu [1] developed a predictive 3D finite element metheilM) which gives the contact stress between the
strip and the roll, the deformation of the roll and espegigile shape of the roll generatrix and by taking into
account the shape of the incoming strip gives the longitalditress profile of the outcoming strip. More recently
Abdelkhalek et al. [2] proposed a comprehensive FEM whichiemeer takes into account the buckling of the
outcoming strip and the coupling between plastic deforomatif the strip in the roll gap and the buckling of the
outcoming strip.

All the predictive models of flatness need the computatiothefwork roll deformation and especially the
thermal expansion. Therefore three-dimensional temperdields should be computed, most of the time by
numerical methods. Several authors focus on this lattér tRer example Abbaspour and Saboonchi [3] pro-
posed predictive models for the optimisation of coolingtegs Thermal crown has been investigated by Zhang
et al. [4] and [5] with two dimensional FEM (radial and axialettions) by neglecting circumferential direction.
Truly three-dimensional predictive models have also beepgsed by Zone-Ching and Chang-Cheng [6] or more
recently by Li et al. [7]. Montmitonnet [8] gave also a comipeasive review of predictive three-dimensional
models (by FEM and FDM) of the whole rolling process, by cauplthe strip and the roll thermal behaviours
with iterative methods.

All these simulations consider very complex boundary coows. Indeed, the contact between the strip (from
around 300 K for cold rolling conditions to around 1200 K fat Inolling conditions) and the roll (initially at the
room temperature) is responsible for conducting heat, wisioften modeled with a heat transfer ffa@ent. This
model parameter is often assumed to be constant in the ¢dikain the model of Corral et al. [9]. But since
pressures are not constant in the contact, this heat traoes#@icient is actually not constant as demonstrated by
Legrand et al. [10]. The heat flux entering the roll by conducfrom the strip can also be modeled by a heat flux
like in the work of Hacquin [11]. Moreover, the cooling andtication systems involve a forced convection at the
entry and exit of the roll gap and the surrounding air is resue for a free convection. To a lesser extend, the
friction between the strip and the roll, the plastic defotiores of the strip and radiations from the strip, are also
heat sources for the roll. This complicated thermal probieesummarized in Figure 1.

Air
free convection

Lubrication
spray oil/water
forced convection

Work Roll

_.-~'Cooling
spray air/water
forced convection

h, I hy suip H>
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Figure 1: Thermal conditions during rolling process

The idea of this paper is to avoid such a complicated modekpiacing this kind of direct and theoretical
computations of three-dimensional temperature and hedfiélias inside the roll, by a real-time evaluation based
on temperature measurements done with several thermaiylly embedded inside the roll body. This eval-
uation is performed by inverse analysis and does not reguiiernal conditions around the roll. Temperatures
and heat fluxes at the surface are directly inferred fromehgperatures measured inside the roll, regardless of
contact, cooling and lubrication conditions at the surface

Most of inverse methods consider boundary conditions astiniace of the roll and compute the temperature
at the radius where temperatures are measured. Then a wation between the computed temperature and



measured temperature is performed in order to identify thendary conditions. The present inverse solution
does not belong to this class of methods. Indeed, no bourwargitions are considered at the surface, and
there is no minimization process. Considering that tentpeza are measured at the radRys < Rs (wherem
means measured asaneans surface), a fully analytical solution of the problerfound in a sub-domain (which
the cylinder of radiuRky). Then, this analytical solution is extended by contintdward the surface. In this
way, temperature and heat flux fields are deduced everywhedheiroll and especially at the surface without
considering any boundary condition at the surface of the rol

1.2. Review of inverse methods

Many authors focus on 1D or 2D inverse methods. (This is duadédact that most of the time numerical
computations are used, and therefore 3D inverse methods/étigh stack memory capacity and long CPU
times). Among the latest contributions, Volle et al. [12dposed a 1D analytical inverse method compared with
a 2D numerical inverse method adapted to a hot rotatingdgtinooled by a water jet. Kotrbacek et al. [13] pro-
posed a comprehensive 2D inverse method, where the sertsteraperature dependance of thermal properties
are modeled. However computation times are long. More tgc@ien and Yang [14] proposed a 2D (radial
and circumferential directions) steady approach (withfanee mesh near the roll gap) based on the conjugate
gradient algorithm. However the computation times do nlotah real time evaluation, and the time dependence
is neglected. Moreover a recent two-dimensional semiyéical inverse method adapted to rotating cylinders
has been proposed by \olle et al. [15] and used by Volle etl#l] fnd Gradeck et al. [17]. The method is
based on Fourier and Laplace transforms of the unsteadyehaation, then the deconvolution is performed with
a numerical algorithm. From unknown boundary conditiorsuased to be constant during each time step, the
expression of temperature is established at the radiusasthemmeasurements are done by means of a sensitivity
matrix representing the linear relationship between thenawn heat flux at the surface and the temperature at
the radius where the temperature are measured. Howeveticpily this sensitivity matrix is ill-conditionned,
therefore a minimization, between the measured and caéécliemperatures, is performed with least square meth-
ods and regularized with classical techniques. This woskidgen tested on cooling conditions not very singular
compared with common industrial rolling conditions. Femtmore 24 thermocouples are considered along the
circumferential direction.

Weisz-Patrault et al. [18] published very recently a fulhabytical 2D (radial and circumferential directions)
inverse method considering only one thermocouple embenidéte the roll, and deals with rolling conditions.
The method is very fast (0.05 sec by cycle) and relies on thei2fdeady heat equation. Weisz-Patrault et al.
[19] proposed also an experimental study to show how thertbeouple can be inserted inside the roll and how it
can be calibrated. The wires are evacuated by the centee @itmder and signals are transmitted by inductive
system. The paper focus also on thEeet of the reduction of the strip. Legrand et al. [20] progbaa other
experimental study (based on the inverse method [18]), lwfdcuses on the influence of scale thickness and
contact resistance. Moreover a 2D analytical inverse nieprublished recently by Weisz-Patrault et al. [21] for
the evaluation of contact stress during the rolling processbe combined with the thermal inverse method [18]
in order to obtain the analytical 2D thermal stresses, which been published by Weisz-Patrault et al. [22]. A
fast on-line experimental evaluation of thermal fatiguthiesrefore possible.

2. Industrial interest of 3D inver se method

The general motivation of this paper is to improve the knaolgkeof real three-dimensional temperature and
heat flux fields in the work roll, occurring during rolling press. Indeed, if theoretical works, which have been
cited in section 1.1, enable a good understanding of phlysleanomena involved in the rolling process, and
are therefore the dedicated tools for the design of contwiogs, they cannot replace experimental evaluation
of real temperature and heat flux fields. Moreover, the oa-imonitoring of temperature fields could improve
significantly the use of cooling systems and flatness cod#wices, by adapting them in real time with a close-
loop control. Therefore this paper aims at developing ttséstazf an on-line industrial tool for evaluating industrial
temperature fields in real time during the rolling processrtgrpreting some temperature measurements done
with several thermocouples aligned along the axial dioectind fully embedded inside the roll body (see Fig.2).

As mentioned above temperature and heat flux fields are véeydgenous along the axis of the roll. That
is why Keanini [23] proposed a 3D numerical inverse modelinsgerting several thermocouples affeient lo-
cations in the roll. The circumferential direction is nonsaered in the equations, the tangential dependence is
only obtained with the rotation of the roll. Loulou and Amikhine [24] developed a truly 3D inverse method



interpreting measurements of several thermocouplested&q hollow cylinders and based on the iterative reg-

ularization method and residual functional minimizationusing the unconstrained conjugate gradient method
with the regularizing discrepancy principle. However theLCtimes are very long, and the work is done for a

non-rotating roll.

In order to determine by inverse analysis the heterogenelgsfalong the axis of the roll, the authors have
basically two choices. The first one consist in applying sgénes the 2D inverse method previously developed
by Weisz-Patrault et al. [18] atfilerent axial locations (corresponding to the axial locatibeach thermocouple).
The second choice is the development of a truly 3D analyitiwerse method. This latter solution has been chosen
and the interest of a truly 3D inverse method compared with &2erse method applied several times should be
highlighted.

A single computation gives, for the present 3D inverse nebthite analytical temperature and heat flux fields
in the whole roll, whereas the 2D inverse method used setiras at the dterent axial locations (where thermo-
couples are inserted) gives only the temperature and hedidlds at these axial locations. The former solution
allows to compute analytically the thermal expansion idioig shear stress, when the latter allows only to compute
the thermal expansion forfiiérent sections of the roll assumed to be independent fromather (i.e. neglecting
shear stress in the roll), which is done for example by Hatffid] or Zone-Ching and Chang-Cheng [6].

In the present work the unsteady 3D heat equation is not giethl All heat fluxes in all directions are taken
into account, which is not the case for a 2D inverse methodevhrial heat fluxes are neglected. This allows
the computation of the thermal expansion of the work rolséasial for flathess control) by solving the Navier's
equation (1) which involves all the components of the heatifitthe right side term.

podiv gradu + (Ao + po)grad divu = (34 + 2up)gradT Q)

The lame’s cofficients are denoted hy andJy, these elastic cdicients have nothing to do withwhich is the
thermal conductivity of the roll, and is the displacement field of the roll andthe thermal dilatation.

Another reason for developing the present 3D inverse meghadsignificant improvement of the analytical
solution of the previous work of Weisz-Patrault et al. [L8}deed, the initial condition is verified without any
assumption in the present paper when three unnecessargsus have been introduced in the previous work
[18]. A comparison between the present inverse solutiortle@@D inverse solution of Weisz-Patrault et al. [18]
is given for diferent axial positions in section 9. A slightly better acayress demonstrated for the present 3D
inverse method.

Moreover, using several times the 2D inverse methodfigraint axial locations is not mordieient in terms
of computation times (around /tgcle for 30 thermocouples) than the present 3D inverse adetivhich gives
much more complete informations (temperature and heat fildsfieverywhere in the roll) in 0.5cycle (for
accurate computation) or 0.0/&gcle (for rough computation).

o Local Sensor (fully embedded)

-L L

Ral

00000000000 8@ B@- @B @\

(a) Measurement system (b) Axes

Figure 2: Rolling process



3. Validation of the method

The inputs consist in several temperature signals deliMeyehermocouples aligned along the axial direction
(at locationsz; wherej € {1;...; S}) and located at the radid, with Ry, < Rs (wherem means measured and
s means surface). Temperature signals are obtained for ssizedimes (called; = tx + 6/w) according to the
rotation speed of the roll and the indkxf the cycle. Then cubic splines are used to interpolatertpatisignal
along both the circumferential and axial directions. Thepats are in general the whole analytical temperature
field and therefore the radial, circumferential and axialtifkixes. The temperature and heat fluxes are obtained
especially at the surface of the roll.

Considering the temperature in the whole roll, an analigigpansion into series (solution of the unsteady heat
equation) is written. The identification of céieients of the series is done with the conditions availableictv
are in the present case the temperatures measured insidalthad the initial condition (room temperature).
Therefore the method only consist in finding an analyticalitson of the problem in a sub-domain being the
cylinder of radiusRy, , then the analytical solution is extended by continuitydodthe surface of the roll. There
is no iterative matching process and no matrix inversioner&fore all the classic problems of inverse methods
related to ill-posed problems are therefore avoided. (Reation is done by truncation of series). The frequency
of acquisition of the thermocouples is not limited by the Inoet as for Raynaud and Bransier [25].

No experimental data were available. The validation of tle¢trod is done as follows. An analytical unsteady
temperature field is prescribed in the roll. This field is bbshed in Appendix B and corresponds to a roll
heated at the surface in a small angular part correspondirgdontact with a hot steel strip. The resulting
temperature field is close from typical temperature fielgg tccur during rolling processes as observed with
the direct predictive model of Li et al. [7] for instance. Amarical simulation could have been used, but for
simplicity this simple temperature field has been used &uste

The inputs of the inverse method presented in this papetagiey measurements) are extracted from this
prescribed temperature field. The solution is validateddsgaring the outputs of the method and the prescribed
analytical temperature at the surface of the roll. Hetemeges prescribed temperature field along the axial di-
rection is chosen to show the ability of the method to dedhwsitch a dficulty. The relative dierence between
the outputs and the prescribed temperature is used to futgiquality of the method. Excellent agreement is
obtained. Noise sensitivity is estimated by adding randamivers to the inputs and good accuracy is observed.

4. Principles of the inver se method

The evolution of the temperature of a material point (Lagfan description) of the roll is very fast. The
time dependence could beflitult to describe, that is why an Eulerian description is tgved in order to have
a slow evolution of the temperature field (small variatiorsf one cycle to another). Thus, an Eulerian point
(r radial positionp angular position and axial position) is not material, that is to say it describdes ¢volution
of a succession of material points at a given position in afpeference. In the following, all the quantities are
calculated in an Eulerian reference.

The temperature measurements are done with respect taéimpdrature known atfierent angular positions
at successive times). Each rotation of the roll allows tewrmpee information on the whole cylinder of radidg,
but not at all times. Each angular position is known at on&qadar time according to the frequency of acquisition
f (Hz) and the rotation speead

Therefore, a natural characteristic time of the problerhésduration of each cycle. Thus, cycles are numbered
(indexk) and it is convenient to divide the total time interval in Bbrvals [y, tx,1] wherety is the time at the
beginning of théth cycle thereforety = tx_1+27/w (considering that the rotation speedrad’s) is quite constant
during each cycle, it should be noted, but for simplicity it is notedw). Inputs are called™(0, z k) wherem
means measured. Notations are listed in Table 1.

The solution of the unsteady heat equation is denotedi(py, z t,K) (r, 8 andz being the radial, angular
and axial coordinate$,meaning time andk being the index of the cycle). It should be noted thandk are
related { € [ty, tx.1]). The thermal diusivity is denoted byD (m?/s) which is assumed to be independent on the
temperature. The unsteady heat equation governing thestaope fieldT (r, 9, z t, k) during thekth cycle is:

T 10T 16°T 9°T  1(T oT 5
ﬁ*?§+ﬁﬁ+ﬁ‘5(ﬁ”’%) )



With the set of conditions:
(r,0,zt,k) € [0,Rs] X [0, 2n] x [-L, L] X [tx, tkra] x N*
[ Ta k=1 . .. iy
T(r,0,t%,2K) = { Trotzk-1) k> 2 (initial condition)
T(Rm, 6,2 t, k) = T™(6, z k) (measured condition)

oT
— +L,t,k) =
62 (r7 97 + 7t9 ) 0

3)

For the first cycle, the initial condition is the ambient tesrgiture in the entire roll. For the next cycles the
initial condition is the temperature field at the end of thevowus cycle. Moreover the roll is much wider than the
strip, the edges of the roll are far from the main heat souhegefore it is reasonable to assume that the axial heat
flux vanishes at the edges of the raK <L), as in the work of Keanini [23]. The latter condition is annatically
verified as demonstrated in Section 6, therefore this cmmditill not appear any more.

It should be noticed that there is no condition at the outdiussR;, since temperature and heat fluxes at the
surface are unknown and should be evaluated by the inverdetheUsually, a thermal problem needs proper
boundary conditions at the surface of the body. Howevetim @approach, temperatures and heat fluxes at the
surface of the roll are determined from measured tempersitat the inner radiuBy,, regardless of external
conditions. This is done by splitting the domain into two sldmainsDy andD; (d andi meaning direct and
inverse):

{ Dy = [0,R] X [0, 27 x [-L, L] @)
Di = ]Rm, R x [0, 2] x [-L, L]

The first sub-domain is called the direct part and is the dgirof radiudR,,. On this sub-domain, the boundary is
at radius = Ry, and the measured conditid{Rn, 6, z t, k) = T™(6, z k) can be expressed as a proper boundary
condition (managing a single assumption discussed in@e6tR). Thus, it is possible to determine the analytical
temperature and heat flux fields in this sub-domain. The gsksobh-domain is called the inverse part and is the
hollow cylinder of inner radiufk,, and outer radiuRs. The idea of the method is to extend by continuity the
analytical solution determined in the direct p#¥§ into the second sub-domaiB;, including the surface of the
roll. This extension by continuity toward the surface eealib not consider any boundary condition at the surface
of the roll at the outer radiuRs. Two new sets of conditions equivalent to 3 are defined :

(r,0,zt,K) € Dy X [tg, tke1] X N*

: . _J Ta
(Direct part): ¢ T(r, 6,z tx, K) = { (6,2,
T(Rm, 6,2t k) = T™(6, z k) (measured conditions)

k=1 ., .. .
k=1) k> 2 (initial condition) (5)

(r,0,zt,K) € Di X [ty, tke1] X N*
(Inverse part): | Ta k=1 . .. . (6)
T(r,0,2t, k) = Tr0.2t0k=1) k> 2 (initial condition)

Since the problem is linear, a well-known method is to findaminfinite family of solutions and to write a
linear combination where the cfieients are identified with the initial condition of (5) and @hd the measured
conditions of (5). In this way, it is demonstrated (proof apged in Appendix A) that the function given by (7)

is a solution of (2).
1 iwn t
[~ s i _Z
vIn [r o: D " 1 ]exp(me) exp(62) exp( T) (7

wheren is an integery, T ands are complex numbers, arJg is then th Bessel function of the first kind defined
for a complex variable. It should be noted that the expres§ip remains a solution by taking= -6 therefore
the expfz) can also be replaced by cég)or sin@z).

5. Decomposition

Itis very classic to divide the solution into two pafits= T, + T,. The first parfT; is the steady solution for
thekth cycle andr; is the transient corrective solution, as done (among méamrs} by Hello and Vinet [26] who
solved analytically a thermal problem related to cylindfimirrors.



The steady solutiofi; verifies the measured condition of (5) but takes not into aotthe initial condition
of (5) and (6). This verification of the measured conditiothatradiusRy, is seen fofT; as a boundary condition
specified on the sub-domaiy. The transient corrective solutidn verifies the initial condition of (5) and (6)
minus the initial temperature field introduced By and vanishes at the radil&, (which is seen foiT, as a
boundary condition specified on the sub-dontajy) . This decomposition is summarized in Figure 3.

T"(0,2,k) T"(0,2.k) 0

T, k=1"

=4 T(r0,zt,k-1) k22

Ta - 7; (V, 9) Z, k) k= I

0z k1)
" -1y(1,0,z,k)

2]

Solution 7(7,0,z,t,k) Solution T (1,60,z,k) Solution 7 ,(1,0,z,1,k)

Figure 3: Superposition for each cycle

The analytical solution of the problem is found (solutior(2¥in the form of (7) and verifying the conditions
(5) and (6)), managing only one assumption due to the réstiof the measurement system (discussed in section
6). For each cyclé&:

T(r,0,2t,K) = T1(r,0,Z2K) + To(r, 0,2 t,K) (8)

whereT; is given by (16) and; by (21).
All the components of the heat flux are obtained analytidajly

H(r.6,zt,K) = Hi(r,6, 2 K) + Ho(r, 6,z t,K) 9

whereH; andH; are respectively given by (18) and (31).

Therefore the outputs of the method (the temperalié, z t, k) or the heat fluxH3(9,zt, k) at the outer
radius,s meaning surface) are given explicitly by replacmigy Rs in (8) or in (9). The procedure is summarized
in Figure 4.

Inputs ~ Inputs expansion Outputs
T0,2k) into afourlerk series T5(0,2,1k)
Anp  Bnp H’(0,z,tk)

fft method using analytical
expression (8) or (9)

Figure 4: Procedure for each cycle

6. Steady solution Ty cycleby cycle

6.1. Measurement restrictions

The solutionT is sought in the fornT = T; + T,. The solutionT; only has to match the measurements
at the radiusRy, (i.e., verifying the partial boundary conditions of (5)))daT, only has to correct the solution
T1 in order to verify the initial condition of (5) and (6). If themperature on the whole cylinder of radigg
(sub-domairDy) was known at any time, it would have been possible to expa@dieasurements into a Fourier
series with time dependent d&eients. The identification of the time dependent Fouriefffocients as sums of



time decreasing exponentials would allow to write the sofuT; in the form of solutions given by (7). However,
the measurement system being a unique line of local sensersr@l sensors aligned along the axial direction)
fixed into the body of the roll at the radil,, it provides only the temperatures affdrent angular positions at
successive times. Therefore the time dependent expam@ma Fourier series of the temperature at the ragjys

is impossible.

6.2. Assumption: Time scale

As it has been said, temperatufE(9, z) are measured with respect to time, the measured conditi¢d) i
is therefore incomplete. This fticulty is overcome by making the following assumption. It gsamed that
during one cycle the variations of the temperature field aralls This assumption can be verified with numerical
simulations of rolling process like the model proposed bydian [11]. Therefore a natural characteristic time
of the problem is the duration of one cycle. Thus, the timeed€jence ofr; can be considered for increments of
time of one cycle. The temporal evolution of the solutiaris only obtained from one cycle to another.

Because the solutiofy(r, 6, z, k) does not depend on time in the intervil {«,1], the family of solution can

be restricted to:
vJn (r A /—% + 52] exp(ind) exp(62) (10)

Ta(r, 6,z K) is solution of (2) with the following measured conditiotiiscan be noted that these measured condi-
tions are boundary condition (well defined) fby on the sub-domaify):

{ (r, 0,z k) € Dy x N*

T1(Rm, 0,z k) = T™(0, z k) (measured conditions) (11)

For each cycle, the measured temperafuf@, z, k) is expanded into a double Fourier series, however since
the axial heat flux vanishes at the edges (see conditionst{@)form of the expansion is adapted to obtain
automatically this condition. It should be noted that:

(;jz [cos( )] (z=+L)=0 and dz[sm((Zp;iLl)nz)} (z=+L)=0 (12)

Therefore the measured temperature are expanded as follows

Ny Py

0.2k = > > |A

n=—N; p=0 2L

cos( )+ BX sm(MH exp(ind) (13)

whereN; andP; are two integers anAﬁ’p and Bﬁyp are the Fourier cdgcients of the measurements done during
the cyclek:

m
,p 2L7rf f T™, z k) exp(— m&)cos( )d@dz
vneZ V¥p>1
(2p+ Dz
m
B,Lp 2L7rf f T™6, z k) exp(— mG)sm( dodz
(14)
m
’0 4L7rf f T™(, z k) exp(—ind) ddz
VYneZ
m
n,o 2L7rf f T™, z k) exp(- m&)sm( )d@dz

The codficients (14) can be computed classically from the measuresbgrsing fast fourier transformstj.
The algorithms are detailed in Appendix C. However (esplgciar the first few cycles), it can be noted that
during a cycle the temperature field increases. Along theuniferential direction, at the end of the cycle, the
measured temperature is higher than at the beginning eutbe temperature is measured at the same angular
position. Therefore the measured temperafuf@, z k) is not exactly z-periodic ing. Indeed,T(r,0,zt,K) is
2n-periodic at each time, but™(6,z k) = T(Rm, 6,z t§, k) wheret! = t, + 6/w, thus forg = 0, t§ = t (being



the time at the beginning of the cycle) and fbe 2r, t‘g = tx,1 (being the time at the end of the cycle). The
discontinuity between the temperature at the end and atafimihing of each cycle creates a GibbfEeet in the
expansion into a Fourier series (large oscillations neadtbhcontinuity). This well-knownféect can be reduced
by applying a filter. Lanczos [27] and Acton [28, p.227] preed a filter by multiplying by a gate function in the
expansion:

T™(6,z k) ~ 2 ismcg( )[Anpcos( )+ B',‘,,psin((Zp;—Ll)ﬂz) exp(ing) (15)

n=-—N; p=0

where the poweg is a positive number (in the following = 1 or 0) and sincf) = sin (rX)/(xX). The remaining
oscillations (at the beginning and at the end) are simplyoraad from the signal. For each cycle, the function (16)
is a solution of (2) in the form (7) and which matches the measents at the radiug, (i.e., verifying boundary
conditions (11)).

Ni Py K Jn(gn P ) npz K Jn()(n pr) ((Zp + 1)7TZ)] .
Ta(r, 6,2 K) = n;\ll; sde(Nl)[ P 3R R cos( ) Bann(Xn Ro) sin oL exp(ind) (16)

whereZ, , andyn p are defined by:

oo O

_ | {@p+Dr)? iwn
Xnp = 2L D

This part of the solution is exactly the solution of the siehdat equation, but updated at each cycle. It can
be noted that the axial heat flux vanishes#er +L (because of (13)) as required in the set of conditions (3¢ Th
heat flux corresponding b, is determined analytically by:

(17)

Hl(r,g,Lk)zﬂ(aTl 16Ty 0T, Z)

— -—— — 18
3rer+r30e9+ 6ze (18)

aT ShS : n((n ) z Jé(/\/n’ r) . 2 Dz .
a = 2 ZS'”('G(N )[An P00 3 ook p':?m) cos(ﬂp )+ Bﬁan,pJn(Xn’p'I;m) sm(( p;L i )} exp(in)

10T, A in \]n(/;n p ) Pz Jn(Xn p ) (2p + 1)7TZ .

T 2T ZS'”CQ(M)[ N o R e R v S'”( 2L ) exp(in)

0T & & o n\[ TPAL () pzy (2p+1)7Bf, Jn(xnpr) (2p+ )z -
i nZ’:\hpZ;)smé’(N—){ 3 Jn(§n R sm( )+ oL TnCtnpRe) cos( o0 ) exp(ind)

6.3. Commentary and edgfext

The radial variations of the temperature field are deterdhidy&)n (¢n,pr) andJn(xn,pr). Ratiosdn(¢n pr)/ In(¢npRs)
andJn(ynpr)/In(xnpRs) represent the attenuation (at the radiuef the temperature signal considered at the sur-
face of the roll. Indeed, if temperatures at the surface ®fditi were known (which is not the case) and expanded
into a Fourier series with Fourier cheients denoted bj; , andBg , (s meaning surface) then the steady part of
the temperature in the roll would be:

IR n(Zn.pr) pz s Inlynpr) . ((2p+ 1)nz
2, Z[A“pJn(znppRa cos( ) + B2, R S'”( 2L )

n=-N; p=0

exp(ing) (20)

It is therefore clear that scaling factad§(¢n pr)/ In(Zn,pRs) and In(xn,pr)/In(xn,pRs) are like a low-pass filter ap-
plied to the temperature signal at the surface of the roll.
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The figure 5 showsh(¢n pr)/ In(¢n,pRs) (codficientsdn(xnpr)/In(xnpRs) are very similar) for some values of
n and p againstr with w = 8r (rag's) andD = 6 x 1075, A typical edge &ect is demonstrated. The radiRs,
is chosen in order to be in the skin thickness of the roll. Belythis skin thickness the measured signal would
be almost constant (since ratios vanishes, correspondingef codficients would be discarded from the series
expansion). It is obvious that the closer from the surfaeestimsor is fixed and the lower the attenuation level
of the signal from the surface is, but ratios presented inréigugive precisely quantitative attenuation level as
a function of the radius. It has been demonstrated by Weasa#t et al. [19] and Legrand et al. [20] that it is
possible to insert a thermocouple at around 0.5 mm from thfaeeiof the roll, that is why this depth has been
chosen in the following.

It should be noted that the-dependence is almost negligible compared withrtteeependence (fon > 1).
This is due to the fact thapgr/L)? << wn/D and (2 + 1)r/(2L))?> << wn/D. Thus, even if the temperature
signal at the surface is very heterogenous along the ax&dtitin (corresponding to thedependence) 3Dffects
are rather limited since the attenuation of each Fourieffiodent does not significantly depend pnThis is why
a 2D inverse method (that is to say= 0) gives for the reconstruction of surface temperature aad fiux good
results as detailed in section 9. However, fiot 0, codficientsJo(Zo,pr)/ In(£o,pRs) and Jo(xo,pr)/In(xo,pRs) are
p-dependent and do not present edffea, as it can be seen in figure 6. Thus, floe 0 Fourier coéficients
of the temperature signal at the surface of the roll are a#tesd along the radial directionftérently the ones
from the others (according tp), especially in the roll core. This demonstrates a threeedisional &ect in the
roll core, according to the radial and axial directions madpendent on circumferential direction sinte- 0.
These comments correspond to the analysis of Hacquin [1b] miasshed the skin of the roll along the radial,
circumferential and axial directions, and meshed the cbtieeoroll along radial and axial directions only.

1.0

: ']n(z:n,p r) 1 4 4
;Jn(é‘npRs) ] n=1

S

-0.2 T T T T T T T T T T T T T T T T T
249.0 249.5 250.0 250.5 251.0 251.5 252.0 2525 253.0 253.5 254
r (mm)

Figure 5: Edge fect
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Figure 6: 3D &ect in the core

7. Transient solution T»

T, does not verify the initial condition (room temperature{®¥and (6). A corrective solutiom; is therefore
needed.T, should verify the initial condition minus the initial tenyagure field introduced by the solutidn.
MoreoverT, should vanish at the radiu&,, which is seen as a boundary condition®g. Therefore, ifx,q are
the positive zeros of the Bessel function of the omdéarranged in ascending order of magnitude), theris
sought in the form of Fourier-Bessel series (and so autaailftivanishes at the radil,):

N;  P1 Qp
t—t\ . ((2p+ L)nz r .
To(r, 0,z t,k) = Y exp( )cos( )+ LY exp(— )sm( In | Xng—=| exp(ing)
n:z_;ul pZ(:) qz; P Tnpg mha Un,pg 2L "\ R
(21)

whereN; is an integeraﬂf{lq and,Bﬂf)p,q are complex numbers and the relaxation timgs anduy p g are given by:
-1
1 Xn.q 2 pr 2 jwn
wea=5|(7,) () + 5
-1
1((*%q\® [((@p+1)r\> iwn
a5 \(Ra) T2 )T D
T, is written by considering each cycle as an independent pnobT hus, for the first cycle the initial condition
is the room temperature. For the other cycles the initiabi@tam is the temperature field at the end of the previous

cycle. The initial condition of (5) and (6) can be written afidws (reminding that the time at the beginning of
each cycle idy):

(22)

Q1
;aﬁr’pq% (1aac) =850
(23)

Zﬂ‘nk:)q o) = 300
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where:

Ui = Ta— AS k=1

Ut (r) = —Slné’( )A,‘ﬁ J:Ezf'inp’;l) 1 24

‘]I"I n,
u(k) (r) - Za(k 1 exp( — )Jn( er) + Sin@(Nil)(Aﬁvpl AE ) Jn(gp;:) k>2

v k. _Jolxoor) B
(r) BooJ o(Cc0oRm) e k=1
K) _ k _“nnpl 3
V() = smc?( ) = pJn(Xn R k=1 (25)
K (ry — 2‘ (k-1) _ k= r gl N k \ In(rnpr)
il qzlﬂn’p’q exp( Unpg ) o (Xn’q Rm) +sinc ( Nl) (B ~Bn p) In(xnpRm) k=2

It can be noted that for tHe¢h cycleu(") (9] and\/ﬂff)(r) are functions of the variabkeknown on the whole domain of

variation ofr (i.e., [0, Rg]). Coe%iuents«yﬂ%,q andﬂﬂf)p,q are given by (26) in an analytical form (called ¢bgents
of Fourier-Bessel expansion) used by Sneddon [29, p.37pagdously demonstrated by Watson [30, pp.591-
594].

® _ f ® P
ang PUnp(p)J (Xn )dp
e n+l(Xn ) "\ Ry

(R VK N d
IBn,p,q n+1(an)f ,0 p(p)‘] (anRm) 0

By using a well known result (27) given among others by Sned@®, p.27] and (28) given by Gradshteyn and
Ryzhik [31] the expression (mfn b andﬂﬂf{lq reduces to (29) and (30).

Rm
fo pJo(xp)do = RmJl(EmX) (27)

(26)

R -
f p3n(x0) ()l = Ry (B In(Rery) = yjml(Rmy)Jn(RmX)
0 Yy (28)

R
L pJn(Xp)de = % (Jn(RmX)Z - Jn—l(RmX)Jml(RmX))

_ Ak
a(k) _ 2 T AOO k = 1
004 Ji(X0q) Xog
o) - 2 smcf;(n/Nl)An D k=1 (29)
Jn+l(xn,q) Rm.(n,p n,g Xngq
. k k-1
a® = gD exp(‘tk_tkl) oabed, 2 Sind (/0) (A, - A45) eXp( ; ) k=2
npg ¥npg Tn,pg Jn+1(Xn,q) Jn+l(xn,q) erngr%,pxﬁ,%] — Xng Tn.pg ~
k
P C—— Boo k=1
009 " J1(x0q) Ra3 oX6q Xoq
ﬂﬁk%)q _ 2 sind(n/Np) B, k=1 (30)
o Jn+1(xn,q) Rm)(n,p n,q Xn»q
®) (k-1) b= tiea | In-1(Xng) 2 sind(n/Ny) (B, — BY,7) k) k>2
Bhba = —Brpg EXP|- 3 + 2.2 w1 exp =
Un,pq hi1(Xng)  Ini1(Xng) Rny\/n,pxn,q — Xng

Un,pg
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In their previous work Weisz-Patrault et al. [18] solvedstkind of expansion into a Fourier-Bessel series by
discretizing the problem along the radial direction whicmswery inelegant considering that an analytical solution
exists.

The heat flux associated wiily is given by:

_(0T2 10T, aT»
H2(r,9,z,t,k)_/l((9r &+ o et azez) (31)
where:
Ni Pr Q1
— K pr t—t) . [((2p+ Dnz\| Xng r .
® prz\ _ e T
Z Z Z [ @hpg exp( ; ) co ( 3 ) + B exp( Un’p’q) sm( oL R, Jh | Xng R exp(iné)

n=— N1 p=0 g=1
Py Q1

Tn,p,
1T
;a; % ol %”wexp(

p t—t\ . ((2p+ 1)nz
Tn,pq ) T) * ﬂg%’q exp(— Un,p,CI) Sm( 2L R, Rm P

t—k) (p_) (2p+ LnBldg Xp(_t—tk)cos((2p+l)7rz
L

2L Un,p,q

n=_N: = p=0 g-1
Ny P1 Q1

P

n=—N; p=0 g=1

Tn,pq

8. Validation of the solution

8.1. Direct analytical temperature field

The accuracy of the present inverse method and its noiséigiynss demonstrated as follows. A prescribed
time dependent temperature field (solution of (2)) is cosrgd and called P(r, 6,z t), p meaning prescribed.
Therefore at the surface of the roll the temperatufie’@s, 6, z, t). Then the temperature at the inner radRysis
extracted from the temperature field. The inputs are the ¢eatpres at the radilg, (replacing measurements)
and at the axial positiorg (j € { S}, whereS is the number of thermocouples) and considered for suaeessi
times (calleotk =ty + 6/ w) accordmg to the rotation speed of the roll and the inkekthe cycle:T™(6, z;, k) =
TP(Rm, 6, z,,t") Then cubic splines are used to interpolate the input sigloag both the circumferential and
axial directions, thud ™9,z k) is obtained. The outputs are then calculated and comparéuetprescribed
temperature at the surface of the roll. The eegiven in (33) is used as a percentage to evaluate the quélity o
the reconstruction.

f B [T0.28.0 - Tr(Rs 0.2, 8)] dodz
[ [TPRs, 6.2, doctz

(33)

The prescribed temperature field is:

N, P
TP(r,0,z1) = Z Z [an,p\]n (gn,pr)cos(nsz) + bnpdn (Xn,pr)sin(ﬂ(zgiil)z)] exp(nb)

n=—N, p—

N D2 ] iwn  (Tp\2 —t p pz

5255 o - - el 2 Jewemen{E) o
n=-N; p=0 g=1 npgq
N P2 Q :
iwn a(2p+1 —t (7(2p+ 1)z
+ Z ZZdnqun[r\/D "D —( ( SL )) ]exp(v*—)expﬁne)sm(%)
n=—N, p=0 g=1 Un,pg n.p.q

wherey, q are the successive positive zeros of the functiors hn(y) = A(y/Rs)Ji(Y) + HTC x Ju(y) andan p
andbn p are complex numbers given by (B.8),p  anddn p q are complex number given by (B.13},, ; andvj, ,
are given by (B.8), andtll,, P, andQ; are integers.

The temperature fiel@P(r, 6, z t) given by (34) is in the form of (7) and is therefore an exadtiion of the
governing equation (2). Céiicientsan, p, bng, Cnpq @anddn pq are chosen such as the temperature fiél, 6, z t)
corresponds to a roll surrounded by the ambient temperatuegerywhere but in a paré(z) € [r — @, 7 + O] x
[-L + Z, L — Z] where the surrounding temperature is a slapé, 2) as defined in Figure B.27 (simulating the
contact between the strip and the roll). The heat flux ergettie roll is defined classically by a heat transfer
codficient HTC. A constant HTC has been considered for simpligh§yC = 7 x 10* W.m=2.K™1), because
this choice make the problem linear, a time or angular depetid TC would not enable an analytical solution.
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This value of HTC corresponds to the contact between thenallthe strip (ste/teel) but is physically strongly
incorrect outside the contact interval (ateel or watesteel). Therefore these boundary conditions are very simpl
compared with real boundary conditions occurring durintimg processes, but for the purpose of validating the
present inverse method and its noise sensitivity, they @fficiently severe boundary conditions beca@sand
T*(0, 2) are adjusted to have a sharp temperature peak quite ctoradsults classically obtained with predictive
models of section 1.1. Details concerning the calculatioa,@, bng, Chpq andd, ,q are appended in Appendix
B. The surrounding temperatufie (6, 2) is chosen strongly heterogeneous along the axial dire¢tiear strip
edges) to show the accuracy of the present method.

8.2. Discussion of parameters

The parameters of the problem are listed in Table 2. Theiootapeed is settled tor8(rad's) or 6.4 nis
considering the radius of the roll, which is the kind of speethmonly used for industrial hot rolling conditions.
The angular pa® where the roll is heated for the validation of the inverseigoh presented in this paper cor-
responds approximately to hot rolling conditions with rgductions. The half-length of the rdllis consistent
with industrial mills. The ordeg of the filter introduced in (15), is settled to 1 for the firstkyas proposed by
Acton [28, p.227], for the cycle after 10 minutes, there idiszontinuity of measured temperatures between the
beginning and the end of the cycle (as it can been seen in idur@) and 12(b)), theg = 0 so that the filter is
removed from the development.

IntegersN,, P, andQ, are the truncation numbers for the prescribed temperatlce fiow values fo® and
zdependence$\, andP;) have been tested for simplicity, since any values give afytinal solution of the heat
equation. On the other har@, determines the quality of how the initial condition is vexdj thereforeQ, is
settled to a rather large value (as well@gsfor the inverse solution) so that a good convergence of spoeding
Fourier-Bessel series is ensured.

Parameter Value
Ny ) 50
P1 () 50
Q () 200
N2 () 20
i) () 14
Q () 200
Ny ) 100
N, (') 30
S ) 30
Rs (m) 0.254
Rm (m) 0.2535
D (m?/s) 6x10°
A (W.m KT 52
w (rad's) 8n
f (Hz) 1000
Ta (K) 293.15
HTC (WmZK | 7x10°
S} (rad) 7/10
L (mm) 700
z (mm) 200
g () 0/1

Table 2: Computing values

For the inverse solution the truncation numbigysandP; are determined as follows. The Fourier ffogents
A',‘Lp and Bﬁ,p are amplified bydn(¢npRs)/ In(Zn,pRm) @and In(xn pRs)/ In(xnpRm). Thus, small errors for the com-
putation ofA',‘Lp and Bﬁ,p are more and more amplified whenand p increase, until that the solution diverge.
In Figure 7, coéficientsJn({n,pRs)/ In(¢n,pRm) are plotted against for some values op (similar figure could be
obtained forJ,(xn pRs)/In(xnpRm)). Sharp variations can be noted according ishen codicients seem almost
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independent op. That is whyP; is simply taken such as the sum has converged: it is not signifio be very
precise because chieientsdn({npRs)/In(¢n pRm) diverge very slowly according tp. The choice oP; is shown

in Figure 8. ForNy, since co#ficientsJ,(£n,pRs)/ In(£n,pRm) @and Jn(xn,pRs)/ In(xnpRm) strongly diverge whem
increases, errors ohﬁ,p and Bﬁ,p are rapidly amplified until that the solution diverge. ThiNg,should be taken
such as errors are not amplified to much as demonstratedungsi@ and 10. Usually, when noise is added to the
inputs, errors made on Fourier cfﬁeientsAn"yp and Bﬁyp increase and\; should be reduced. However, the partic-
ular case, that is proposed in this paper in order to valithetenethod, is simple enough to keep the same value
of N; because as it can been seen in Figure 7 amplification factgia b diverge for values af > N; = 50.

5000

i '];1(Cn,pRs)
1 JA&p Rn)

55 - - - - 36
n
-20000 T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200
Figure 7:Jn(4n,pRs)/ In(¢n,pRm) vsn for some values op
12
1 n=0 P
107
i A B Jn(Xn,p S)
np ———
8
i Jn(Xn,p Rm)
6
R
,A P1 + Anp ']yl((n)p s)
4 — p ——————————————
| N "]n((n,pRm)

-8 : : : : : : : : : : . . . . . . .
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Figure 8: Amplification factors ve
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Figure 9: Amplification factors va for p = 0
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Figure 10: Amplification factors v andp

8.3. Reconstruction free from noise

Using (34), the inputs are produced for twdtdrent cycles: the first cycle and the cycle after 10 minutes.
The prescribed temperatures at the surface of the roll amngn Figure 11, and the temperatures at the inner
radiusRy, (replacing measurements) are given in Figure 12. In ordeotopute coﬁcientsAﬁ,p and Bﬁ,p given
by (14),fft are used as detailed in Appendix C. Input signal is intexiaal with cubic splines\}, and N(i, denote
the numbers of interpolation points. A compromise betwesrugacy and short computation times should be
found. Two sets of parameters are testéd: = 100 andNie = 1000 leading to a CPU time of 0.07cgcle
andN; = 1000 andN; = 1000 leading to a CPU time of 0.%cgcle. This has to be seen as a rule of thumb,
no specific study about the solution quality consideringrtheber of interpolation points has been done. The
outputs of the method compared with the prescribed temprerat the surface of the roll are given in Figures 13
and 17 for the first cycle and in Figures 15 and 19 for the cyitér 40 minutes. The quantified errors are listed
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in Table 3. Excellent accuracy is observed in both casesaduuracy is better near strip edges for the second
set of parameters. Figures of the absolutéedénce between the reconstructed temperature and theipegisc
temperature (error of reconstruction expressed in Kektia)ylso given for emphasizing the reconstruction quality
near strip edges (see Fig.14, 16, 18 and 20).
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Figure 11: Prescribed temperatures at the surface of the rol
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Figure 12: Prescribed temperatures (replacing measutejradrthe inner radiuRny,
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Figure 13: First cycle, reconstructed temperatures atuface of the roll without noise faxi, = 100 andN; =1000
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Figure 14: First cycle, error of reconstruction withoutseforNi, = 100 andNig = 1000
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Figure 15: Cycle after 10 min, reconstructed temperaturéseasurface of the roll without noise fot, = 100 andN; =1000
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Figure 16: Cycle after 10 min, error of reconstruction withooise forN} = 100 andN}, = 1000
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Figure 17: First cycle, reconstructed temperatures atuHace of the roll without noise fcm‘Z =1000 and\l(; =1000
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Figure 18: First cycle, error of reconstruction withoutsmforN‘Z = 1000 and\l(; =1000
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Figure 19: Cycle after 10 min, reconstructed temperaturéisessurface of the roll without noise foi, = 1000 and\lig = 1000
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Figure 20: Cycle after 10 min, error of reconstruction withaoise forN}, = 1000 and\lig =1000
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€ CPU time
Without noise |  With noise (s)
First cycle 1.1% Fig.13| 1.8% Fig.21| =~0.07
Cycle after 10 min| 1.0% Fig.15| 1.7% Fig.22| =~0.07
Table 3: Quantified error foX} = 100 andN} = 1000
€ CPU time
Without noise With noise (s)
First cycle 0.7% Fig.17| 1.6% Fig.23 ~0.5
Cycle after 10 min| 0.35% Fig.19| 1.4% Fig.24 ~0.5

Table 4: Quantified error faKj, = 1000 andN}, = 1000

8.4. Noise sensitivity

The measurements are carried out practically with noiséfié\al noise (uniform law and amplitude 1 K) is
added to the inputs. Then the reconstruction is calcul@tedr section 8.3. The outputs of the method compared
to the prescribed temperatures at the surface of the rolyjigen in Figures 21 and 23 for the first cycle and
Figures 22 and 24 for the cycle after 10 minutes. The quadtiéisults are listed in Table 3. The reconstruction is
satisfying and therefore the noise sensitivity does notpgromise the method.
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Figure 21: First cycle, reconstructed temperatures atuface of the roll with noise foN} = 100 andN‘i} = 1000
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Figure 22: Cycle after 10 min, reconstructed temperaturéigeasurface of the roll with noise f(MiZ =100 andN(; = 1000
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Figure 23: First cycle, reconstructed temperatures atuHace of the roll with noise foNiZ = 1000 ancNis =1000
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w0y T(R,,60,7t5) (K)
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.......... PreSCrlbed
550 yooul temperature

Figure 24: Cycle after 10 min, reconstructed temperaturéisessurface of the roll with noise fox), = 1000 and\lig = 1000

8.5. Sensor depth

Technologically the temperature sensor depth is knownavitarror. Therefore it is a good result if the inverse
method is not very sensitive to uncertainties about theetepth. Here a 10% error of the depth is considered
for each thermocouple. Therefore, inputs with random srfimiagnitude = 0.05 mm) done oI, are considered
and reported in Figure 25(a). The reconstructed temper&duthe first cycle is shown in Figures 25(b) and 25(c),
and the quantified errors are listed in Table.4. Tempera&genstruction is not very sensitive to a 10% error of
the temperature sensor depth.

€ CPU time
Without noise With noise (s)
| Firstcycle| 1.0% Fig.25(b)| 2.0% Fig.25(c)] =~0.5

Table 5: Quantified error considering 10% error of the defpésach thermocouple, fd} = 1000 and\lig =1000
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(b) Reconstruction without noise (c) Reconstruction with noise (amplitude 1K)

Figure 25: Sensor depth sensitivity

9. Comparison with previouswork

As detailed in section 2, the present inverse solution imgs@ previous work [18] where three unnecessary
assumptions were made. The interest of using a 3D inverseoth@mpared with a 2D inverse solution has
been highlighted. In this section, only the improvementradlgtical solution is emphasized. In figure 26, recon-
structions of prescribed temperatures for the first cyaesaown for both 2D previous work [18] and present 3D
inverse method for two values flt can be noted a slightly better accuracy for the presenkwithe unnecessary
assumptions of the previous work [18] led to an underestonaif temperature at the beginning of the cycle and
at the exit of the roll gap.
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Figure 26: Comparison with previous work

10. Computation time

The computation time is studied to rapidly optimise the stdal parameters during the rolling process. The
principle is to write the solution in matrix form or in hypeatnix form (considering the three levels of sum). The
matrices (or hypermatrices) can be computéfdipe (i.e., before the rolling process) and be stocked iibvraty
(the frequency of acquisition being known). The squtio)1i$8/vritten by using (16}(21) in hypermatrice form.
The only quantities to compute on-line aékb andB p- Considering (14) itis convenient to use the Fast Fourier
Transform (ft). A well known method to improve the quality of these int&gris to interpolate the discrete inputs
with cubic spline and to apply th&. Comparing with the two dimensional case (CPU time 0.05tsecycle
after Weisz-Patrault et al. [18]) thefit take more time because of the double integrals, howevenuahger of
points of interpolation has been reduced to get similar agaton times (0.07 sec by cycle) without comprising
the integral quality. A more accurate computation can baiabt in 0.5 second by cycle. This computation time
is promising for a real time computation and has been obddimrea Quadcore 2.8 GHz processor and is the time
displayed by Scilab 5.3. A significant improvement could e implementation in a compiled code written for
example in G-+.

11. Conclusion

A three dimensional inverse analytical method has beenlolesd mainly to estimate the temperature distri-
bution at the surface of the roll. Heat fluxes can be derivethfthe method also. The temperature (and heat
flux) can be obtained in the whole roll. The method interptieésmeasurements of several thermocouples fully
embedded under the surface of the roll and aligned alongxiaédirection. The numerical results presented in
this paper are satisfying for an industrial rotation spddte measurements are carried out practically with noise.
Noise sensitivity has been studied by adding artificial amdhumbers to the inputs, and accuracy has not been
compromised. Sensitivity to sensor depth errors has beelest and is not critical. This enables experimental
estimations for flatness and crown control. The advantafjgseqresent truly 3D solution compared with the
previous work [18] have been highlighted. Moreover, themaalvantage of this contribution, compared with the
few existing 3D iterative methods, is the very short compiatatimes: 0.07 second for each cycle for a rough
computation or 0.5 second by cycle for a more accurate coatipat(CPU times are obtained for a quadcore
2.8 GHz processor and is the time displayed by Scilab 5.3grdfbre the method is promising for a real time
computation in order to optimise the flathess control des/aned crown correction tools during industrial rolling
processes. An industrial sensor can be developed on the dfasiis contribution as a simple tool for on-line
industrial monitoring and control of flatness and crown @ poduct.
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Appendix A. Family of solutions

The unsteady heat equation relative to an Eulerian referexpressed in polar coordinates, where the thermal
properties of the material are assumed to not depend onripetature is given by the equation:

o°T 16T 1 10°T LoT T aT ﬂ (A1)
oz "rar Tv2ee "oz " plat TV '
The solution (Z-periodic foré at any time) can be developed in Fourier series:
T(r,6,21t) = Z Fn(r, z t) exp(ing) (A.2)
N=—o00
Thenth Fourier cofficients is sought such as:
Fn(r, z t) = an(r)bn(2)cn(t) (A.3)
Thus: ) b
17 1 /7 n /7 an r z J H
On@)ea)(#0)+ 340) - Fzou(n) + e = 2B o viona) (A
The conditionT (r, 9,t) > 0 is verified T expressed in Kelvin) therefore:
1 b7 (2) 1
r)+ r)— r c,(t) + iwnecy(t A5
i (a0 + a0 - Gan) + B = L2 @0 +iona(o) (5
Both terms are functions of independent variables, thuscwoplex number€; andC, exist such as:
1 n? ) by (2
r) + ) — —an(r C, - =C
5 (0 a0 - Fadn) -1 22 ¢ -

NG (ch(t) + |wncn(t)) =C

Thus:

an(r) = In(v-Car)
bn(2) = exp(+/C1 — C22) (A7)
c(t) = exp(OC1 — iwn)t)

whereJ, is the Bessel function of the first kind of the order
By introducingr = -1/ (DC; — iwn) anda = /C; — C; it is obtained that the following function is a solution
of (A.1).

1 iwn t
- 2 = '
an( 0: D +a r] exp( T)exp(lna) exp(a2) (A.8)

Appendix B. Direct analytical solution

An analytical solution is sought for the problem of a roll teshby a surrounding temperature which creates
a heat flux equal to the fierence between the surrounding temperature and the tetmgeaa the surface of the
roll multiplied by a heat transfer céficient. Here HTC is taken constant which is discussed in &@&i The
surrounding temperature (call&d) is everywherd , butin a part§,2) € [x — 0,7+ @] x [-L + Z, L — Z] where
it is slope as defined in Figure B.27.
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Figure B.27: Surrounding temperatuig:
Therefore an expansion into a Fourier series gives:
N, P
. (n(2p+ 1)z
T°0,2) = Z Z ap, cos( )+b* sin 7(2p + 1)z exp(né) (B.1)
n=-—N p=0 2L

The codficientsa;, , andby, , are defined as follows:

,p 2L7rff T*(0, 2) exp(— |n0)cos( )dadz
YneZ,Vp=1
brp = T f f T°(6,2) exp(-— In9)sm(( p;_l)”z)dedz
(B.2)
o= 4L7rf f T7(6, 2) exp(—ind) ddz
YneZ
bho = 2L7rf f T*(6,2) exp(- m&)sm( )dadz

For the purpose of validating the method only a few terms ansiclered (i.e.N, = 20 andP, = 14). Therefore
the real profile ofT* is given in Figure B.28
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Figure B.28: Surrounding temperatuik:

The solution of the problem is sought in the form of (7):

N, P
z . 2p+1)z

TP(r,0,z1) = Z Z [an,pJn (gn,pr)cos(%) + bnpdn ()(n,pr)sm(%)] exp(nb)

n=—N, p=0
+ i i i Copgdn]|T _r @ - (@)Z exp( —t )exp@n@) cos(ﬂ—pz) (B.3)
n=—N, p=0 g-1 Dtipg D L Tnpg L
N2 P2 Q : 2
1 iwn (#(2p+1) —t . [(n(2p+ 1)z
+ Z Z Z dn,p.gdn [r \/Du;; D (72_ ) ]exp(—v* )exp@n@) sm(im_
n=-N; p=0 g=1 ,P.q n.p.q

wherean p, bn p, Cnpg @andd, pq are complex numbers adh, P, andQ, are integers.
The boundary condition is:

P
17 (R, 6,2.) = HTCX (T°(6,2) - T°(Rs 6,2.0) (B.4)

It is convenient to introduce:

B 1 iwn (wp\? 1 iwon  (7(2p+ 1)\?
Yng = RS\/DTﬁp’q D ( L ) - RSJDUﬁ’p’q D ( 2L (B-5)

It can be noted that the notatign, is abusive because the definition involves clearly the inaleldowever, the
boundary condition (B.4) gives:

AYng .,
R Ji(Yng) + HTC X Jn(Yng) = 0 (B.6)
S
Thereforey, 4 do not depend op and are calculated numerically by taking the successiviip@geros of the
functions: y
y = hn(Y) = 22-Jn(¥) + HTC X Jn(y) (B.7)
S

Figure B.29 shows an example.
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Therefore:
« 1 yn,q 2 iwn p 2 -
a=sll5 ] 5 +(—)
D\ R D L .9)
" _ 1 Ynq 2+iwn+ 7T(2p+1) 27t '
Unpa = p || Ry D 2L
The boundary condition (B.4) gives also for terms indepahda time:
doo = aao .
ao = HTC x & ,
P U pdh(LnpRe) + HTC X Jn(¢npRe)
HTC x by, (B.9)
boo = ’
" Axo0J5(xooRs) + HTC X Jo(x0.0Rs)
b HTC x by,
P Wvn pdh(¢npRs) + HTC x Jn(xn pRs)
The initial condition is:
TP(r,0,20)=Ta (B.10)
The initial condition (B.10) gives:
Q2
Yoqf .
> cO,o,qu( = ) = Ta— 00 = Uj,(r)
g=1 s
Q2
Yngl "
2 cn,p,qJn( R ) = ~anpdn(Znpl) = Unp(r)
o=1
(B.11)
Q2
Yo,qf
Z d0,0,q30( Rq ) = —boo = Vg(r)
=1 S
Q2
Yngl
Z dn,P,qJn( nRZ_) = —bnpInynpr) = \frk'l,p(r)
o=1

In their previous work Weisz-Patrault et al. [18] solvedstkind of equation by descritizing, but there exists an
analytical solution which is used in the present paper. 1Bid called a Dini expansion and is used by Sneddon
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[29, p.40] and demonstrated by Watson [30, p.596].

2y2 Rs X 0
Cn.pg = Rz rII?CZ L pun,p(p)Jn (yn,qﬁs) do
[Vha -+ B R0

2 ®
dupa = i [ o) ynag ) o
S
(Va4 0 R0

By using (27) and (28) the expressionaaf,q andd, pq reduce to (B.13).

(B.12)

2Yo,4(Ta — @0,0)91(Yo,q)
RZHTC?
(ot = 5000
2y; q&n.p Zn.pRsIn+1(Zn.pRs) In(Yng) — YngIn+1(Yng) In(¢npRs)

RZ TC2 y2 _ 72 2

2Y§ oo Xx00RsJ1(x0,0Rs) Jo(Yo.q) — Yo.q91(Yo.q) Jo(x0.0Rs)

RZHTC? Yoq —X60RE
e 1) o b

ZYﬁ,qbn,p )(n,pRan+1(Xn,pRs)~]n(Yn q) Yn qJn+1(Yn,q) Jn(Xn,pRs)
HTC? Yaq —XapRE
(yﬁ,q e B . ) J3¥na) e

Co0,q =

Cnpg =

y%,q -
(B.13)

doog =

dn,p,q =

Appendix C. Fast Fourier Transform Algorithm

The inverse method relies on the fast computation of folgguantities gy is the Kronecker symbol):

1 2 m pr
Aﬁ,p= mfo (iLT (o, z,k)cos( )dz)exp( ing) do

vneZ, Vp=0 (C.1)
1 (&((t . ((@2p+ L)z _
ko _ m -
Brp = n (i T (H,Z,k)sm( oL )dz)exp( ing) do
Theftt algorithm of a signaF(x) given forl € {1;...; Ng} computes the following vectop(e {1;...; Ng}):
fft[F(x)], = Z F(x)exp( g ) (C.2)
F

Thus, if the measured temperatuie8(6, z k) are interpolated with cubic splines &t = (27r/N )(j — 1) and
z = (2L/N)(I - 1) - L, where the number of interpolation points zNjgandN then the Riemann approximation
gives:

me(O z,k)cos( )dz zRe

Z( 177029 exp| -1 27 )}

B oL N: 15 (C.3)
= WizRe[ﬂft [(-1)PT™], ]
Furthermore:
f ) Re|fft[(-1)°T™], (6)| exp(=in6) do ~ — Z Re] fft [(~1)°T™], (6)] exp( z(i-1) . &) ]
’ Ny i Ny (C.4)

- N%ﬁt[Re[ﬁt [2PT™ ],
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Finally:
1

ko _ _c
Anp = (1+ 16p0) NiNL
Moreover, since/z € [L, 3L], sin((2p + 1)xz/(2L)) = sin((2p + 1)x(2L — 2)/(2L)):

L 3L
iLTm(e,z,k)sin((Zp;iLl)nz)dz= %L 'Fm(e,z,k)sin((Zp;iLl)nz)dz (C.6)

frt|Refit [(~1)°T™], ] (C.5)

where:

T™(6,2 k) ze[-L,L]

(0.2 k) = { T™@O.2L-2K) ze[L 3L] (C.7)

Thus, the interval{L, 3L] is divided inz = 4L(I — 1)/(2N} — 1) - L and the Riemann approximation gives:

1 ((@p+ Lz oL A 2n(l - 1)
z Sl il ~ : 2 _1)PTM i\
ZIL T (a,z,k)sm( o0 )dz Im 2N, 1 24 i(-1)PT (a,zl,k)exp( I2N'Z—1(2p+ 1)) cs)
L —
- _ _1)PTM
= 2Niz_lRe[ﬁt[( 1)PT ]2p+1]
Thus, by using again the Riemann approximation for the sttodrgral:
-2 —
k = _1\pTM
BY, N(L(ZNiZ_l)ﬁt[Re[ﬁt[( 1)°T ]2p+1]]n (C.9)

Thus, coﬁ‘icientsA,'f,,p and Bﬁ,p are computed with doubl&. The computation time and the accuracy are very

dependent on the number of interpolatitlpand N.. A compromise should be found. In the paper two options
are testedN; = 1000 and\; = 100 for a CPU time of 0.07/sycle andN; = 1000 and\; = 1000 for a CPU time
of 0.5 gcycle.
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