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Abstract: We measured the pressure drop vs flow rate during the flow, in a wide range of 

velocities, of well controlled yield stress fluids through confined packings of glass beads of different 

sizes. A detailed analysis of the data makes it possible to extract a general expression for the 

pressure drop vs flow rate curve through a porous medium as a function of the flow rate and the 

characteristics of the system. This general law has a form similar to the Herschel-Bulkley model 

describing the rheological behavior of such fluids in simple shear, i.e. it expresses as the sum of a 

critical (yielding) pressure drop and a flow rate dependent term. This law involves the rheological 

parameters of the fluid, one characteristic length of the medium, and two coefficients which only 

depend on the structure of the porous medium. The first coefficient is related to the path of 

maximum width throughout the porous medium while the second coefficient reflects the pore size 

distribution. The values of these coefficients were determined in the case of a granular packing. 

 

 

1. Introduction 

The flow of non-Newtonian fluids through porous media is of interest for various applications: 

penetration of glue in the surface porosity of solid materials, injection of muds, slurries or cement 

grouts to reinforce soils, propagation of blood through kidney and, likely the most economically 

important application, injection of drilling fluids in rocks either for the reinforcement of the wells or 

for enhancing oil recovery, etc. Much work has focused on the flow properties of purely viscous 

non-Newtonian fluids, the simplest example being power-law fluids [1-4]. For example the 

propagation of a non-Newtonian liquid pushing another one, and the possible instability of the 

interface leading to fingering, is a subject of importance which has already been studied [5-6]. 

Another aspect concerns the effect of inertia which can further complicate the analysis [7]. However 

there is a wide range of injected fluids, and in particular in oil industry, which exhibit a strongly 

non-Newtonian behavior, i.e. they are yield stress fluids which flow like liquid only when the stress 

applied to them is larger than a critical value. These fluids are emulsions, foams, clayey suspensions 

or even some polymeric gels. As far as the flow of such fluids through porous media is concerned 

this yield stress character is likely to induce specific properties which are so far poorly identified. 

The basic knowledge of the pressure drop needed to induce a steady inertia-less flow of a yield 

stress fluid through a porous medium is so far not very well developed. In this paper we mainly 

focus on this situation. In practice the ultimate goal will be the possibility to predict the pressure 

drop vs flow rate relation from independent measurements of the rheological characteristics of the 

fluid and of the geometrical characteristics of the porous media (based on macroscopic parameters 

such as a permeability). 

The existing approaches for establishing the pressure drop vs flow rate relation for yield stress fluids 

have relied on the usual physical approaches of the permeability coefficient appearing in the 

Darcy’s law for Newtonian fluids: they use the analogy of the flow at a local scale within the porous 

medium with the flow either through a capillary or around isolated particles. Thus one can obtain an 
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equation relating the pressure drop to the average velocity involving specific but partly unknown 

lengthscales (pore size, total flow path length). In this way various expressions for )(Vfp   have 

been obtained [8-12] which all have the following structure, typical of yield stress fluids: the 

velocity differs from zero only beyond a critical pressure drop cp ; then it progressively increases 

as the difference between the actual pressure drop and cp  increases.  

The relevance of these approaches for yield stress fluids is questionable. In particular Balhoff and 

Thompson [13] suggested that for each of these relationships “it is not yet clear whether universally 

applicable adjustements (in particular of the lengthscales) can be made or whether a case-by-case 

assessment is needed”. Balhoff and Thompson [13] first evoke that the converging-diverging 

behavior of individual throats has a prominent effect for yield stress fluids.  

In fact we emphasize that the essential point is that in contrast with the flow through a capillary, the 

flow of a yield stress fluid through a pore does not necessarily involve a constant size of the possible 

volume of fluid transported: as the pressure drop increases a wider region of fluid starts to flow. So, 

in contrast with Newtonian fluids, as the pressure drop increases the characteristic length related to 

the fluid volume available for flow at a local scale would increase. A second difference of flow 

characteristics is that at a macroscopic scale flow actually starts as a percolation effect: at the critical 

pressure drop the flow occurs only along a specific path throughout the porous medium [13-14]; 

then, we can expect that as the pressure drop is increased more flowing paths progressively form 

within the porous medium. In fact these effects should not lead to an apparent behavior at a 

macroscopic scale fundamentally different from that which has been observed or predicted: they are 

consistent with a critical pressure threshold and then an increase of pressure drop with velocity. The 

point is that the lengthscales involved in this law might not vary at all as expected in the above 

theoretical approaches.  

Besides there have been several approaches based on network models [5,15] which provide more 

straightforward descriptions of the reality but don’t provide generic analytical expressions for the 

pressure drop vs velocity relationship. 

Unfortunately experimental studies in that field [8-10] are still scarce and rely on parameter 

variations (pore size or rheological parameters) in rather limited ranges. In addition existing data 

provide measurements of flow through porous medium in rather narrow ranges of mean velocity, 

typically slightly more than one decade. This implies that the comparison with a model can hardly 

be discriminatory. Also the comparison is done in linear scale so that the discrepancies at low flow 

rates are neglected, a critical point which precludes a relevant estimation of the critical pressure 

drop. At last the authors don’t discuss whether the ranges of shear rates explored in both flow types 

(rheometry and flow through porous medium) are similar so as to support the relevancy of a 

comparison with the predictions of a model using the rheological parameters measured 

independently. 

Actually a major difficulty in experiments of non-Newtonian fluid flow through porous media is to 

be able to obtain reliable data bases for both the rheological behavior of the fluid and its transport 

properties through the porous medium. As it is well known rheometrical tests with yield stress fluids 

need to be carried out carefully in order to obtain a relevant description of the material behavior [16] 

but on the basis of current knowledge it is possible to get reasonably relevant data. With an 

experiment of yield stress fluid flow transport through a porous medium various additional 

problems have to be taken into account. For example: standard pressure measurements cannot 

necessarily be used because of the development of normal stresses in cavities; additional pressure 

drop in the conduits before and after the porous medium may be significant for a yield stress fluid; 

the elasticity of the fluid in its solid regime may induce transient effects; the rheological properties 

of the fluid may be affected by its contact with the solid surfaces of the porous medium (ions or 

impurities) (a classical effect with Carbopol gels).  
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We propose here an attempt to gather a set of relevant data for the two types of tests (rheometry and 

flow transport through porous media), for a wide range of shear rates and different sizes of porous 

media, different pore sizes and fluid yield stresses. With that aim, we used a set up in which the 

different possible experimental problems mentioned above are minimized. The wide data base 

obtained under such different conditions makes it possible to analyze the results in detail and get a 

general expression for the pressure drop vs flow rate, i.e. an empirical Darcy’s law for yield stress 

fluids, with the appropriate scalings. After presenting the experimental set up, materials used and 

procedures in Section 2, we then present the data in Section 3, which are subsequently analyzed  in 

Section 4. 

 

2. Materials and procedures 

 

2.1 Materials 

In order to validate our measurement system, procedure and data analysis approach we carried out 

tests with a (Newtonian) Glycerol solution (99+%, Alfa Aesar), exhibiting a viscosity of 1.5 Pa.s at 

20°C.  

 

The first type of model yield stress fluid used was Carbopol (U980) solution in water. It has been 

observed that this material is essentially a glass made of a high concentration of individual, elastic 

sponges (with a typical element size of  2 to 20m) [17], which gives rise to its yielding behavior. 

The key advantage of this material is that it shows limited thixotropy [17-18] and phase migration, 

making it a quite well-behaved yield stress fluid. The preparation of Carbopol gel begins with the 

introduction of some water in a mortar mixer. The rotation velocity is set at 90 rpm and the 

appropriate amount of raw Carbopol powder is slowly added to the stirring water. After about one 

hour, the incorporation of the powder is done and the appropriate amount of Sodium Hydroxide (1 

mol/L) is quickly added to the solution, which increases its pH. The mixing is then maintained for 

approximately one day to allow a full homogenization of the mixture. Such a procedure makes it 

possible to obtain a material which remains stable for several months. Different Carbopol 

concentrations were used, leading to different rheological properties. Concentrations from 0.1 to 

0.8% were used but because of a significant influence of the actual mixing procedure, mixer type 

and mixing speed, on the solution finally obtained, we do not use, in the following, the 

concentrations as a parameter to identify a given solution but we rather rely on its rheological 

properties.   

 

The second type of model yield stress fluid was water-in-oil emulsion obtained by dispersing in an 

oil phase droplets of brine stabilized by a surfactant. At high volume fraction of the dispersed phase, 

droplets come into contact and the fluid exhibits a yield stress [19]. Batches of water-in-oil emulsion 

are prepared by dispersing a water + CaCl2 (150 g/l) salt solution in a surfactant solution (dodecane 

(Acros Organics) + 7.5%wt of Span 80 surfactant) with a Silverson L4RT mixer. The rotation speed 

of the mixer is kept at 700 rpm during the addition of brine. It is then increased up to 6000 rpm 

during 85 min until a homogeneous emulsion is obtained. The droplet concentration was varied 

slightly around 80%. In that case a slight evolution of the system (possibly some kind of coarsening) 

could be observed between some periods of tests. As a consequence, like for the Carbopol solutions 

these materials were basically characterized through their rheological properties. The droplet size 

was around 1m. 

 

2.2 Rheology 

Rheological tests were performed with a Bohlin-stress-controlled rheometer equipped with two 

circular, rough plates (diameter: 40 mm). The sample was carefully set up and the gap was fixed at 2 

mm taking care not to entrap air bubbles. A logarithmically increasing then decreasing stress ramp 

test was then applied over a total time of four minutes. Except for the first part of the increasing 
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curve associated with deformations in the solid regime the increasing and decreasing shear stress vs 

shear rate curves almost superimpose. We retained, here, the decreasing part as the flow curve of the 

material. For similar Carbopol solutions and emulsions it has been shown that this apparent flow 

curve obtained from macroscopic observations correspond to the effective, local constitutive 

equation observed at a local scale with imaging technique [20]. 

 

Carbopol gels and emulsions exhibit a simple yield stress fluid behaviour and their flow curve can 

be well fitted by a HB (Herschel-Bulkley) model (see typical results in Figure 1):  
n

cc k             (1) 

in which   is the shear stress, 0  the shear rate, c  the yield stress, k  the consistency factor and 

n  the power law exponent. For the different Carbopol solutions the material parameters were found 

in the following ranges: Pa 898  c , 
nk Pa.s 496.3  and 36.0n . For the emulsions we 

found: Pa 7154  c , 
nk Pa.s 4.137.12   and 36.0n . Note that since the Herschel-Bulkley 

model contains three adjustable parameters one can find slightly different values depending 

on the fitting procedure used. As in our case we observed that the resulting value for n  

ranged from 0.34 to 0.38, we decided to fix its value to 0.36 for all materials and adjusted the 

two other parameters, which makes it possible to represent the data as accurately as through 

various other procedures. 
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Figure 1: Typical flow curve of a Carbopol solution (squares) and an emulsion (circles). The 

continuous lines correspond to the HB model fitted to data with the following parameters: 

(Carbopol) Pac 3.19 , 
nk Pa.s 4.7  and 36.0n ; (emulsion) Pac 54 , 

nk Pa.s 4.13 and 

36.0n . 

 

 

2.3 Experimental set up 

 

The setup used for carrying out the experiments has been adapted from a set of experiments initially 

developed for studying the injection of micro-cement suspensions into sands, taking into account the 

filtration and clogging phenomena [21-23], with  application to the in situ improvement of 

mechanical properties of soils using grouting/injection processes. The set up is made up of two  

main components, (see Figure 2) which are: (i) an injection setup composed of a two-part (oil/fluid) 

injection reservoir, connected to an air/oil interface cell allowing to apply a regulated oil pressure in 

the reservoir; (ii) a confinement cell which contains the confined porous medium. This cell is 

connected, through plastic tubings, to the injection reservoir. The experimental setup is 
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instrumented with pressure transducers (measurement of oil an fluid pressures during the test) and 

with a precision weigh scale installed at the exit of the confinement cell (see figure 2.a) for 

continuously recording the mass of fluid flowing out of the porous medium and calculate the flow 

rate.  

 

The injection reservoir (see Figure 2a) is composed of two parts (bottom and top parts) separated by 

a low stiffness waterproof “Bellofram” membrane. The reservoir is 15 cm in diameter and 36 cm in 

height. The bottom part of the reservoir is filled up with oil (Newtonian fluid). This part is 

connected to the air-oil interface cell, which makes it possible to control the injection pressure. A 

pressure transducer is placed at the oil outlet point. The latter measures the relative oil pressure, pi, 

with respect to the atmospheric pressure. The increase of oil volume in the bottom part of the 

reservoir induces a displacement of the membrane which, in turn, pushes the fluid to be injected, 

located in the upper part of the reservoir, out of the reservoir. The fluid flowing out is then 

channeled to the confinement cell and injected in the porous medium. We believe that the present 

technique used for measuring the injection pressure, via the upstream pressure in a Newtonian fluid 

(the oil), makes it possible to avoid possible errors which could occur if placing a pressure 

transducer  directly in contact with the yield stress fluid. 

 

 
 

Figure 2: Functional scheme of the complete set up used  for injection (a) and simplified cross-section 

of the confinement cell (b). 

 

 

A simplified cross-section of the confinement cell, showing the porous sample, is presented in 

Figure 2b. The porous medium is contained in a thin waterproof latex membrane which allows the 

application to the specimen, through the water filling up the confinement cell, a confining pressure 

Pc.  Metallic grids are placed at the top and bottom of the specimen in order to retain the granular 

material (beads) during the test. The diameter of the specimen is 8 cm, different heights may be 

used (4, 8 or 16 cm). In order to prevent the development of preferential paths and obtain a uniform 



 6 

flow entering the specimen, the latter is placed on a conical hollow bottom plate. A similar conical 

end plate  is adjusted on top of the specimen for the outgoing fluid. 

 

The fluid flowing out of the sample falls into a small reservoir set on the precision balance 

mentioned before (Figure 2.a). We checked that the tested fluid did not evolve during the test by 

sampling it at the exit tube and comparing its rheological properties with those of the injected fluid. 

 

 

2.4 Porous medium 

 

We used different porous media made up of glass bead packings. Different types of beads were 

used, with a mean diameter ( D ): ranging from 0.26 to 2 mm. We measured the size distribution of 

the beads with a laser granulometer (Laser Beckman-Coulter). Typical sets of data obtained with 

this technique are shown in Figure 3. It appears that the size distributions of the beads are almost 

perfectly similar. A more detailed analysis of these distributions can be carried out with the help of 

the polydispersity coefficient defined as   iii DdDP 100  where i  is the volume 

fraction of the beads having a diameter id . We found that P  varies between 8 and 12% depending 

on the grain type. This confirms that our grains are almost monodisperse with a very similar 

polydispersity, which justifies that in the following we consider that we have a single type of porous 

medium, i.e. the different porous media are similar and characterized by only one length scale, 

namely the mean diameter D .  
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Figure 3: Laser granulometry data for glass beads with three different mean diameters ( D ): 0.26 mm 

(triangles), 0.6 mm (circles), 1.1 mm (squares). 

 

 

As some impurities remaining on the bead surface may destabilize Carbopol solutions we tested the 

impact of cleaning the beads in an ultrasonic bath during one hour. The data obtained with or 

without such cleaning were similar. 

 

The porous medium is made by slightly compacting, manually, successive layers of beads in a 

forming mould against which is initially applied the latex membrane. The porosity finally obtained 

is %634.0  , which in particular means that our porous medium preparation was reproducible. 

Then, a confining pressure kPa 100cP  is applied to the porous medium, which moulds the 

membrane onto the beads and maintains the grain packing. It is expected that this technique limits 
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the development of preferential flow paths at the periphery of the porous medium, a phenomenon 

which tends to occur when the bead pack is in contact with a planar surface. Indeed, in the latter 

case, the porosity is larger close to the planar surface than inside the porous medium. Note that we 

did not observe any significant compaction or widening of the sample section due to the 

confinement. 
 

In order to calibrate the system for head losses due to the equipement itself (calibration for system 

compliance) and to be able to make corresponding corrections on the raw data obtained, specific 

tests  were carried out by replacing the porous medium by a rigid empty tube that was called the 

phantom. The phantom, equipped, inside, with a latex membrane similar to the one used for the real 

test, had the same inner diameter as the porous medium. The cylinder was then externally covered 

with another latex membrane, allowing to adjust the phantom with the bottom and top end plates of 

the confinement cell. 

 

 

2.5 Experimental procedure  

 

We first slowly introduce the fluid in the top part of the injection reservoir. For yield stress fluids 

this step is crucial in order to limit the number of air bubbles introduced into the reservoir during 

this operation. Then the porous medium is prepared as described above. The injection reservoir is 

then connected to the confinement cell. Afterwards the impregnation of the porous medium can 

start: the oil pressure is increased to reach a pressure gradient of approximately 20 times a critical 

pressure gradient (estimated from the fluid yield stress divided by the bead’s mean diameter). Such 

a pressure a priori makes it possible to saturate the porous medium in a short time with a 

sufficiently slow flow rate.  The process is stopped when the flow observed on the exit tube of the 

confinement cell is well established. At that time the sample is supposed to be fully saturated. Note 

that at any time during the test it is necessary to check that the confining pressure is significantly 

larger than the oil pressure in order to maintain the rigidity of the bead packing.  

  

We then start to increase the pressure step by step until reaching a continuous flow at the exit. Then 

the pressure is decreased step by step. This decrease is stopped when the out-flow does not seem to 

stabilize, typically for a flow rate less than 0.3 drop/min. For each pressure level, the measurement 

is initiated after stabilisation of the flow as observed on the exit tube, and this pressure is maintained 

during a sufficient time to get a measurable mass evolution at the exit. For example, for flow rates 

as low as a few drops per minute we wait for at least 10 drops going out of the device. Note that a 

different bead pack was used for a test with each new fluid, i.e. after a series of measurements 

at different velocities with one fluid type the beads were thrown away. 
 

 

3. Experimental results 

 

3.1 Procedure for analyzing the data 

A typical data set for pi(t) and m(t) is shown in Figure 4. These data can be analyzed in terms of 

pressure drop per unit length, i.e. hpp i  in which h  is the height of the porous medium, vs the 

flow rate, i.e. the measured (average) velocity of the material through the porous medium:  

t

m

S
V







1
            (2) 

in which S  is the section area of the porous medium and   the fluid density. Note that the above 

definition for the pressure drop will find a full physical meaning only when we have computed 
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the effective pressure drop associated with the flow through the porous sample only (see 

below). A typical apparent flow curve, i.e. p  vs V , obtained in this way is shown in Figure 5.  
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Figure 4: Typical set of data for a complete test of injection (bead size 0.26mm, (Carbopol) 

Pac 78 , 
nk Pa.s 33  and 36.0n ) including a pressure (circles) increase step by step followed 

by a pressure decrease, and the corresponding mass evolution in time (squares).  
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Figure 5: Typical interpretation of the mass and pressure data in terms of pressure gradient and flow 

rate for an injection test of the type shown in Figure 4 (filled squares), and for the same test with the 

phantom (open squares). The continuous line is a HB model fitted to phantom data (see text). 

 

 

For each injection test with beads we also carry out a calibration test with the phantom, and 

analyzed the data the same way. We thus obtain two apparent flow curves (see Figure 5). In each 

case the pressure drop includes different pressure drops due to the flow through the different parts of 

the system except the porous medium. It also includes the hydrostatic pressure drop. These 

contributions are a priori the same when one uses a porous medium or a phantom. These calibration 

corrections allow us to obtain the effective flow curve, i.e. strictly associated with the flow through 

the porous medium (and without hydrostatic contribution), by subtracting the apparent flow 
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curve associated with the phantom data from the flow curve found with the porous sample. 

Such a procedure in particular makes it possible to get relevant data without having to measure the 

pressure in the yield stress fluid (for example at the inlet and outlet of the confinement cell). This 

operation would indeed be difficult and not necessarily reliable because the pressure is not well 

defined in a yield stress fluid at rest. Note that in practice in order to facilitate the subtraction 

we first fitted a model to the flow curve data for the phantom (see Figure 5).  
 

We observed flow rates in the range 
-136 m.s 1010   . Estimating the typical shear rate in the porous 

medium from the ratio of the effective mean velocity through the porosity to the typical pore size 

(around one third the bead radius) we find that in all our tests it varied in the range 
-122 s 1010 

. 

This corresponds to the range of shear rates covered in our rheometrical tests. 

 

 

3.2 Results for Glycerol 

Injection tests were carried out with Glycerol for two bead sizes (1 mm and 2mm). After subtracting 

the (constant) hydrostatic pressure term the flow curve obtained for the phantom appears to be linear 

(see Figure 6). This is the typical result obtained for the flow through a conduit or a porous medium. 

This indicates that in our range of measurements the whole system around the bead packing behaves 

like a given porous medium, which supports our procedure for extracting the effective flow curve 

(see above).  
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Figure 6: Glycerol injection tests: apparent flow curve for the phantom (after subtracting the 

hydrostatic pressure drop) (open circles) and effective flow curves for two porous media: 

mm 1.1D (filled squares), and mm 2D (filled circles). The continuous lines are linear fits of these 

data.  

 

 

The effective flow curves obtained for the Glycerol solutions through the porous media are also 

linear (see Figure 6), in agreement with Darcy’s law: 

V
K

P


             (3) 

in which K  is the permeability of the medium. Since the porous media are similar (see Section 2.4) 

except for their characteristic length ( D ) we deduce from scaling arguments that the permeability 

should be proportional to 2D : 
2DK  . From our data (linear fits of Figure 6) we find for   

-4x108.7  for mm 1.1D  and 
-4x107.6  for mm 2D . This globally confirms the validity of our 

approach but shows that the results are not perfect, which appears reasonable considering the 
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uncertainties at the different steps of the process (phantom, slight viscosity variations, slight 

differences in the porous media, etc). Note that the empirical Kozeny-Carman equation [24] for the 

same porosity predicts a slightly smaller value (
-4x105 ) than the above one, which may be due 

to some difference in the grain size distribution.   

 

It is worth recalling that for a liquid flowing through a straight cylindrical conduit the flow curve is 

formally similar to (3) but now with 
2'DK   and  

-2x101.3' . This means that the equivalent 

diameter of a conduit which would represent the porous medium in terms of Darcy’s law for a 

Newtonian fluid is equal to 6.6' DDd   . The value of the final factor, i.e. 6.6, between the 

bead diameter of the porous medium and the diameter of the equivalent conduit in terms of Darcy’s 

law mainly results from the three following effects: (i) an average thickness of the paths between the 

beads significantly smaller than the bead diameter; (ii) a section area available for fluid smaller than 

the apparent section due to the presence of the beads, which increases the effective velocity through 

the equivalent conduit; (iii) the tortuosity of the fluid paths which tends to increase the length of 

these paths. 

 

3.3 Results for yield stress fluids 

The apparent flow curves for the phantom have a shape similar to the flow curve of the material 

obtained from rheometrical tests. Under these conditions we decided to fit these curves with a 

Herschel-Bulkley model with the same exponent as that used for fitting the flow curve (i.e. 

36.0n ). 

 

The resulting effective flow curves for the different materials and mean bead diameters all present 

the same shape: they exhibit a plateau at low velocities and the pressure drop progressively 

increases with increasing velocity. This shape is similar to the typical (rheometrical) flow curve of a 

simple yield stress fluid. This means that in order to induce a flow through a porous medium one 

needs to overcome a critical pressure drop.  
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Figure 7: Effective flow curves for injection tests with a Carbopol solution ( Pac 78 , 

nk Pa.s 33  

and 36.0n ) through different porous media: mm 2D (squares), mm 1.1D (circles) and 

mm 26.0D (triangles). The continuous lines correspond to fits of the Herschel-Bulkley model to the 

data (see text). 

 

When the bead size decreases or when the material yield stress increases the shape of the flow curve 

does not seem to change significantly (see Figures 7 and 8): at first sight it seems that this is 

essentially the critical pressure drop which increases while the additional velocity dependent 
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component is approximately constant (the curves are roughly similar by vertical shift in a 

logarithmic scale). The more detailed analysis presented below will show that this is not always 

right: the velocity-dependent component also significantly varies when the pore size varies. Anyway 

the vertical shift (in logarithmic scale) of the flow curves for a decreasing pore size or an increasing 

yield stress globally corresponds to the expected impact of the permeability decrease or the viscosity 

increase as for any type of viscous fluid flowing through any type of porous medium. 
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Figure 8: Effective flow curves for injection tests through a porous medium ( mm 2D ) with 

different Carbopol solutions: Pa 8
c
 , 

nk Pa.s 6.3 , 36.0n (squares); Pa 55c , 

nk Pa.s 5.23 , 36.0n  (circles); Pac 78 , 
nk Pa.s 33 , 36.0n  (triangles). The continuous 

lines are fits of the Herschel-Bulkley model to the data (see text).  

 

 

Let us now compare the results obtained for Carbopol solutions and emulsion having similar 

rheological properties and flowing through the same porous medium. Surprisingly the effective flow 

curves are significantly different (see Figure 9). In particular the critical pressure drop for the 

emulsion is significantly lower than for that for the Carbopol solution by a factor of about two. This 

difference cannot be explained solely by the difference of values of the parameter k  for the two 

types of fluid. This suggests that there is an unexpected impact of the nature of the fluid, a point that 

we will discuss further below.  
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Figure 9: Effective flow curves for injection tests through a porous medium ( mm 2D ) with two 

Carbopol solutions: (open circles) Pa 55
c

 , 
nk Pa.s 5.23 , 36.0n , and (squares) Pa 78

c
 , 

nk Pa.s 33 , 36.0n  ; and an emulsion: (circles) Pa 71
c
 , 

n
k Pa.s 7.12 , 36.0n . The 

continuous lines are fits of the Herschel-Bulkley model to the data (see text). 

 

 

Considering the shape of the effective flow curves for all the injection tests it is quite natural to fit a 

Herschel-Bulkley model to the data keeping the same exponent as in the fit on rheometrical data. 

This model here expresses as: 
n

pc VkPP             (4) 

in which cP  is the critical pressure drop and pk  the consistency parameter for injection. This step 

is important as it means that it will now be possible to fully analyze the results simply through the 

values of the two parameters of this model as a function of the experimental parameters (bead 

diameter, fluid yield stress and consistency, flow rate).  

 

In a first step we can now plot the two injection parameters as a function of the corresponding 

rheological fluid parameters. Globally each parameter increases when the other one increases but it 

is clear that they is no straightforward exclusive relationship between them. The data representing 

the pressure drop as a function of the yield stress for all our experimental conditions are widely 

dispersed.  

 

 

4. Discussion 

 

4.1 Dimensional analysis 

A simple comparison of the HB model parameters for injection and rheometrical tests is not 

relevant. Indeed cP  and pk  also depend on the characteristics of the porous medium through 

which the fluid flows. In order to take this aspect into account we can again take advantage of the 

fact that the porous medium is characterized by a single lengthscale, i.e. D . From a dimensional 

analysis we readily deduce that we should expect two relations in the form: 

D
P c

c


                                                                                                                       (5) 

1


np
D

k
k                                                                                                                      (6) 

where   and   are two unknown parameters which are independent of the material type and 

porous medium characteristics. 

 

In order to check the validity of this analysis we plotted the data in the form suggested by equations 

(5) and (6). From this representation we can conclude that cP  is indeed proportional to Dc  and 

pk  is proportional to 1nDk  (see Figure 10): all the data obtained for each material fall along a 

straight line of slope 1 on a logarithmic scale. For pk  a single straight line is obtained for the data 

corresponding to both materials, but for cP  two different straight lines are obtained. This is 

consistent with our above observation, i.e. the injection flow curves obtained for an emulsion and 

for a Carbopol solution with similar yield stress were significantly different. Finally our results can 

be summarized in terms of a general model giving the pressure drop as a function of the flow rate, 

i.e. the equivalent of the Darcy’s law for yield stress fluids: 
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n

c
D

V
kpD 








            (7) 

In this expression   and   should be universal factors for a porous medium composed of an 

assembly of spheres, and DV  is the apparent shear rate for the flow through such a porous 

medium. The first (yielding) term on the right hand side of equation (7) corresponds to the critical 

pressure for incipient flow. As usual the second term, which is velocity dependent, derives from 

the additional viscous stress above the yield stress as long as the flow has been initiated.  
 

The differences observed for the values of   for the two types of fluids would imply that they do 

not see the same porous medium, which is obviously not the case. Therefore, from a general point of 

view we need to understand the origin of the values for   and   and it is expected that this 

understanding will provide some elements of explanation for the discrepancy found between the two 

fluids. 

10
4

10
5

10
5

10
6

 )(Pa.m -1Dc

 )(Pa.m -1

cp

 

 

1

 

10
4

10
5

10
6

10
6

10
7

10
8

 ).s(Pa.m n1--n1nDk

 )m.(Pa.s -nn

ck

 

 

 



 14 

Figure 10: Parameters (critical pressure drop (a) and consistency (b)) of the Herschel-Bulkley model 

(equation (4)) fitted to data of injection tests as a function of the appropriate expressions deduced 

from dimensional analysis and involving the corresponding rheological parameters of the fluids for 

Carbopol solutions (squares) and emulsions (stars) and the porous medium characteristics. The 

continuous lines correspond to straight lines of slope   equal to 12 for the Carbopol and 5.5 for the 

emulsion in (a), and of slope 85  in (b).  

 

 

4.2 Analogy with the flow through a simple conduit 

In order to further analyze our results it is useful to compare them with the flow characteristics for a 

flow through a straight conduit. Let us consider the steady uniform flow of a Herschel-Bulkley fluid 

in a cylinder of radius R . The momentum equation can easily be solved to obtain the mean velocity 

(flow discharge per unit surface) as the function of the pressure gradient (see for example [25]). 

This may be expressed in terms of the relationship between two dimensionless numbers, namely 

cpRG 2  and nn

c kVRBi  :  













 

)3)(2)(1(

2)1(2)2)(1(
)1(1 ;01

2
131

mmm

GmGmm
GGBiGBiG mm

  (8) 

in which nm 1  and Lpp   where L  is the conduit length. An explicit analytical expression 

for the pressure gradient as a function of the flow rate cannot be found from this equation. However 

we can deduce the expressions in the asymptotic cases: 

c
R

pBi 
2

            (9a) 

n

n

R

V
k

R
mpBi 










1
)3(20          (9b) 

Note that the expression (9a) could be obtained directly from a simple momentum balance for 

describing the incipient motion of the yield stress fluid through the conduit. On another hand the 

expression (9b) is simply the solution of the flow problem with a power-law fluid. 
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Figure 11: Different models for representing the pressure drop vs velocity for the steady flow of a 

yield stress fluid ( 36.0n , Pa 8
c
 , 

n
Pa.s 6.3k ) through a cylindrical conduit (of radius 

mm 1R ) : critical pressure for incipient motion (dotted line), viscous term in the absence of 
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yielding (dashed line), sum of the two previous terms (thin continuous line). The exact theory 

(according to equation (8)) is represented by the thick continuous line.  

 

 

An approximate expression can naturally be found by adding the two asymptotic terms above and 

we obtain: 
n

c
d

V
kpd 








 ''            (10) 

in which Rd 2 , 4'  and  nn264'  . This expression appears to well represent the 

theoretical curve within 10 % over the whole range of Bi  (see Figure 11).  

 

It is instructive to compare the values obtained for Darcy’s law for the porous medium to those 

corresponding to the flow through this simple conduit. With (10) we have an expression equivalent 

to that obtained from our experiments for the flow through a porous medium so that we can find 

directly the conduit size which would lead to the same pressure drop vs flow rate expression. Let us 

first consider the yielding term, i.e. c . For the Carbopol solution and the emulsion we find values 

(see Figure 10a) which lead to a ratio between the bead and the conduit diameters which are 

respectively 1.4 and 3. These values significantly differ from the factor (6.6) corresponding to the 

Newtonian Darcy’s law (see Section 3.2), which suggest that there is no simple analogy between the 

physical mechanisms in the two situations. 

 

Let us now further examine the possibility of equivalence between the two types of flow. This may 

be done by remarking that for the flow through a simple conduit the ratio of the two factors is 

constant, i.e. independent of velocity, rheological parameters and conduit size: 41.0''  . For the 

flow through a porous medium we find 14.0  for Carbopol solutions and 065.0  for 

emulsions. This clearly means that, although it gives reasonable values for the critical pressure drop, 

the equivalence between the simple conduit flow and a porous medium for a yield stress fluid is not 

consistent. 

 

 

4.3. Analogy with the flow through a bundle of conduits 

In order to understand the origin of the above observed inconsistency we look at the flow 

characteristics of a yield stress fluid through a bundle of parallel conduits of different sizes. We 

consider a set of N  conduit of widths Ri ),...1( Ni  . The number of conduits per size ( in ) is 

inversely proportional to their section area so that the total area for each conduit type is constant. All 

the conduits are parallel to each other, so that the applied pressure drop is given and independent of 

the conduit size. Under such conditions, as we increase the pressure drop the flow is initiated in the 

conduits of largest size while the fluid remains in its solid regime elsewhere. Then as the pressure 

drop is increased the flow begins in the slightly smaller conduit and so on.  

 

We define a specific dimensionless pressure drop for each conduit radius: GiG i)( , in which G  

is the value for the largest conduit. The flow in each conduit type is governed by the value of )(iG  

according to: 11)(  ;01)(  ii xiGxiG . From the mean velocity through each conduit (8) 

we deduce the mean velocity through the set of conduits: 
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(11) 

in which Bi  is defined the same way as above, based on the radius of the largest conduit.  

Finally the pressure drop vs velocity curve has the usual form with a plateau associated with the 

critical pressure drop for flow to occur in the first conduit and a finite slope for large velocities. This 

slope should tend to 1 for very large velocities when the fluid flows in all of the conduits. As a 

consequence we can still use the approximation of the sum of the two asymptotic expressions for the 

pressure drop (as in (10)): 

m

i

i

m

i

i

ii

m nnBimG

/1

321/1)3(1 







 

         (12) 

With such a form the characteristics of the set of conduits is accounted for by a single coefficient 

multiplied by 
1Bi . This approximation is slightly not as good as for the single conduit, the 

maximum error being 15% for 36.0n  in the transition region, but still constitutes a useful 

relevant representation. Finally this gives an expression equivalent to (10) for the pressure drop with 

now: 

4'  and 

m

i

i

m

i

i

ii

m nnm

/1

32/1)3(4' 







 


       (13) 

The origin of this new value for '  is that an increasing amount of fluid flows when the pressure 

drop increases. We computed the value of the ratio ''   for a range of one hundred conduit radii 

distributed in a logarithmic way between the maximum value d  and the minimum value d  (see 

Figure 12). We see that widening the range of diameters induces, indeed, a decrease of the ratio 

''  . This is not sufficient to reach a value as low as that observed for the emulsion (0.065) but it 

appears possible to reach an appropriate value by using another arbitrary type of size distribution, in 

particular by taking into account a higher fraction of lower diameter conduits.  

 

Finally we can conclude that the first coefficient in the pressure drop equation, i.e. the equivalent of 

Darcy’s law for yield stress fluid, mainly finds it physical origin in the widest path through the 

medium, while the second coefficient finds its origin in the complex multiscale flow through the 

medium. As a consequence the basic origin of the relatively low value of the coefficient   is the 

fact that in a porous medium the widest fluid path is first mobilized for the critical pressure drop 

while thinner and thinner paths, and thus smaller and smaller pores are then mobilized for increasing 

pressure drop. The next step will be to discuss the origin of the different values found for  . The 

curious point is that we have a consistency of data through the general scaling laws with regards to a 

continuum approach, whereas these laws differ for two materials with different internal structures 

but the same mechanical properties.  
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Figure 12: Ratio of the two coefficients of equation (12) as a function of the minimum to maximum 

diameter ratio for the flow through a series of conduits of different diameters (see text). 

 

 

 

4.4 Flow through sieves 

In order to understand the origin of the discrepancy between the values of   associated with the 

critical pressure drop for the two different materials we carried out tests consisting to leave the 

material flow through a simpler porous medium, i.e. a sieve, now under the action of gravity only. 

The experimental device is composed of a plexiglass tube (30 cm long and 8 cm wide) over a sieve 

with a mesh size ranging from 20 m  to 2 mm. The set-up is weighed during the flow in order to 

obtain the mass of fluid percolating through the sieve. 

 

Figure 13 shows a comparison of the results obtained for a Carbopol solution with a yield stress of 

65 Pa, and an emulsion with a yield stress of 76 Pa, for two different sieve sizes. The mass evolves 

by jumps because the fluid going through the sieve progressively accumulates just below it 

and ultimately falls when it has reached a critical mass value. This resembles the behavior of a 

simple liquid falling by droplets but here the origin of the process is a competition between 

gravity and yield stress, which leads to larger “droplets”. In order to clarify the representation 

of data we only plotted one symbol per level reached after each new droplet drop except when 

the duration between two successive drops was too long (in that case we plotted several points, 

which generally corresponds to an apparent stoppage of the flow).  

 

We can see that despite a slightly higher yield stress, the flow of Carbopol through a given sieve is 

faster and stops before the flow of the emulsion through the same sieve. This means that the 

Carbopol solution needs a higher pressure drop to flow than the emulsion. Actually this effect is 

almost negligible for large mesh sizes (say, beyond m 250   (see Figure 13)) and increases when the 

mesh size decreases, becoming dramatic for a mesh size below m 20  . In the latter case there is 

almost no flow observed through the sieve for the Carbopol while the flow is still significant for the 

emulsion. 

 

These experiments show that even for a simpler geometry there is a difference between the flow 

characteristics observed for the two fluids as soon as the pore size becomes sufficiently small. It is 

very likely that this effect be at the origin of the differences observed between both fluids since, 

roughly speaking, the critical mesh size can be considered similar to that of the smallest pores. Thus 

there might be some kind of jamming of Carbopol blobs in the smallest pores, an effect which 

would occur for smaller mesh sizes for the emulsion made of smaller elements. 



 18 

 

However the point which remains very surprising is that the ratio between the values for   for the 

two fluids apparently remains constant over a wide range of pore size (related to bead diameter). If 

this was solely an effect of jamming it would be significant for small pores and would become 

negligible for sufficiently large pores. This means that further studies are needed to completely 

understand the origin of this effect. 
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Figure 13: Mass evolution as a function of time for the flow of Carbopol solution ( c =65Pa) (open 

symbols) and emulsion ( c =76Pa) (filled symbols) through sieves of 20 (squares), 80 (circles), and 

250 m  (stars).  

 

 

 

5. Conclusion 

 

We have carried out flow tests through well-calibrated porous media (glass beads), in which both 

the rheological behavior of the fluids and the flow characteristics through the porous medium (beads 

packing) were well-controlled. A thorough analysis of the data made it possible to extract the 

general pressure drop vs flow rate curve for a yield stress fluid flowing through a porous medium. 

This general law contains a yielding term which may be simply expressed as a function of the yield 

stress of the material and the bead size. The results obtained with the emulsion seem more reliable 

than those obtained with Carbopol solutions, which were likely to be affected by some jamming 

effects in the smallest pores. As for a Herschel-Bulkley model, an additional viscous term, 

depending on the flow rate, had to be added to the yielding term in order to obtain the total pressure 

drop during flow, which gives the general Darcy’s law for yield stress fluid flowing through a bead 

packing:   
n

c
D

V
kpD 








 855.5            (14) 

This expression is expected to be valid only if the elements composing the yield stress fluid are 

much smaller than the pore size, which obviously can never be perfectly true.  
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The yielding term in (14) is related to the mobilization of the fluid in the widest path throughout the 

porous medium. As the flow rate increases it is expected that additional thinner fluid paths 

progressively take part in the flow. This is proved by the fact that we can get an expression similar 

to (14) in the case of a series of parallel conduits of different sizes with a maximum diameter equal 

to D . 

 

The above expression can be extrapolated to any kind of porous medium, under the condition that 

one is able to identify (i) the appropriate value for the maximum width of the widest path, which 

will govern the value of the coefficient  , and (ii) the type of pore size distribution and structure, 

which will govern the value of  .  
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