A Bending-Gradient theory for thick laminated plates homogenization

Arthur Lebée 1 Karam Sab 1
1 msa - Matériaux et Structures Architecturés
navier umr 8205 - Laboratoire Navier
Abstract : This work presents a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Love-Kirchhoff theory, to which six components are added representing the gradient of the bending moment. The Bending-Gradient theory is an extension to arbitrary multilayered plates of the Reissner-Mindlin theory which appears as a special case when the plate is homogeneous. The new theory is applied to multilayered plates and its predictions are compared to full 3D Pagano's exact solutions and other approaches. It gives good predictions of both deflection and shear stress distributions in any material configuration. Moreover, under some symmetry conditions, the Bending-Gradient model coincides with the second-order approximation of the exact solution as the slenderness ratio L/h goes to infinity.
Type de document :
Chapitre d'ouvrage
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

Contributeur : Arthur Lebée <>
Soumis le : mercredi 29 janvier 2014 - 17:16:11
Dernière modification le : lundi 17 février 2020 - 17:47:30
Archivage à long terme le : mercredi 30 avril 2014 - 08:35:10


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00938939, version 1


Arthur Lebée, Karam Sab. A Bending-Gradient theory for thick laminated plates homogenization. Altenbach, Holm and Maugin, Gérard and Erofeev, Vladimir. Mechanics of Generalized Continua, Springer Berlin Heidelberg, pp.77-95, 2011, 9783642192197. ⟨hal-00938939⟩



Consultations de la notice


Téléchargements de fichiers