Adaptive Constructive Interval Disjunction

Bertrand Neveu, Gilles Trombettoni

▶ To cite this version:

HAL Id: hal-00936654
https://hal-enpc.archives-ouvertes.fr/hal-00936654
Submitted on 27 Jan 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Adaptive Constructive Interval Disjunction

Bertrand Neveu
LIGM
Université Paris Est
Marne-la-Vallée, France
Email: Bertrand.Neveu@enpc.fr

Gilles Trombettoni
LIRMM
Université Montpellier II
Montpellier, France
Email: Gilles.Trombettoni@lirmm.fr

Abstract—An operator called CID and an efficient variant 3BCID were proposed in 2007. For numerical CSPs handled by interval methods, these operators compute a partial consistency equivalent to Partition-1-AC for discrete CSPs. The two main parameters of CID are the number of times the main CID procedure is called and the maximum number of sub-intervals treated by the procedure. The 3BCID operator is state-of-the-art in numerical CSP solving, but not in constrained global optimization.

This paper proposes an adaptive variant of 3BCID. The number of variables handled is auto-adapted during the search, the other parameters are fixed and robust to modifications. On a representative sample of instances, ACID appears to be the best approach in solving and optimization, and has been added to the default strategies of the Ibex interval solver.

I. CONSTRUCTIVE INTERVAL DIJUNCTION (CID)

A filtering/contracting operator for numerical CSPs called Constructive Interval Disjunction (in short CID) has been proposed in [13]. Applied first to continuous constraint satisfaction problems handled by interval methods, it has been more recently applied to constrained global optimization problems. This algorithm is state-of-the-art in constraint satisfaction, but is generally dominated by constraint propagation algorithms like HC4 in optimization. The main practical contribution is that an adaptive version of CID becomes efficient for both real-valued satisfaction and optimization problems, while needing no additional parameter value from the user.

A. Shaving

The shaving principle is used to compute the Singleton Arc Consistency (SAC) of finite domain CSPs [7] and the 3B-consistency of numerical CSPs [9]. It is also at the core of the SATZ algorithm [11] used to prove the satisfiability of Boolean formula. Shaving works as follows. A value is temporarily assigned to a variable (the other values are temporarily discarded) and a partial consistency is computed on the remaining subproblem. If an inconsistency is obtained then the value can be safely removed from the domain of the variable. Otherwise, the value is kept in the domain.

Contrarily to arc consistency, this consistency is not incremental [7]. Indeed, the work of the underlying refutation procedure on the whole subproblem is the reason why a single value can be removed. Thus, obtaining the singleton arc consistency on finite-domain CSPs requires an expensive fixed-point algorithm where all the variables must be handled again every time a single value is removed [7]. The remark still holds for the improved version SAC-Opt [5]. A similar idea can be followed on numerical CSPs (NCSPs).

B. Numerical CSP

An NCSP is defined by a tuple $P = (X, [X], C)$, where X denotes an n-set of numerical, real-valued variables ranging in a domain $[X]$. We denote by $[x_i] = [x_i, \bar{x}_i]$ the interval/domain of variable $x_i \in X$, where x_i, \bar{x}_i are floating-point numbers (allowing interval algorithms to be implemented on computers). A solution of P is an n-vector in $[X]$ satisfying all the constraints in C. The constraints defined in an NCSP are numerical. They are equations and inequalities using mathematical operators like $+, \cdot, /, \exp, \log, \sin$.

A Cartesian product of intervals like the domain $[X] = [x_1] \times ... \times [x_n]$ is called a (parallel-to-axes) box. $w(x_i)$ denotes the width $\bar{x}_i - x_i$ of an interval $[x_i]$. The width of a box is given by the width $\prod \{x_m - \bar{x}_m\}$ of its largest dimension x_m. The union of several boxes is generally not a box, and a Hull operator has been defined instead to define the smallest box enclosing all of them.

NCSPs are generally solved by a Branch & Contract interval strategy:

- **Branch**: a variable x_i is chosen and its interval $[x_i]$ is split into two sub-intervals, thus making the whole process combinatorial.
- **Contract**: a filtering process allows contracting the intervals (i.e., improving interval bounds) without loss of solutions.

The process starts with the initial domain $[X]$ and stops when the leaves/boxes of the search tree reach a width inferior to a precision given as input. These leaves yield an approximation of all the solutions of the NCSP.

Several contraction algorithms have been proposed. Let us mention the constraint propagation algorithm called HC4 [3], [10], an efficient implementation of 2B [9], that can enforce the optimal local consistency (called hull-consistency) only if strong hypotheses are met (in particular, each variable
must occur at most once in a same constraint). The 2B-Revise procedure works with all the projection functions of a given constraint. Informally, a projection function isolates a given variable occurrence within the constraint. For instance, consider the constraint \(x + y = z.x; x \leftarrow z.x - y \) is a projection function (among others) that aims at reducing the domain of variable \(x \). Evaluating the projection function with interval arithmetics on the domain \([x] \times [y] \times [z] \) (i.e., replacing the variable occurrences of the projection function by their domains and using the interval counterpart of the involved mathematical operators) provides an interval that is intersected with \([x]\). Hence a potential domain reduction. A constraint propagation loop close to that of AC3 is used to propagate reductions obtained for a given variable domain to the other constraints in the system.

C. 3B algorithm

Stronger interval partial consistencies have also been proposed. 3B-consistency [9] is a theoretical partial consistency similar to SAC for CSP although limited to the bounds of the domains. Consider the \(2n \) subproblems of the studied NCSP where each interval \([x_i] (i \in \{1..n\})\) is reduced to its lower bound \(x_\ell\) (resp. upper bound \(x_r\)). 3B-consistency is enforced iff each of these \(2n \) subproblems is hull-consistent.

In practice, the 3B(w) algorithm splits the intervals in several sub-intervals, also called slices, of width \(w \), which gives the accuracy: the 3B(w)-consistency is enforced iff the slices at the bounds of the handled box cannot be eliminated by HC4. Let us denote \(var3B \) the procedure of the 3B algorithm that shaves one variable interval \([x_i]\) and \(s_{3B} \) its parameter, a positive integer specifying a number of sub-intervals: \(w = w(x_i)/s_{3B} \) is the width of a sub-interval.

D. CID

Constructive Interval Disjunction (CID) is a partial consistency stronger than 3B-consistency [13]. CID-consistency is similar to Partition-1-AC (P-1-AC) in finite domain CSPs [4]. P-1-AC is strictly stronger than SAC [4].

The main procedure \(varCID \) handles a single variable \(x_i \). The main parameters of \(varCID \) are \(x_i \), a number \(s_{cid} \) of sub-intervals (accuracy) and a contraction algorithm \(ctc \) like HC4. \([x_i] \) is split into \(s_{cid} \) slices of equal width, each corresponding subproblem is contracted by the contractor \(ctc \) and the hull of the different contracted subproblems is finally returned, as shown in Algorithm 1.

Intuitively, CID generalizes 3B because a sub-box that is eliminated by \(var3B \) can also be discarded by \(varCID \). In addition, contrary to \(var3B \), \(varCID \) can also contract \([X]\) along several dimensions.

Note that in the actual implementation the for loop can be interrupted earlier, when \([X]'\) becomes equal to the initial box \([X]\) in all the dimensions except \(x_i \).

\(var3BCID \) is a hybrid and operational variant of \(varCID \).

```plaintext
Procedure \( varCID(x_i, s_{cid}, (X, C, \text{in-out } [X]), \text{etc}) \)

\[X]' \leftarrow \text{empty box}

for \( j \leftarrow 1 \) to \( s_{cid} \) do
  /* The \( j \)th sub-box of \([X]\) on \( x_i \) is handled: */
  sliceBox \leftarrow SubBox \((j, x_i, [X])\)
  /* Enforce a partial consistency on the sub-box: */
  sliceBox' \leftarrow ctc(X, C, sliceBox)
  /* "Union" with previous sub-boxes: */
  \([X]' \leftarrow \text{Hull}([X]', \text{sliceBox}')\)

\([X] \leftarrow [X]'
```

Algorithm 1: The main \(varCID \) procedure of the CID operator shaving a given variable \(x_i \).

1) Like \(var3B \), it first tries to eliminate sub-intervals at the bounds of \([x_i]\) of width \(w = w(x_i)/s_{3B} \) each. We store the left box \([X_l]\) and the right box \([X_r]\) that are not excluded by the contractor \(ctc \) (if any).
2) Second, the remaining box \([X]'\) is handled by \(varCID \) that splits \([X]'\) into \(s_{cid} \) sub-boxes. The sub-boxes are contracted by \(ctc \) and hulled, giving \([X_{cid}]\).
3) Finally, we return the hull of \([X_l], [X_r]\) and \([X_{cid}]\).

The \(var3BCID \) process is illustrated in Figure 1.

3B:

```
  \[x]\n
  \[X]\n
  \[X]'\n```

CID:

```
 \[x]\n
 \[X]\n
 \[X]'\n```

Figure 1. Task of the \(var3BCID \) procedure. The parameter \(s_{3B} \) is set to 10 and \(s_{cid} \) is set to 1.

\(var3BCID \) comes from the wish of managing different widths (accuracies) for \(s_{3B} \) and \(s_{cid} \). Indeed, the best choice for \(s_{3B} \) generally belongs to \([5, 20]\) while \(s_{cid} \) should always be set to 1 or 2 (implying a final hull of 3 or 4 sub-boxes).

The reason is that the actual time cost of the shaving part is smaller than the one of the constructive domain disjunction.

Indeed, if no sub-interval is discarded by \(var3B \), only two calls to \(ctc \) are performed, one for each bound of the handled interval; if \(varCID \) is applied, the subcontractor is often called \(s_{cid} \) times.

The procedure \(var3BCID \) has been deeply studied and experimented in the past. The number and the order in which calls to \(var3BCID \) are achieved is a harder question studied in this paper.

II. ADAPTIVE CID: LEARNING THE NUMBER OF HANDLED VARIABLES

Like for SAC or 3B, a quasi fixed-point in terms of contraction can be reached by \(3BCID \) (or CID) by calling \(var3BCID \) inside two nested loops. An inner loop calls \(var3BCID \) on each variable \(x_i \). An outer loop calls the
inner loop until no interval is contracted more than a predefined (width) precision (thus reaching a quasi-fixed point). Let us call $3BCID$-fp (fixed-point) this historical version.

Two reasons led us to radically change this policy. First, as said above, $3BCID$ can contract the handled box in several dimensions. One significant advantage is that the fixed-point in terms of contraction can thus be reached in a small number of calls to $3BCID$. On most of the instances in satisfaction or optimization, it appears that a quasi fixed-point is reached in less than n calls. In this case, $3BCID$ is clearly too expensive. Second, the varCID principle is close to a branching point in a search tree. The difference is that a hull is achieved at the end of the sub-box contractions. Therefore an idea is to use a standard branching heuristic to select the next variable to be “varcided”. We will write in the remaining part of the paper that a variable is varcided when the procedure $3BCID$ is called on that variable to contract the current box.

To sum up, the idea for rendering $3BCID$ even more efficient in practice is to replace the two nested loops by a single loop calling $numV arCID$ times $3BCID$ and to use an efficient variant of the Smear function branching heuristic for selecting the variables to be varcided (called $SmearSumRel$ in [12]). Informally, the Smear function favors variables having a large domain and a high impact on the constraints – measuring interval partial derivatives.

A first idea is to fix $numV arCID$ to the number n of variables. We call $3BCID$-n this version. This gives good results in satisfaction but is dominated by pure constraint propagation in optimization. As said above, it is too time costly when the right $numV arCID$ is smaller than n (which is often the case in optimization), but can also have a very bad impact on performance if a bigger effort brought a significantly greater filtering.

The goal of Adaptive CID (ACID) is precisely to compute dynamically during search the value of the $numV arCID$ parameter. Several auto-adaptation policies have been tested and we report three interesting versions. All the policies measure the decrease in search space size after each call to $3BCID$. They measure a contraction ratio of a box $[X]^b$ over another box $[X]^a$ as an average relative gain in all the dimensions:

$$\text{gainRatio}([X]^b,[X]^a) = \frac{1}{n} \sum_{i=1}^{n} \left(1 - \frac{w(x_i^b)}{w(x_i^a)}\right)$$

A. ACID0: auto-adapting $numV arCID$ during search

The first version ACID0 adapts the number of shaved variables dynamically at each node of the search tree. First, the variables are sorted by their impact, computed by the same formula as the $SmearSumRel$ function (used for branching). Variables are then varcided until the cumulative contraction ratio during the last nv calls to $3BCID$ becomes less than $ctratio$. This algorithm has thus 2 parameters nv and $ctratio$, and it was difficult to tune them. We experimentally found that $ctratio$ could be fixed to 0.001 and nv should depend on the number of variables n of the problem. Setting nv to 1 is often a bad choice, and fixing it with the formula $nv = \max(3, \frac{3}{n})$ experimentally gave the best results. The experimental results are not bad but this policy prevents $numV arCID$ from reaching 0, i.e. from calling only constraint propagation. This is a significant drawback when a simple constraint propagation is the most efficient approach.

B. ACID1: interleaving learning and exploitation phases

A more sophisticated approach avoids this drawback. ACID1 interleaves learning and exploitation phases for auto-adapting the $numV arCID$ value. Depending on the node number, the algorithm is in a learning or in an exploitation phase.

The behavior of ACID1, shown in Algorithm 2, is the following:

- The variables are first sorted according to their impact measurement (using the $SmearSumRel$ heuristic).
- During a learning phase (during $learnLength$ nodes), we then analyze how the contraction ratio evolves from a $3BCID$ call to the next one, and store the number $kvarCID$ of varcided variables necessary to obtain most of the possible filtering.

More precisely, 2 $numV arCID$ variables are varcided at each node (with a minimum value equal to 2, in case $numV arCID = 0$). In the first learning phase, we handle n variables. At the current node, the $lastSignificantGain$ function returns the number $kvarCID$ of varcided variables giving the last significant improvement. After the $kvarCID^{th}$ call to $3BCID$, the gain in current box size from a $3BCID$ call to the next one, computed by the $gainRatio$ formula, never exceeded a small given ratio, called $ctratio$. This analysis starts from the last varcided variable. (For the readability of the pseudocode, we omit the parameters of the $3BCID$ procedure, i.e. s_3b, s_acid, the constraints C and the contractor ctc.)

- During the exploitation phase following the previous learning phase, the average of the different $kvarCID$ values (obtained in the nodes of the learning phase) provides the new value of $numV arCID$. This value will be used by $3BCID$ during the exploitation phase. Compared to the previous value (previous call to an exploitation phase), note that this new value can at most double, but can also drastically decrease.

Every $cycleLength$ nodes in the search tree, both phases are called again.

Numerous variants of this schema were tested. In particular, it is counterproductive to learn $numV arCID$ only once
learning phase to another one. or, on the contrary, to memorize the computations from a previous phase.

We selected from the COPRIN benchmark all the systems that were solved by one of the tested algorithms in a time comprised between 2s and 3600s. The timeout was fixed to 10,000s. The required precision on the solution is 10^{-8}. Some of these problems are scalable. In this case, we selected the problem with the greatest number of variables that was solved by one of the algorithms in less than one hour.

We compared our ACID method and its variants with the well known filtering techniques: a simple constraint propagation HC4, 3BCID-n (see Section II) and 3BCID-fp (fixed-point) in which a new iteration on all the variables is run when a variable domain width is reduced by more than 1%. At each node of the search tree, we used the following sequence of contractors: HC4, shaving, Interval-Newton [8], and X-Newton [2]. shaving denotes a variant of ACID, 3BCID-n, 3BCID-fp or nothing when only HC4 is tested.

For each problem, we used the best bisection heuristics available (among two variants of the Smear function [12]). The main parameter c_ratio of ACID1 and ACID2, measuring a stagnation in the filtering while variables are varcided, was fixed to 0.002. The $\text{var}3\text{BCID}$ parameters s_3 and s_4 were fixed to the default settings, respectively 10 and 1, proposed in [13].

XPERIMENTS

All the algorithms were implemented in the C++ interval library Ibex (Interval Based EXplorer) [6]. All the experiments were run on the same computer (Intel X863GHz). We tested the algorithms on square NCSP solving and constrained global optimization. NCSP solving consists in finding all the solutions of a square system of n nonlinear equations with n real-values variables with bounded domains. Global optimization consists in finding the global minimum of a function over n variables subject to constraints (equations and inequalities), the objective function and/or the constraints being non-convex.

A. Experiments in constraint satisfaction

We selected from the COPRIN benchmark all the systems that were solved by one of the tested algorithms in a time comprised between 2s and 3600s. The timeout was fixed to 10,000s. The required precision on the solution is 10^{-8}. Some of these problems are scalable. In this case, we selected the problem with the greatest number of variables that was solved by one of the algorithms in less than one hour.

We compared our ACID method and its variants with the well known filtering techniques: a simple constraint propagation HC4, 3BCID-n (see Section II) and 3BCID-fp (fixed-point) in which a new iteration on all the variables is run when a variable domain width is reduced by more than 1%. At each node of the search tree, we used the following sequence of contractors: HC4, shaving, Interval-Newton [8], and X-Newton [2]. shaving denotes a variant of ACID, 3BCID-n, 3BCID-fp or nothing when only HC4 is tested.

A. Experiments in constraint satisfaction

We selected from the COPRIN benchmark all the systems that were solved by one of the tested algorithms in a time comprised between 2s and 3600s. The timeout was fixed to 10,000s. The required precision on the solution is 10^{-8}. Some of these problems are scalable. In this case, we selected the problem with the greatest number of variables that was solved by one of the algorithms in less than one hour.

We compared our ACID method and its variants with the well known filtering techniques: a simple constraint propagation HC4, 3BCID-n (see Section II) and 3BCID-fp (fixed-point) in which a new iteration on all the variables is run when a variable domain width is reduced by more than 1%. At each node of the search tree, we used the following sequence of contractors: HC4, shaving, Interval-Newton [8], and X-Newton [2]. shaving denotes a variant of ACID, 3BCID-n, 3BCID-fp or nothing when only HC4 is tested.

For each problem, we used the best bisection heuristics available (among two variants of the Smear function [12]). The main parameter c_ratio of ACID1 and ACID2, measuring a stagnation in the filtering while variables are varcided, was fixed to 0.002. The $\text{var}3\text{BCID}$ parameters s_3 and s_4 were fixed to the default settings, respectively 10 and 1, proposed in [13]. Experiments on the selected instances confirm that these settings are relevant and robust to variations. In particular, setting s_3 to 10 gives results better than with smaller values ($s_3 = 5$) and with greater values. (For 21 over the 26 instances, $s_3 = 20$ gives worse results.) As

1www sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html
shown in Table I, ACID1 appears to be often the best one, or close to the best one. In only 4 problems on 26, it was more than 10% slower than the best. The number of varcided variables was tuned close to 0 in the problems where HC4 was sufficient, and more than the number of variables in the problems where 3BCID-fp appeared to be the best method.

In the left part of Table II, we summarize the results obtained by the three variants of ACID and their competitors. It appears that only ACID1 could solve the 26 problems in 1 hour, while HC4 could solve only 21 problems in 10,000s. The gains in cpu time obtained by ACID1 w.r.t. competitors are sometimes significant (see the line max gain), while its losses remain weak. ACID0 with its two parameters was more difficult to tune, and it was not interesting to run the more complex algorithm ACID2. ACID1 obtains better gains w.r.t. 3BCID-n in total time than on average because the best gains were obtained on difficult instances with more variables. In the right part of the table, we report the solving time ratios obtained when X-Newton is removed (~ XN) from the contractor sequence (4 problems could not be solved in 10,000s). The only ACID variant studied was ACID1. ACID1 and 3BCID-n obtain globally similar results, better than 3BCID-fp, but with a greater dispersion (i.e., standard deviation) than with X-Newton since the shaving takes a more important part in the contraction.

B. Experiments in constrained global optimization

We selected in the series 1 of the Coconut constrained global optimization benchmark all the 40 instances that ACID or a competitor could solve in a CPU time comprised between 2 s and 3600 s.

The time out was fixed to 3600s. We used the IbexOpt strategy of Ibex that performs a Best First Branch & Bound. The experimental protocol is the same as the NCSP experimental protocol, except that we do not use Interval-Newton that is only implemented for square systems.

For each instance, we use the best bisection heuristics (the same for all methods) among largestFirst, roundRobin and variants of the Smeary function. The precision required on the objective is 10^{-8}. Each equation is relaxed by two inequalities with a precision 10^{-8}.

Table III reports the same columns as Table I, plus a column indicating the number of constraints of the instance. For the constraint programming part of IbexOpt, HC4 is state of the art and 3BCID is rarely needed in optimization.

Table I

<table>
<thead>
<tr>
<th>Problem</th>
<th>#var</th>
<th>ACID1 time</th>
<th>ACID1 #nodes</th>
<th>ACID1 #varcids</th>
<th>Best</th>
<th>Worst</th>
<th>Time ratio</th>
<th>Time ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellido</td>
<td>9</td>
<td>3.45</td>
<td>518</td>
<td>5</td>
<td>ACID1</td>
<td>HC4</td>
<td>1</td>
<td>0.89</td>
</tr>
<tr>
<td>Brown-7</td>
<td>7</td>
<td>396</td>
<td>540730</td>
<td>4.5</td>
<td>ACID1</td>
<td>HC4</td>
<td>1</td>
<td>0.82</td>
</tr>
<tr>
<td>Brent-10</td>
<td>10</td>
<td>17.6</td>
<td>3104</td>
<td>9</td>
<td>ACID1</td>
<td>HC4</td>
<td>1</td>
<td>0.14</td>
</tr>
<tr>
<td>Butcher8a</td>
<td>8</td>
<td>981</td>
<td>204632</td>
<td>9</td>
<td>3BCID-n</td>
<td>HC4</td>
<td>1.03</td>
<td>0.49</td>
</tr>
<tr>
<td>Butcher9b</td>
<td>8</td>
<td>388</td>
<td>93600</td>
<td>10.8</td>
<td>ACID1</td>
<td>HC4</td>
<td>1</td>
<td>0.31</td>
</tr>
<tr>
<td>Design</td>
<td>9</td>
<td>29.2</td>
<td>5330</td>
<td>11</td>
<td>3BCID-n</td>
<td>HC4</td>
<td>1.07</td>
<td>0.37</td>
</tr>
<tr>
<td>Dietmaier</td>
<td>12</td>
<td>926</td>
<td>82364</td>
<td>26.3</td>
<td>ACID1</td>
<td>HC4</td>
<td>1</td>
<td>0.19</td>
</tr>
<tr>
<td>Directkin</td>
<td>11</td>
<td>32.7</td>
<td>2322</td>
<td>7</td>
<td>ACID1</td>
<td>3BCID-fp</td>
<td>1</td>
<td>0.84</td>
</tr>
<tr>
<td>Disc.inteagl2-16</td>
<td>32</td>
<td>592</td>
<td>58464</td>
<td>0.4</td>
<td>HC4</td>
<td>3BCID-fp</td>
<td>1.02</td>
<td>0.52</td>
</tr>
<tr>
<td>Eco-12</td>
<td>11</td>
<td>3156</td>
<td>297116</td>
<td>12</td>
<td>ACID1</td>
<td>HC4</td>
<td>1</td>
<td>0.32</td>
</tr>
<tr>
<td>Fredest</td>
<td>6</td>
<td>25.2</td>
<td>11480</td>
<td>0.8</td>
<td>HC4</td>
<td>3BCID-fp</td>
<td>1.04</td>
<td>0.91</td>
</tr>
<tr>
<td>Fourbar</td>
<td>4</td>
<td>437</td>
<td>183848</td>
<td>0.1</td>
<td>ACID1</td>
<td>3BCID-n</td>
<td>1</td>
<td>0.85</td>
</tr>
<tr>
<td>Geneig</td>
<td>6</td>
<td>178</td>
<td>83958</td>
<td>2.9</td>
<td>HC4</td>
<td>3BCID-fp</td>
<td>1.02</td>
<td>0.82</td>
</tr>
<tr>
<td>Hayes</td>
<td>7</td>
<td>3.96</td>
<td>1532</td>
<td>7.5</td>
<td>3BCID-n</td>
<td>HC4</td>
<td>1.14</td>
<td>0.77</td>
</tr>
<tr>
<td>I5</td>
<td>10</td>
<td>15.9</td>
<td>3168</td>
<td>11.5</td>
<td>ACID1</td>
<td>HC4</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>Katsura-25</td>
<td>26</td>
<td>691</td>
<td>5396</td>
<td>10.4</td>
<td>ACID1</td>
<td>3BCID-fp</td>
<td>1</td>
<td>0.67</td>
</tr>
<tr>
<td>Pramaniik</td>
<td>3</td>
<td>23.1</td>
<td>23696</td>
<td>0.2</td>
<td>ACID1</td>
<td>HC4</td>
<td>23</td>
<td>0.69</td>
</tr>
<tr>
<td>Reactors-42</td>
<td>42</td>
<td>1285</td>
<td>23966</td>
<td>134</td>
<td>3BCID-fp</td>
<td>HC4</td>
<td>1.07</td>
<td>0.13</td>
</tr>
<tr>
<td>Reactors2-30</td>
<td>30</td>
<td>1220</td>
<td>38136</td>
<td>90</td>
<td>3BCID-n</td>
<td>HC4</td>
<td>1.14</td>
<td>0.12</td>
</tr>
<tr>
<td>Synthesis</td>
<td>33</td>
<td>356</td>
<td>7256</td>
<td>53.8</td>
<td>3BCID-fp</td>
<td>HC4</td>
<td>1.15</td>
<td>0.25</td>
</tr>
<tr>
<td>Trigexp2-23</td>
<td>23</td>
<td>2530</td>
<td>227136</td>
<td>39.4</td>
<td>3BCID-fp</td>
<td>HC4</td>
<td>1.26</td>
<td>0.25</td>
</tr>
<tr>
<td>Trigol-18</td>
<td>18</td>
<td>2625</td>
<td>37756</td>
<td>6.1</td>
<td>ACID1</td>
<td>3BCID-fp</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>Trigol35-35</td>
<td>36</td>
<td>2657</td>
<td>70524</td>
<td>2.4</td>
<td>ACID1</td>
<td>3BCID-fp</td>
<td>1</td>
<td>0.41</td>
</tr>
<tr>
<td>Virasoro</td>
<td>8</td>
<td>1592</td>
<td>266394</td>
<td>0.6</td>
<td>3BCID-n</td>
<td>3BCID-fp</td>
<td>1.08</td>
<td>0.28</td>
</tr>
<tr>
<td>Yamamura1-16</td>
<td>16</td>
<td>2008</td>
<td>68284</td>
<td>0.4</td>
<td>3BCID-n</td>
<td>HC4</td>
<td>1.02</td>
<td>0.86</td>
</tr>
<tr>
<td>Yamamura1sp-500</td>
<td>501</td>
<td>1401</td>
<td>146</td>
<td>144</td>
<td>ACID1</td>
<td>HC4</td>
<td>1</td>
<td>0.14</td>
</tr>
</tbody>
</table>

2www.mat.univie.ac.at/~neum/gloit/coconut/Benchmark/Benchmark.html

3In fact, the more recent Mohc constraint propagation algorithm [1] is better than HC4. Mohc is not yet reimplemented in Ibex 2.0. However, 3BCID(Mohc) shows roughly the same gains w.r.t. Mohc than 3BCID(HC4) does w.r.t. HC4...
Therefore, we report in the penultimate column a comparison between ACID1 and HC4. The number of varcided variables was indeed tuned by ACID1 to a value comprised between 0 and the number of variables. Again, we can see that ACID1 is robust and is the best, or at most 10% worse than the best, for 34 among 40 instances. Table IV shows that we obtained an average gain of 10% over HC4. It is significant because the CP contraction is only a part of the IbexOpt algorithm [12] (linear relaxation and the search of feasible points are other important parts, not studied in this paper and set to their default algorithms in IbexOpt). ACID0 shaves a minimum of 3 variables, which is often too much. ACID2 obtains results slightly worse than ACID1, rendering this refinement not promising in practice.

IV. Conclusion

We have presented in this paper an adaptive version of the 3BCID contraction operator used by interval methods and close to partition-1-AC. The best variant of this Adaptive CID operator (ACID1 in the paper) interleaves learning phases and exploitation phases to auto-adapt the number of variables handled. These variables are selected by an efficient branching heuristic and all the other parameters are fixed and robust to modifications.

Overall, ACID1 adds no parameter to the solving or optimization strategies. It offers the best results on average and is the best or close to the best on every tested instance, even in presence of the best Ibex devices (interval-Newton, X-Newton). Therefore ACID1 has been added to the Ibex default solving and optimization strategies.

REFERENCES

Table II

<table>
<thead>
<tr>
<th></th>
<th>ACID1</th>
<th>HC4</th>
<th>3BCID-fp</th>
<th>3BCID-n</th>
<th>ACID0</th>
<th>ACID2</th>
<th>ACID1</th>
<th>3BCID-fp</th>
<th>3BCID-n</th>
</tr>
</thead>
<tbody>
<tr>
<td>#solved instances < 3600</td>
<td>26</td>
<td>20</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>24</td>
<td>20</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>#solved instances < 10000</td>
<td>26</td>
<td>21</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>22</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Average gain</td>
<td>1</td>
<td>0.7</td>
<td>0.83</td>
<td>0.92</td>
<td>0.96</td>
<td>0.91</td>
<td>1</td>
<td>0.78</td>
<td>1.02</td>
</tr>
<tr>
<td>Maximum gain</td>
<td>1</td>
<td>0.13</td>
<td>0.26</td>
<td>0.58</td>
<td>0.45</td>
<td>0.48</td>
<td>1</td>
<td>0.18</td>
<td>0.38</td>
</tr>
<tr>
<td>Maximum loss</td>
<td>1</td>
<td>1.04</td>
<td>1.26</td>
<td>1.14</td>
<td>1.23</td>
<td>1.05</td>
<td>1</td>
<td>2.00</td>
<td>1.78</td>
</tr>
<tr>
<td>Standard deviation gain</td>
<td>0</td>
<td>0.32</td>
<td>0.23</td>
<td>0.15</td>
<td>0.15</td>
<td>0.19</td>
<td>0</td>
<td>0.34</td>
<td>0.28</td>
</tr>
<tr>
<td>Total time</td>
<td>23594</td>
<td>>72192</td>
<td>37494</td>
<td>27996</td>
<td>26380</td>
<td>30428</td>
<td>29075</td>
<td>50181</td>
<td>31273</td>
</tr>
<tr>
<td>Total gain</td>
<td>1</td>
<td>0.63</td>
<td>0.84</td>
<td>0.89</td>
<td>0.78</td>
<td>0.74</td>
<td>1</td>
<td>0.58</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Table III

Ex2_1_7	Ex2_1_8	Ex2_1_9	Ex5_4_4	Ex6_1_1	Ex6_1_3	Ex6_1_4	Ex6_2_6	Ex6_2_8	Ex6_2_9	Ex6_2_10	Ex6_2_11	Ex6_2_12	Ex7_2_3	Ex7_2_4	Ex7_2_8	Ex7_2_9	Ex7_3_4	Ex7_3_5	Ex8_4_4	Ex8_4_5	Ex8_5_1	Ex8_5_2	Ex8_5_3	Ex8_5_6	Ex14_2_3	Ex14_2_7	ACID1	ACID1	ACID1	best	worst	Time ratio	Time ratio	Time ratio																																																																																																																																																																																																																																																																																																																																																																												
20	10	8.75	465	3	HC4	3BCID-fp	1.03	1.03	0.7	24	10	6.18	200	HC4	3BCID-fp	1.06	1.06	0.9	10	1	10.1	1922	0.75	HC4	3BCID-fp	1.04	1.04	0.9	27	19	915	23213	0.8	ACID1	3BCID-n	1	0.96	0.91	8	6	60.8	13071	8.9	HC4	3BCID-fp	1.21	1.21	0.73	12	9	297	29154	11.7	HC4	3BCID-fp	1.19	1.19	0.63	6	4	1.99	505	6	ACID1	3BCID-fp	1	0.97	0.8	3	1	107	46687	0	HC4	3BCID-fp	1.02	1.02	0.74	3	1	48.2	21793	0.1	HC4	3BCID-fp	1.01	1.01	0.72	4	2	51.9	19517	0.1	HC4	3BCID-fp	1.02	1.02	0.72	6	3	224.8	569816	0	ACID1	3BCID-fp	1	0.99	0.64	3	1	29.3	13853	0.3	HC4	3BCID-fp	1.05	1.05	0.73	4	2	21.6	7855	0.1	HC4	3BCID-fp	1.02	1.02	0.8	8	6	19.4	4596	4.4	3BCID-n	HC4	1.07	0.17	1.17	8	4	36.8	5606	4.2	3BCID-fp	HC4	1.04	0.66	0.66	8	4	38.0	6792	4.1	3BCID-n	HC4	1.09	0.71	0.71	10	7	78.0	14280	9.3	3BCID-n	HC4	1.07	0.48	0.48	12	17	2.95	366	3	3BCID-n	3BCID-fp	1.23	0.99	0.89	13	15	4.59	894	6	3BCID-n	HC4	1.05	0.38	0.38	17	12	1738	46082	0.9	ACID1	3BCID-fp	1	0.99	0.87	15	11	772	25454	4.8	HC4	3BCID-fp	1.03	1.03	0.75	6	5	9.67	2138	2.75	ACID1	3BCID-fp	1	0.84	0.82	6	4	32.5	5693	0.8	ACID1	3BCID-fp	1	0.9	0.87	6	4	32.4	10790	1.8	HC4	3BCID-fp	1.02	1.02	0.76	10	17	665	95891	3.0	3BCID-n	HC4	1.03	0.61	0.61	6	9	2.01	360	2	HC4	3BCID-fp	1.17	1.17	0.69	6	9	49.9	5527	0	HC4	3BCID-n	1.47	1.47	0.48	14	7	3.95	714	4	HC4	3BCID-fp	1.2	1.2	0.91	13	12	11.6	1098	13	3BCID-n	HC4	1.01	0.53	0.53	28	25	26.6	3151	10	3BCID-n	HC4	1.12	0.58	0.58	18	21	188	21227	15.5	3BCID-n	3BCID-fp	1.1	0.94	0.88	8	8	6.28	27195	3.25	HC4	3BCID-fp	1.09	1.09	0.79	30	24	609	32933	0	ACID1	3BCID-fp	1	0.88	0.78	21	7	4.17	1317	2.5	ACID1	3BCID-fp	1	0.55	0.28	38	28	107	2516	21	ACID1	3BCID-n	1	0.79	0.43	24	20	751	27665	0.25	ACID1	3BCID-n	1	0.98	0.65	7	2	2.43	370	2	HC4	3BCID-fp	1.04	1.04	0.84	10	7	2.61	611	8	HC4	3BCID-fp	1.08	1.08	0.77	31	22	164	4658	4.3	ACID1	3BCID-fp	1	0.85	0.68	38	27	160	6908	0.5	ACID1	3BCID-fp	1	0.62	0.53

Table IV

<table>
<thead>
<tr>
<th>ACID1</th>
<th>HC4</th>
<th>3BCID-fp</th>
<th>3BCID-n</th>
<th>ACID1</th>
<th>ACID2</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Average gain</td>
<td>1.0</td>
<td>0.9</td>
<td>0.77</td>
<td>0.88</td>
<td>0.91</td>
</tr>
<tr>
<td>Maximum gain</td>
<td>1</td>
<td>0.17</td>
<td>0.27</td>
<td>0.35</td>
<td>0.62</td>
</tr>
<tr>
<td>Maximum loss</td>
<td>1</td>
<td>1.47</td>
<td>1.04</td>
<td>1.23</td>
<td>1.18</td>
</tr>
<tr>
<td>Standard deviation gain</td>
<td>0</td>
<td>0.25</td>
<td>0.16</td>
<td>0.18</td>
<td>0.12</td>
</tr>
<tr>
<td>Total time</td>
<td>9380</td>
<td>10289</td>
<td>12950</td>
<td>11884</td>
<td>11201</td>
</tr>
<tr>
<td>Total gain</td>
<td>1</td>
<td>0.91</td>
<td>0.72</td>
<td>0.79</td>
<td>0.84</td>
</tr>
</tbody>
</table>

906