B. Benedikt, M. Lewis, and P. Rangaswamy, On elastic interactions between spherical inclusions by the equivalent inclusion method, Computational Materials Science, vol.37, issue.3, pp.380-392, 2006.
DOI : 10.1016/j.commatsci.2005.10.002

Y. Benveniste, A new approach to the application of Mori-Tanaka's theory in composite materials, Mechanics of Materials, vol.6, issue.2, pp.147-157, 1987.
DOI : 10.1016/0167-6636(87)90005-6

M. Berveiller, O. Fassifehri, and A. Hihi, The problem of two plastic and heterogeneous inclusions in an anisotropic medium, International Journal of Engineering Science, vol.25, issue.6, pp.691-709, 1987.
DOI : 10.1016/0020-7225(87)90058-9

S. Brisard and L. Dormieux, Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites, Computer Methods in Applied Mechanics and Engineering, vol.217, issue.220, pp.217-220, 2012.
DOI : 10.1016/j.cma.2012.01.003

URL : https://hal.archives-ouvertes.fr/hal-00722361

S. Brisard, L. Dormieux, and K. Sab, Self-influence and influence pseudotensors of d-dimensional spheres, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00876028

S. Brisard, K. Sab, and L. Dormieux, New boundary conditions for the computation of the apparent stiffness of statistical volume elements, Journal of the Mechanics and Physics of Solids, vol.61, issue.12, pp.2638-2658, 2013.
DOI : 10.1016/j.jmps.2013.08.009

URL : https://hal.archives-ouvertes.fr/hal-00871767

R. M. Christensen and K. H. Lo, Solutions for effective shear properties in three phase sphere and cylinder models, Journal of the Mechanics and Physics of Solids, vol.27, issue.4, pp.315-330, 1979.
DOI : 10.1016/0022-5096(79)90032-2

E. W. Coenen, V. G. Kouznetsova, and M. G. Geers, Novel boundary conditions for strain localization analyses in microstructural volume elements, International Journal for Numerical Methods in Engineering, vol.191, issue.21, pp.1-21, 2012.
DOI : 10.1002/nme.3298

E. Mouden, M. Molinari, and A. , Thermoelastic properties of composites containing ellipsoidal inhomogeneities, Journal of Thermal Stresses, vol.23, pp.233-255, 2000.

A. Ern and J. L. Guermond, Theory and Practice of Finite Elements, of Applied Mathematical Sciences, 2004.
DOI : 10.1007/978-1-4757-4355-5

J. D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.241, issue.1226, pp.376-396, 1957.
DOI : 10.1098/rspa.1957.0133

C. Fond, S. Géhant, and R. Schirrer, Effects of mechanical interactions on the hydrostatic stress in randomly distributed rubber particles in an amorphous polymer matrix, Polymer, vol.43, issue.3, pp.909-919, 2002.
DOI : 10.1016/S0032-3861(01)00621-8

C. Fond, A. Riccardi, R. Schirrer, and F. Montheillet, Mechanical interaction between spherical inhomogeneities: an assessment of a method based on the equivalent inclusion, European Journal of Mechanics - A/Solids, vol.20, issue.1, pp.59-75, 2001.
DOI : 10.1016/S0997-7538(00)01118-9

A. A. Gusev, Representative volume element size for elastic composites: A numerical study, Journal of the Mechanics and Physics of Solids, vol.45, issue.9, pp.1449-1459, 1997.
DOI : 10.1016/S0022-5096(97)00016-1

Z. Hashin and S. Shtrikman, On some variational principles in anisotropic and nonhomogeneous elasticity, Journal of the Mechanics and Physics of Solids, vol.10, issue.4, pp.335-342, 1962.
DOI : 10.1016/0022-5096(62)90004-2

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of polycrystals, Journal of the Mechanics and Physics of Solids, vol.10, issue.4, pp.343-352, 1962.
DOI : 10.1016/0022-5096(62)90005-4

S. Hazanov and C. Huet, Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume, Journal of the Mechanics and Physics of Solids, vol.42, issue.12, 1994.
DOI : 10.1016/0022-5096(94)90022-1

E. Hervé and A. Zaoui, inclusion-based micromechanical modelling, International Journal of Engineering Science, vol.31, issue.1, pp.1-10, 1993.
DOI : 10.1016/0020-7225(93)90059-4

R. Hill, Elastic properties of reinforced solids: Some theoretical principles, Journal of the Mechanics and Physics of Solids, vol.11, issue.5, pp.357-372, 1963.
DOI : 10.1016/0022-5096(63)90036-X

R. Hill, New derivations of some elastic extremum principles, in: Progress in Applied Mechanics ? The Prager 60th Anniversary Volume, pp.99-106, 1963.

R. Hill, The essential structure of constitutive laws for metal composites and polycrystals, Journal of the Mechanics and Physics of Solids, vol.15, issue.2, pp.79-95, 1967.
DOI : 10.1016/0022-5096(67)90018-X

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13-14, pp.3647-3679, 2003.
DOI : 10.1016/S0020-7683(03)00143-4

J. Korringa, Theory of elastic constants of heterogeneous media, Journal of Mathematical Physics, vol.14, issue.4, pp.509-513, 1973.
DOI : 10.1063/1.1666346

E. Kröner, On the Physics and Mathematics of Self-Stresses, Topics in Applied Continuum Mechanics, pp.22-38, 1974.
DOI : 10.1007/978-3-7091-4188-5_2

E. Kröner, Bounds for effective elastic moduli of disordered materials, Journal of the Mechanics and Physics of Solids, vol.25, issue.2, pp.137-155, 1977.
DOI : 10.1016/0022-5096(77)90009-6

J. Mandel, Plasticité classique et viscoplasticité. Number 97 in CISM courses and lectures, 1972.

A. Molinari and M. El-mouden, The problem of elastic inclusions at finite concentration, International Journal of Solids and Structures, vol.33, issue.20-22, pp.3131-3150, 1996.
DOI : 10.1016/0020-7683(95)00275-8

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, issue.5, pp.571-574, 1973.
DOI : 10.1016/0001-6160(73)90064-3

Z. A. Moschovidis and T. Mura, Two-Ellipsoidal Inhomogeneities by the Equivalent Inclusion Method, Journal of Applied Mechanics, vol.42, issue.4, pp.847-852, 1975.
DOI : 10.1115/1.3423718

H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1-2, pp.69-94, 1998.
DOI : 10.1016/S0045-7825(97)00218-1

URL : https://hal.archives-ouvertes.fr/hal-01282728

T. Mura, Micromechanics of defects in solids, 1987.

Y. Nakasone, H. Nishiyama, and T. Nojiri, Numerical equivalent inclusion method: a new computational method for analyzing stress fields in and around inclusions of various shapes, Materials Science and Engineering: A, vol.285, issue.1-2, pp.229-238, 2000.
DOI : 10.1016/S0921-5093(00)00637-7

J. Novák, L. Kaczmarczyk, P. Grassl, J. Zeman, and C. J. Pearce, A micromechanics-enhanced finite element formulation for modelling heterogeneous materials, Computer Methods in Applied Mechanics and Engineering, vol.201, issue.204, pp.201-204, 2012.
DOI : 10.1016/j.cma.2011.09.003

M. Ostoja-starzewski, Material spatial randomness: From statistical to representative volume element, Probabilistic Engineering Mechanics, vol.21, issue.2, pp.112-132, 2006.
DOI : 10.1016/j.probengmech.2005.07.007

G. J. Rodin, The overall elastic response of materials containing spherical inhomogeneities, International Journal of Solids and Structures, vol.30, issue.14, pp.1849-1863, 1993.
DOI : 10.1016/0020-7683(93)90221-R

G. J. Rodin and Y. L. Hwang, On the problem of linear elasticity for an infinite region containing a finite number of non-intersecting spherical inhomogeneities, International Journal of Solids and Structures, vol.27, issue.2, pp.145-159, 1991.
DOI : 10.1016/0020-7683(91)90225-5

K. Sab, On the homogenization and the simulation of random materials, European Journal of Mechanics -A/Solids, vol.11, pp.585-607, 1992.

M. Salmi, F. Auslender, M. Bornert, and M. Fogli, Apparent and effective mechanical properties of linear matrix-inclusion random composites: Improved bounds for the effective behavior, International Journal of Solids and Structures, vol.49, issue.10, pp.1195-1211, 2012.
DOI : 10.1016/j.ijsolstr.2012.01.018

URL : https://hal.archives-ouvertes.fr/hal-01157362

H. M. Shodja, I. Z. Rad, and R. Soheilifard, Interacting cracks and ellipsoidal inhomogeneities by the equivalent inclusion method, Journal of the Mechanics and Physics of Solids, vol.51, issue.5, pp.945-960, 2003.
DOI : 10.1016/S0022-5096(02)00106-0

B. Szabó, A. Düster, E. Rank, E. Stein, R. De-borst et al., The p-version of the finite element method, Encyclopedia of Computational Mechanics, pp.119-139, 2004.

S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Applied Mechanics Reviews, vol.55, issue.4, 2002.
DOI : 10.1115/1.1483342

L. J. Walpole, On the overall elastic moduli of composite materials, Journal of the Mechanics and Physics of Solids, vol.17, issue.4, pp.235-251, 1969.
DOI : 10.1016/0022-5096(69)90014-3

J. R. Willis, Bounds and self-consistent estimates for the overall properties of anisotropic composites, Journal of the Mechanics and Physics of Solids, vol.25, issue.3, pp.185-202, 1977.
DOI : 10.1016/0022-5096(77)90022-9

R. Zeller and P. H. Dederichs, Elastic Constants of Polycrystals, Physica Status Solidi (b), vol.241, issue.2, pp.831-842, 1973.
DOI : 10.1002/pssb.2220550241