Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

New boundary conditions for the computation of the apparent stiffness of statistical volume elements

Abstract : We present a new auxiliary problem for the determination of the apparent stiffness of a Statistical Volume Element (SVE). The SVE is embedded in an infinite, homogeneous reference medium, subjected to a uniform strain at infinity, while tractions are applied to the boundary of the SVE to ensure that the imposed strain at infinity coincides with the average strain over the SVE. The main asset of this new auxiliary problem resides in the fact that the associated Lippmann-Schwinger equation involves without approximation the Green operator for strains of the infinite body, which is translation-invariant and has very simple, closed-form expressions. Besides, an energy principle of the Hashin and Shtrikman type can be derived from this modified Lippmann-Schwinger equation, allowing for the computation of rigorous bounds on the apparent stiffness. The new auxiliary problem requires a cautious mathematical analysis, because it is formulated in an unbounded domain. Observing that the displacement is irrelevant for homogenization purposes, we show that selecting the strain as main unknown greatly eases this analysis. Finally, it is shown that the apparent stiffness defined through these new boundary conditions "interpolates" between the apparent stiffnesses defined through static and kinematic uniform boundary conditions, which casts a new light on these two types of boundary conditions.
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger
Contributeur : Sébastien Brisard <>
Soumis le : jeudi 10 octobre 2013 - 13:56:37
Dernière modification le : mardi 27 avril 2021 - 11:38:03
Archivage à long terme le : : vendredi 7 avril 2017 - 08:57:09


Fichiers produits par l'(les) auteur(s)



Sébastien Brisard, Karam Sab, Luc Dormieux. New boundary conditions for the computation of the apparent stiffness of statistical volume elements. Journal of the Mechanics and Physics of Solids, Elsevier, 2013, 61 (12), pp.2638-2658. ⟨10.1016/j.jmps.2013.08.009⟩. ⟨hal-00871767⟩



Consultations de la notice


Téléchargements de fichiers