Modelling the fate of nonylphenolic compounds in the Seine River – part 1: Determination of in-situ attenuation rate constants
Mathieu Cladière, Céline Bonhomme, Lauriane Vilmin, Johnny Gasperi, Nicolas Flipo, Bruno Tassin

To cite this version:
Modelling the fate of nonylphenolic compounds in the Seine River - part 1: determination of in-situ attenuation rate constants

Mathieu Cladière¹, Céline Bonhomme¹, Lauriane Vilmin², Johnny Gasperi¹, Nicolas Flipo² and Bruno Tassin¹

¹: Université Paris-Est, LEESU (UMR MA 102), UPEC, UPEMLV, ENPC, AgroParisTech, 94010 Créteil
²: MINES ParisTech, Geosciences Department, 35 rue Saint-Honoré, 77305 Fontainebleau

Corresponding authors: mathieu.cladiere@leesu.enpc.fr; gasperi@u-pec.fr

DOI: 10.1016/j.scitotenv.2013.09.028

Abstract

Assessing the fate of endocrine disrupting compounds (EDC) in the environment is currently a key issue for determining their impacts on aquatic ecosystems. The 4-nonylphenol (4-NP) is a well known EDC and results from the biodegradation of surfactant nonylphenol ethoxylates (NPnEO). Fate mechanisms of NPnEO are well documented but their rate constants have been mainly determined through laboratory experiments. This study aims at evaluating the in-situ fate of 4-NP, nonylphenol monoethoxylate (NP,EO) and nonylphenolic acetic acid (NP,EC). Two sampling campaigns were carried out on the Seine River in July and September 2011, along a 28 km-transect downstream Paris City. The field measurements are used for the calibration of a sub-model of NPnEO fate, included into a hydro-ecological model of the Seine River (ProSe). The timing of the sampling is based on the Seine River velocity in order to follow a volume of water. Based on our results, in-situ attenuation rate constants of 4-NP, NP,EO and NP,EC for both campaigns are evaluated. These rate constants vary greatly. Although the attenuation rate constants in July are especially high (higher than 1 d⁻¹), those obtained in September are lower and consistent with the literature. This is probably due to the biogeochemical conditions in the Seine River. Indeed, the July sampling campaign took place at the end of an algal bloom leading to an unusual bacterial biomass while the September campaign was carried out during common biogeochemical status. Finally, the uncertainties on measurements and on the calibration parameters are estimated through a sensitivity analysis.

This study provides relevant information regarding the fate of biodegradable pollutants in an aquatic environment by coupling field measurements and a biogeochemical model. Such data may be very helpful in the future to better understand the fate of nonylphenolic compounds or any other pollutants at the basin scale.

Keywords:
Nonylphenol and nonylphenol ethoxylates, attenuation rate constant, endocrine disrupting compounds modelling, surface water
1. Introduction

Over the last 20 years, the scientific community paid a special attention to endocrine disrupting compounds (EDC) due to their toxicity on aquatic wildlife (Petrovic et al., 2004). Among these compounds, the nonylphenol ethoxylates (NPnEO), and especially the 4-nonylphenol (4-NP), are of prime interest since concentrations of several hundred nanogrammes per liter were measured in all environmental and urban waters (Giger et al., 1984; Ahel et al., 1994). 4-NP is more estrogenic and more toxic than NPnEO (Soto et al., 1991). Jugan et al. (2009) and Fenet et al. (2003) have reported the role played by the 4-NP in the estrogenic activity occurring in both surface water and sediment compartments. Due to its toxicity, the 4-NP have been included in the list of the 33 priority pollutants in the European water framework Directive 2000/60/EC (European Commission, 2000). More recently the European Directive 2008/105/EC established the environmental quality standard for 4-NP at 300 ng/L in surface water (European Commission, 2008). The 4-NP mainly originates from the biodegradation of NPnEO (readily biodegradable compounds) which are used as non-ionic surfactants in many industrial and domestic applications. The worldwide production of NPnEO reached 500,000 tons in 2000 and is decreasing because of regulations (Ying et al., 2002). The biodegradation pathways of NPnEO are currently well known (John and White, 1998; Jonkers et al., 2001; Giger et al., 2009). Basically, the NPnEO can be biodegraded into 4-NP through an oxidative pathway leading to nonylphenolic acids (e.g. nonylphenol acetic acid: NP\textsubscript{1}EC) as biodegradation intermediates, or through a non-oxydative pathway leading to short chain nonylphenol ethoxylates (e.g. nonylphenol mono ethoxylates: NP\textsubscript{1}EO) as intermediates (Giger et al., 2009). Finally, the 4-NP can be mineralized under well oxygenated conditions (Gabriel et al., 2005). The biodegradation rate constants of NPnEO have been mostly determined through bioreactor laboratory experiments (Staples et al., 2001; Jurado et al., 2009; Karahan et al., 2010). However, such experiments fail to represent the complexity of freshwater ecosystems, including the spatial and temporal heterogeneity and the numerous biological, physical and chemical parameters which may interfere with the dynamics of the NPnEO degradation. Jurado et al., (2009) used NPnEO mixture as the sole source of carbon for microorganisms and found biodegradation rate constants of NPnEO about 0.2 h-1, while Staples et al., (2001) used synthetic river water to perform a river die-away experiment (closer to in-situ conditions) and found biodegradation rate constants ranging from 0.04 d-1 to 0.10 d-1 for NP\textsubscript{9}EO and from 0.08 to 0.09 d-1 for 4-NP. The difficulty to assess the NPnEO concentrations and their biodegradation relies in the fact that there is a lack of commercial pure reference standards which can be used for a reliable
analysis, and that various commercial mixtures exist with different chain lengths according to their use (Ayorinde et al., 1999).

To date, only one study focuses on the determination of in-situ attenuation rate constants of NPnEO and 4-NP based on a hydrodynamic and biogeochemical model (Jonkers et al., 2005). However, these attenuation rate constants have to be confirmed since:

i) In-situ biodegradation was determined in estuarine saline water. Authors suggest that biodegradation may significantly change in freshwater;

ii) The knowledge of biodegradation pathways has been updated; NP₁EC is now recognized as a biodegradation precursor of 4-NP (Montgomery-Brown et al., 2008; Giger et al., 2009).

Thus, it is crucial to assess the in-situ biodegradation of short chain nonylphenol and 4-NP in surface water in order to evaluate their environmental fate and their impact on aquatic wildlife surrounding heavily urbanized area such as the Seine River downstream of Paris, France.

A global project on modelling NPnEO was launched in 2009. The first part aims at evaluating the attenuation rate constants; the second aims at modelling the fate of nonylphenolic compounds at the annual scale in order to validate the parameters calibrated in the first part and forecast future profiles of the Seine River. This study deals with the first part of the NPnEO modelling project, while the second part is handled in a companion paper with the simulation of annual time series of NPnEO and 4-NP concentrations for a reference year (2010) in the Seine River. At last, a forecast of nonylphenolic compound concentrations in the Seine River is attempted for the 21st century according to global changes scenarios (Cladière et al., 2013a).

Therefore the goal of this first part is to determine the in-situ attenuation rate constants of 4-NP, NP₁EC and NP₁EO in the Seine River. To achieve this goal, two sampling campaigns are carried out and the data are used to calibrate a hydro-ecological model implemented for the Seine River. A special attention has been paid to the small scale spatial and temporal variabilities of the concentrations which are firstly in-situ assessed and then used in the model calibration procedure. Finally, the sensitivity analysis of the model to the biodegradation parameters is performed based on an approach “one factor at a time” (OFAT).

The calibrated parameters are then validated in the companion paper according to 11 monthly sampling campaigns carried out in 2010 at 3 sites on the Seine River and the Oise River as well as the effluent of the largest WWTP of the Parisian Metropolitan Area (Cladière et al. 2013a).
2. Materials and methods

2.1. Study site

This study focuses on the Seine River, downstream of Paris City (annual average flow in Paris = 300 m3/s, 120 m3/s in summer). The investigated transect of the Seine River is 28 km long from Maisons-Laffite to Triel-sur-Seine (Fig.1).

Fig. 1 Investigated transect of the Seine River (28 km-long) downstream of Paris and sampling sites

Four sampling sites are considered along this transect (Maisons-Laffite, Conflans-s-Honorine, Poissy and Triel-sur-Seine) and two for the effluents of Seine Aval Waste Water Treatment Plant (WWTP) and the Oise River (Fig.1).

This transect is selected based on two major criteria. First, there are only two significant tributaries in the Seine River between Maisons-Laffite and Triel-sur-Seine, i.e. the effluents of Seine Aval WWTP and the Oise River (Fig.1). The Seine Aval WWTP is the biggest treatment plant of the Parisian Metropolitan Area and treats approximately 1,666,000 m3 per day (70 % of Parisian wastewater) with an average effluent flow of 19 m3/s. The Oise River is one of the largest tributaries of the Seine River with an average discharge flow of 95 m3/s (30 m3/s in summer). These two inflows account for 30 % to 40 % of the Seine River flow at Triel-sur-Seine during low-flow conditions. The small number of lateral inflows along this transect simplifies the determination of the boundary conditions for the modelling procedure. The second criterion is the distance between Maisons-Laffite and Triel-Sur-Seine. According to the average Seine River velocity (≈ 0.15 m/s) during low-flow conditions (< 150 m3/s), the transit time along this transect is approximately 60 h. This duration is similar to the half-lives of 4-NP and NPNEO found in the literature: between 2 and 7 days (Staples et al., 2001; Jonkers et al., 2005).
2.2. Sampling campaigns

Two sampling campaigns were carried out in July and September 2011. These campaigns are designed to acquire data for the calibration of the ProSe model and the assessment of attenuation rate constants of nonylphenolic compounds in the Seine River. The timing of the sampling is estimated according to the Seine River flow velocity in order to collect samples in the same water volume from Maisons-Laffitte to Triel-sur-Seine (Lagrangian approach). The Seine River velocity is simulated using the hydrodynamic module of the ProSe model (see section 2.3), with measured upstream boundary conditions (national discharge gauging station located in Paris City). The description of the sampling campaigns (kilometre points, hours of sampling and flows) are provided in Table 1. The sampling campaigns were exclusively carried out under dry weather conditions in order to ensure that the Seine Aval WWTP and the Oise River are the sole lateral inflows (no wet weather sources). Due to an unexpected rain event, the July campaign was stopped at Poissy (45 h).

Table 1 Sampling campaign description for July 2011 and September 2011.

<table>
<thead>
<tr>
<th>Sampling points</th>
<th>Kilometre point (km)</th>
<th>July 2011 (Tw = 21°C)</th>
<th>September 2011 (Tw = 19°C)</th>
<th>Flow (m³/s)</th>
<th>Hours of sampling</th>
<th>Flow (m³/s)</th>
<th>Hours of sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maisons-Laffitte</td>
<td>715.4</td>
<td>10/07</td>
<td>8:42</td>
<td>72</td>
<td>29/09</td>
<td>720</td>
<td>15:30</td>
</tr>
<tr>
<td>Seine Aval (WWTP)</td>
<td>720.1</td>
<td>10/07</td>
<td>19:24</td>
<td>16</td>
<td>29/09</td>
<td>16</td>
<td>7:30</td>
</tr>
<tr>
<td>Conflans-s-Honorine</td>
<td>728.2</td>
<td>11/07</td>
<td>16:30</td>
<td>88</td>
<td>30/09</td>
<td>115</td>
<td>15:00</td>
</tr>
<tr>
<td>Oise River</td>
<td>728.7</td>
<td>11/07</td>
<td>17:06</td>
<td>32</td>
<td>30/09</td>
<td>32</td>
<td>7:30</td>
</tr>
<tr>
<td>Poissy</td>
<td>734.9</td>
<td>12/07</td>
<td>5:35</td>
<td>120</td>
<td>30/09</td>
<td>143</td>
<td>19:00</td>
</tr>
<tr>
<td>Triel-sur-Seine</td>
<td>743.6</td>
<td>*</td>
<td>-</td>
<td>-</td>
<td>01/10</td>
<td>143</td>
<td>18:50</td>
</tr>
<tr>
<td>Total sampling time</td>
<td></td>
<td>45 h</td>
<td></td>
<td></td>
<td>59 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: The July sampling campaign was stopped at Poissy due to a rain event. Tw = water temperature

Samples are collected from bridges in the middle of the river with 2 L glass bottles. The analytical protocol is described in details by Cladière et al., (2013b). Briefly, the water samples are filtered through a 0.45 µm porosity glass fiber filter (GF/F, Whatmann). Only the dissolved phase is kept and analyzed as the suspended particles account approximately for 5% of total concentrations of NP₁EO, NP₁EC and 4-NP within the Seine River (Cladiere et al., 2010). After a spiking with a surrogate mixture (octylphenol-d17, NP₁EO-d2), 250 mL of dissolved phase is extracted by solid phase extraction on OASIS® HLB cartridges (200 mg/6 mL; Waters®). Finally, the extracts are analyzed by means of an ultra-performance liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS-MS; Waters®) using an internal standard mixture (linear compounds: 4-nNP, nNP₁EO and nNP₂EC). Based on this analytical protocol, the concentrations of 4-NP, NP₁EC and NP₁EO are quantified for surface water and WWTP effluents. Given that no pure standard is commercially available for NP₂EO to NP₁₅EO, only semi-quantitative analyses are performed for these compounds. A semi-quantitative
analysis does not provide the real value of compound concentration but a concentration equivalent value proportional to the real concentration (the factor is not known because of the lack of pure standard). For each \(n \) (from 3 to 15), dividing the NP\(_n\)EO peak area by the peak area of the relative internal standard nNP\(_1\)EO give the concentration equivalent of the NP\(_n\)EO. These concentration equivalent values enable comparisons from one site to another but not between compounds (e.g. the factor of proportionality of NP\(_3\)EO is different from that of NP\(_{15}\)EO).

2.3. Modelling tool: the ProSe model

The hydrodynamic and biogeochemical model ProSe was firstly developed to simulate the impacts of human activities on nitrogenous and phosphorous pollutions in the Seine River and its tributaries (Even et al., 1998; Flipo et al., 2007; Even et al., 2007). All mathematical equations used by the ProSe model to simulate the river flowing, pollutant advection and other biogeochemical parameters are provided by Even et al. (1998). For this study the biogeochemical module is updated to take into account the biodegradation pathways of NP\(_n\)EO following Giger et al., (2009) scheme (Fig. 2).

![Fate schema of nonylphenolic compounds in a well oxygenated surface water.](image)

In the Figure 2, the attenuation rate constants \(K_1, K_1', K_2 \) and \(K_3 \) are determined by the ProSe model. The biodegradation of NP\(_n\)EO and NP\(_n\)EC is introduced in the ProSe model as precursor inputs of NP\(_1\)EO and NP\(_1\)EC along the Seine River. In the Figure 2, the attenuation rate constants \(K_1, K_1' \) and \(K_2 \) only represent the biodegradation of NP\(_1\)EO or NP\(_1\)EC into their products (NP\(_1\)EC or 4-NP). On the contrary, \(K_3 \) represent the global attenuation of 4-NP due to biodegradation, volatilisation and adsorption onto particles.
Assuming first-order kinetics (Jonkers et al., 2003; Jurado et al., 2009), the attenuation rate constants K_1, K_1', K_2 and K_3 are calibrated using a trial-error procedure to optimise the matching of the modelled longitudinal profiles of 4-NP, NP$_1$EO and NP$_1$EC with the measured ones. Jonkers et al. (2005) suggest, during the sensitivity analysis of their model, that the sorption onto particles have a very limited influence on the fate of nonylphenolic compounds in estuarine water. Indeed, set sorption to 0 or multiply their optimum value by 5 lead to small variations of NP$_1$EO and NP$_1$EC dissolved concentrations. In addition, Cladiere et al. (2010) showed that the particulate concentrations of nonylphenolic compounds account for less than 5% of the total concentration. Therefore, the sorption onto particles of NP$_1$EO and NP$_1$EC has been considered as negligible. Similarly to Jonkers et al. (2005), the water-air exchange of the nonylphenolic compounds (except for 4-NP) has been considered as insignificant due to very low Henry’s constants (e.g. NP$_1$EO and NP$_2$EO ≈ 0.0003 Pa.m3/mole).

Consequently, three equations are implemented in the biogeochemical module of the ProSe model:

\[
\frac{d[NP_1EO]}{dt} = - K_1 [NP_1EO] - K_1' [NP_1EO] + \text{precursor inputs} \tag{Equation 1}
\]

\[
\frac{d[NP_1EC]}{dt} = + K_1' [NP_1EO] - K_2 [NP_1EC] + \text{precursor inputs} \tag{Equation 2}
\]

\[
\frac{d[4-NP]}{dt} = + K_1 [NP_1EO] + K_2 [NP_1EC] - K_3 [4-NP] \tag{Equation 3}
\]

Due to the lack of suitable information for NP$_1$EO degradation and in order to reduce the number of parameters to calibrate, we assume that the oxidation and the biodegradation of NP$_1$EO are equal ($K_1 = K_1'$). Moreover, data on long chain nonylphenol ethoxylates are scarce and their attenuation rate constants are not determined. The semi-quantitative analyses reveal that the effluent of Seine Aval WWTP is from 2 (NP$_3$EO) to 11 (NP$_8$EO) times more concentrated than the upstream of the Seine River. In addition, by comparing the concentration equivalents found at Poissy to the expected ones (combining of Conflans-s'-Honorine and the Oise River), discrepancies of -39% (NP$_3$EO) to -64% (NP$_8$EO) are noticed. These discrepancies give evidence of the disappearance of these compounds in the Seine River due to biodegradation processes. In order to take into account the biodegradation of long chain ethoxylates within the Seine River, “precursor inputs” terms are considered in the ProSe model scheme as linear sources, also being calibrated during the calibration process (Equations 1 and 2). Based on the disappearance of long chain nonylphenol ethoxylate along the Seine River (revealed by semi-quantitative analyses), the precursor inputs are assumed to decrease along the simulated transect. The highest precursor inputs are estimated close to the Seine Aval discharge and decrease until Triel-sur-Seine following natural logarithm shape representative of first-order kinetics. These precursor inputs take into account the appearing of
NP, EC or NP, EO along the studied transect due to the biodegradation of long chain compounds and they are expressed in nanogram per litter of water and per day (ng/L/d).

The scheme in Fig. 3 shows the layout and input parameters of the model. In the ProSe model, it is necessary to define the boundary conditions such as the upstream river flow (national discharge gauging station) and the upstream compound concentrations $[C]$ (field measurements). The attenuation rate constants and precursor inputs are calibrated according to the concentrations at Conflans-S-Honorine, Poissy and Triel-sur-Seine.

![Scheme of the ProSe model and the required input parameters.](image)

Fig. 3 Scheme of the ProSe model and the required input parameters. ($[C]$ = concentrations of 4 NP, NP, EO and NP, EC in ng/L)

2.4. **Sampling strategy for determining small scale spatial and temporal variabilities**

Small scale variabilities are crucial since they have a direct impact on the calibration process and the assessment of the attenuation rate constants (Beven, 2010). The spatial and temporal variabilities of 4-NP, NP, EC and NP, EO concentrations are assessed at Conflans-s-Honorine (during September campaign) as depicted in Fig. 4 and are assumed to be representative of variabilities along the whole Seine River transect.
Fig. 4 Sampling strategy to determine the small scale variabilities of concentrations. The sampling points are indicated by stars. Middle 1, 2 and 3 were sampled with an interval of 10 minutes.

For the assessment of the spatial variability, samplings are performed simultaneously at the left bank, in the middle and the right bank of the Seine River, while two additional samples in the middle are collected with a 10-min interval to assess the temporal variability. The relative standard deviations (%RSD) are used to assess the spatial (Left bank, Middle and Right bank) and temporal (Middle 1, 2 and 3) variabilities. The analytical repeatability is assessed by means of multiple extractions and UPLC-MS-MS analyses and the results are provided by Cladière et al., (2013b) (4-NP: 7 %, NP$_1$EC: 4 % and NP$_1$EO: 14 %).

3. Results

3.1. Small scale variabilities

Table 2 exhibits the concentrations of 4-NP, NP$_1$EC and NP$_1$EO within the Seine River as well as small scale spatial and temporal variabilities.

Table 2 Concentrations (ng/L) of left bank, middle and right bank of the Seine River and small scale variabilities

<table>
<thead>
<tr>
<th>Dissolved concentrations (ng/L)</th>
<th>Spatial variability</th>
<th>Temporal variability</th>
<th>Small scale variabilities (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left bank</td>
<td>Middle (average*)</td>
<td>Right bank</td>
</tr>
<tr>
<td>4-NP</td>
<td>55</td>
<td>57</td>
<td>63</td>
</tr>
<tr>
<td>NP$_1$EC</td>
<td>129</td>
<td>123</td>
<td>118</td>
</tr>
<tr>
<td>NP$_1$EO</td>
<td>10</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

* The concentrations for Middle used for the spatial variability are the averages of Middle 1, 2 and 3. * The spatial and temporal variabilities are determined by the relative standard deviation of samples (%RDS). The total variabilities are calculated by the sum of spatial and temporal variabilities (we assume that analytical uncertainties are included in spatial and temporal variabilities).

The concentrations of 4-NP and NP$_1$EC found in the Seine River (\approx 100 ng/L) are far higher than their limits of quantification (4-NP: 24.5 ng/L; NP$_1$EC: 1.7 ng/L) except for NP$_1$EO (NP$_1$EO: 9.8 ng/L). The repeatability is taken into account in the assessment of spatial and temporal variabilities by selecting the highest value between the relative standard deviation of samples and the analytical repeatability. The small scale variabilities (sum of spatial and temporal) of 4-NP, NP$_1$EC and NP$_1$EO concentrations in the Seine River reach respectively 14 %,
11 % and 37 %. These results provide quantification errors due to the sampling protocol, which are usually not
reported in most of articles dealing with pollutants in receiving surface water.

The sampling strategy is thus applicable to 4-NP and NP\textsubscript{1}EC measurements, but is less accurate for NP\textsubscript{1}EO. Therefore, the variabilities on Seine River profiles are plotted as error bars for the measured concentrations. In addition, the variabilities on boundary conditions are considered on the modelled profiles.

3.2. Attenuation rate constants

The concentrations of 4-NP, NP\textsubscript{1}EC and NP\textsubscript{1}EO found in the Seine and Oise Rivers and the effluents of Seine Aval WWTP as well as the biogeochemical parameters (water temperature, dissolved organic carbon (DOC), dissolved oxygen and pH) are exhibited in Table 3. All concentrations found during July and September sampling campaigns are consistent with the literature and previous results found in the Seine River (Jonkers et al., 2009; Loos et al., 2010; Cladière et al., 2013b). The concentrations found during July in the Seine River are higher than those found during September, mainly due to the significant higher concentrations of Seine Aval WWTP and the Oise River (Table 3). Whatever the sampling campaign, no exceedance of the European Quality Standard (300 ng/L) is observed along the 28 km transect of the Seine River even downstream of Seine Aval WWTP.

Table 3 Biogeochemical parameters and nonylphenolic compound concentrations measured in July and September sampling campaigns

<table>
<thead>
<tr>
<th>Parameters*</th>
<th>July</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow (m3/s)</td>
<td>72</td>
<td>17</td>
</tr>
<tr>
<td>Tw (°C)</td>
<td>20.8</td>
<td>20.9</td>
</tr>
<tr>
<td>σ (µS/cm)</td>
<td>600</td>
<td>1195</td>
</tr>
<tr>
<td>pH</td>
<td>8.0</td>
<td>ND**</td>
</tr>
<tr>
<td>O$_2$ (mg/L)</td>
<td>4.9</td>
<td>ND</td>
</tr>
<tr>
<td>DOC (mg/L)</td>
<td>2.95</td>
<td>11.60</td>
</tr>
<tr>
<td>4-NP (ng/L)</td>
<td>102</td>
<td>320</td>
</tr>
<tr>
<td>NP\textsubscript{1}EC (ng/L)</td>
<td>52</td>
<td>751</td>
</tr>
<tr>
<td>NP\textsubscript{1}EO (ng/L)</td>
<td>19</td>
<td>80</td>
</tr>
</tbody>
</table>

Before calibrating the attenuation rate constants in the Seine River, a first simulation is performed considering nonylphenolic compounds as a conservative tracer for July and September campaigns. Results (data not shown) underscore that the modelled trends do not fit the observed ones indicating that only physical processes (transport and lateral inflows) do not explain the fate of 4-NP, NP\textsubscript{1}EC and NP\textsubscript{1}EO along the Seine River.
Attenuation rate constants and precursor inputs are, thereafter, calibrated (Fig 5). In parallel, small scale variability intervals are used to assess uncertainties around the optimal values of attenuation rate constants.

Fig. 5 Modelled (optimised rate constants) and actual profiles of 4-NP, NP,EC and NP,EO concentrations in the Seine River. The points exhibited are Maisons-Laffitte (715.4 km), Conflans-st-Honorine (728.2 km), Poissy (734.9 km) and Triel-sur-Seine (743.6 km). The y error bars represented on the actual profile indicate the total variabilities linked to in-situ sampling while they represent the uncertainties attached to boundary conditions on modelled profile.

Table 4 shows the minimum, optimal and maximum attenuation rate constants as well as precursor inputs for July and September sampling campaigns.
<table>
<thead>
<tr>
<th></th>
<th>Attenuation rate constants (d$^{-1}$)</th>
<th>Precursor inputs (ng/L/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$K_1 = K_1^*$ min - opt - max</td>
<td>$NP_{1_{EC}}$ min - max</td>
</tr>
<tr>
<td>July 2011</td>
<td>0.05 - 0.10 - 0.15</td>
<td>3.44 - 7.84</td>
</tr>
<tr>
<td>September 2011</td>
<td>0.29 - 0.30 - 0.33</td>
<td>0.01 - 0.3</td>
</tr>
<tr>
<td></td>
<td>K_2 opt - max</td>
<td>$NP_{1_{EC}}$ min - max</td>
</tr>
<tr>
<td></td>
<td>3.14 - 3.30 - 3.47</td>
<td>0.06 - 0.4</td>
</tr>
<tr>
<td></td>
<td>K_3 opt - max</td>
<td>$NP_{1_{EO}}$ min - max</td>
</tr>
<tr>
<td></td>
<td>2.38 - 2.50 - 2.75</td>
<td>0.01 - 0.3</td>
</tr>
<tr>
<td></td>
<td>$NP_{1_{EC}}$ min - max</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$NP_{1_{EO}}$ min - max</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Attenuation rate constants (d$^{-1}$) and precursor inputs (ng/L/d)

Min and max values were assessed according to the small scale variabilities. Optimised values (opt) enable the best fit between simulated and observed profiles.

For July, Table 4 discloses high values for K_2 (3.14 to 3.47 d$^{-1}$) and K_3 (2.38 to 2.75 d$^{-1}$). These rate constants are far higher than those reported by Jonkers et al., (2005) in the Rhine estuary and Staples et al., (2001) in laboratory batch reactor (Table 4). In parallel, the precursor inputs were estimated between 7.84 ng/L/d and 3.44 ng/L/d for NP$_1$EC and between 0.4 ng/L/d and 0.06 ng/L/d for NP$_1$EO. In the case of NP$_1$EC, the total precursor flux along the Seine River transect (33.6 g/d) accounts for 10% of the upstream load (370 g/d) and only for 2.4% of the Seine Aval input (1,480 g/d) which means that they are not main sources of NP$_1$EC and NP$_1$EO into the Seine River. However, the precursors inputs are crucial in the fate of NP$_1$EC and NP$_1$EO since neglect them during the calibration process does not allow a good fit between modelled and observed profiles.

Calibration parameters for the September campaign are much lower (Table 4). Mean values of K_2 and K_3 are respectively 17 and 33 times lower than those estimated for the July campaign. In parallel, the maximum precursor inputs for NP$_1$EC drops by a factor 26. The decreases of K_2, K_3 and NP$_1$EC precursor inputs suggest that the aerobic biodegradation was significantly higher in July compared to September. Moreover, the rate constants estimated in September are consistent with the literature (Jonkers et al., 2005; Staples et al., 2001).

The July and September sampling campaigns enable to calibrate of attenuation rate constants but not to validate them. Validation of the parameter sets is done at the annual scale based on 11 monthly sampling campaigns performed at the Maisons-Laffitte, Seine Aval WWTP effluent, the Oise River and Meulan (downstream Triel-sur-Seine). The validation is provided in the companion paper: “Modelling the fate of nonylphenolic compounds in the Seine River - part 2: assessing the impact of global change on daily concentrations” (Cladière et al. 2013a).
4. Discussion

4.1. Influence of biogeochemical conditions of the Seine River

In order to understand the significant differences between July and September, the biogeochemical conditions of the Seine River are examined (e.g. temperature, pH, chlorophyll a, dissolved O$_2$, Seine River flow). Manzano et al., (1999) highlight the impact of temperature on biodegradation rates of nonylphenolic compounds and report that the higher the temperature, the higher the biodegradation rate. Water temperature is similar in July (21°C) and September (20°C) and cannot explain such differences of the attenuation rate constants. Furthermore, pH, conductivity, meteorological and hydrological conditions of the Seine River were quite similar during both campaigns.

Chlorophyll a concentrations are continuously monitored in the middle of the considered transect and exhibit high values (up to 20 µg/L representative of an algal bloom in the Seine River) one week before the July sampling campaign (data not shown). On the contrary, during September, low concentrations of chlorophyll a (≈ 5 µg/L) are noticed. The link between an algal bloom and the growth of heterotrophic bacteria has been reported by Kisand and Noges, (1998) in lake Vortsjarv (Estonia) and by Hygum et al., (1997) for laboratory experiments. Both studies reported a significant increase of the bacteria growth during the decline of an algal bloom. The high activity of heterotrophic bacteria is also visible on dissolved O$_2$ since the concentrations measured in July are close to 4 mg/L and saturation about 75% while in September the concentration are far higher at 9 mg/L and saturation at 100% (Table 3). Based on this conclusion, the decline of the algal bloom during the July campaign favours the increase of heterotrophic bacterial biomass, and consequently enhances the biodegradation of organic matters such as nonylphenolic compounds since Corvini et al., (2006) reported that various environmental bacteria species can biodegrade them. Thus, in July the half-life times of 4-NP and NP$_1$EC vary between 5 and 7 hours, while in September they are longer and reach 7 days. The half-life time of NP$_1$EO remains constant in July and September and is close to 2 days.

Finally, the differences between July and September campaigns suggest that the bacterial biomass of the Seine River influences the oxidative biodegradation of NPhEO (K$_2$, K$_3$, NP$_1$EC precursors inputs), especially after an algal bloom. The first-order kinetic approach used in this study seems reliable to describe a punctual state of biodegradation in the Seine River (constant bacterial biomass) but does not take into account the variabilities generated by the fluctuation of bacterial biomass. In order to clarify the impacts of heterotrophic bacteria on
nonylphenolic compounds biodegradation, further studies should focus on coupling the modelling of NPnEO
biodegradation and bacterial biomass using biogeochemical models such as ProSe.

In contrast, the non oxidative biodegradation of NPnEO is not impacted by the heterotrophic bacterial biomass of
the Seine River since the attenuation rate constants of NP1EO do not significantly evolve and the NP1EO
precursor inputs remain constant between both campaigns. However, this result must be considered carefully
according to the lower confidence on NP1EO concentration profiles (small scale variability = 37 % and
concentrations close to the quantification limit).

4.2. Sensitivity analysis

In order to assess the significance of each process in the biodegradation pathway, a sensitivity analysis is
performed using an approach “one factor at a time” (OFAT) (Félix and Xanthoulis, 2005). Input parameters of
the model are modified by -10 % and +10 % around its optimised value one after the other. The effect of each
modification is analyzed on the outputs by the means of a sensitivity index (SI, Equation 4).

\[
SI = \frac{O_{\text{Test}} - O_{\text{Opt}}}{O_{\text{mean}}} = \frac{I_{\text{Test}} - I_{\text{Opt}}}{I_{\text{mean}}}
\]

Where

- \(SI\) is the sensitivity index;
- \(I_{\text{Opt}}\) is the optimised value of input;
- \(I_{\text{Test}}\) is the tested value of input (+10 % or -10 %);
- \(I_{\text{mean}}\) is the mean of \(I_{\text{opt}}\) and \(I_{\text{Test}}\);
- \(O_{\text{Test}}\) and \(O_{\text{Opt}}\) are the outputs respectively related to \(I_{\text{Test}}\) and \(I_{\text{Opt}}\);
- \(O_{\text{mean}}\) is the mean of \(O_{\text{Test}}\) and \(O_{\text{Opt}}\).

The sensitivity index weights the impacts of input parameters such as attenuation rate constants or precursor
inputs on model outputs (concentrations of 4-NP, NP1EC and NP1EO at Conflans-s\text'-Honorine, Poissy and Triel-
sur-Seine). A positive SI means that input and outputs vary in a similar way while a negative SI means that
inputs and outputs vary inversely. In addition, the higher the absolute value of SI, the higher the impact of input
parameter on the considered output. The sensitivity indexes of nonylphenolic compound concentrations in the
Seine River towards attenuation rate constants (\(SI_{K1}, SI_{K1'}, SI_{K2}\) and \(SI_{K3}\)) and precursor inputs (\(SI_{NP1EO}, SI_{NP1EC}\))
are shown in Fig. 6. During this study, an increase or a decrease of the considered inputs give similar results of sensitivity and hence results are compiled in Fig. 6.

Fig. 6 Sensitivity indexes of simulated concentrations of 4-NP, NP, EO and NP, EC at Conflans-st-Honorine, Poissy and Triel-sur-Seine towards attenuation rate constants and precursor inputs

Whatever the sampling campaign, SI_{K1}, SI_{K2} and SI_{K3} are negative meaning that an increase of attenuation rate constants leads to a decrease of modelled concentrations. As underscored in the Fig. 6, the sensitivity indexes of biodegradation processes in July and September are not similar confirming that campaigns occur in different conditions.

In July, high values of SI_{K2} (varying from -0.8 to -1.2) and SI_{K3} (ranging from -0.8 to -1.0) are noticed for NP, EC and 4-NP concentrations. On the contrary, the SI_{K1} (from -0.18 to -0.26) for NP, EO concentrations is
smaller but still significant. In September, the SI_{K_2} and SI_{K_3} are smaller (around -0.25 for NP_{1}EC and 4-NP concentrations). This observation confirms that the aerobic biodegradation process is important in July while its significance is lower in September. These results corroborate the hypothesis of an enhanced aerobic biodegradation at the end of an algal bloom. A similar conclusion is highlighted for SI_{NP_{1}EC} between July (SI_{NP_{1}EC} ≈ 1) and September (SI_{NP_{1}EC} ≈ 0.2).

Despite a significant role of K_2 to determine NP_{1}EC concentrations, it has a very limited impact on 4-NP concentrations (biodegradation product), as confirmed by the SI_{K_2} for 4-NP concentrations (0.09 in July and September). A similar result is noticed for SI_{K_1(K_1')} for NP_{1}EC or 4-NP concentrations (≈ 0.007). As a conclusion, according to these sensitivity indexes, a variation of attenuation rate constants K_1 and K_2 has a weak influence on 4-NP concentrations along the simulated transect and points out the need to extend the scale of modelling (spatial and temporal) to better understand the impact of biodegradation processes.

5. Conclusions

This study assesses the in-situ attenuation rate constants of 4-NP, NP_{1}EC and NP_{1}EO within surface water in a heavily urbanized area such as Paris. Based on a coupling between sampling campaigns and hydraulic and biogeochemical simulations, this study provides the first real case study of the environmental fate of 4-NP, NP_{1}EC and NP_{1}EO in freshwater. This study is of prime interest since it proves the possibility to simulate the fate of readily biodegradable pollutants such as 4-NP and its precursors within surface water. Based on the toxicity of these compounds, the assessment of their environmental fate is a key issue to understand their persistence and their possible impacts on aquatic wildlife. Results highlight a strong temporal variability of rate constants between July and September campaigns. While the rate constants evaluated for July are higher than 1 d^{-1} and NP_{1}EC precursor inputs higher than 344 ng/L/d, the rate constants and precursor inputs assessed for September are smaller (K ≈ 0.1 d^{-1} and precursors inputs ≈ 2 ng/L/d) but consistent with the literature. The variability of rate constants seems to be linked to the heterotrophic bacterial biomass and highlights that the first-order kinetic approach used in this study is reliable to describe punctual conditions of the Seine River (with a constant bacterial biomass) but not to describe the complexity of biogeochemical processes at larger temporal scale. Consequently, the coupling between attenuation rate constants and bacterial biomass should be more intensively investigated to definitely validate the impact of biogeochemical conditions of surface water on biodegradation of nonylphenolic compounds.
The sensitivity analysis of the ProSe model points out that the aerobic biodegradation processes are important inputs for the ProSe model and reinforces the hypothesis of the large influence of the biogeochemical conditions of the Seine River. However, this sensitivity analysis also highlights that biodegradation processes are not a key input for 4-NP fate along the 28 km transect, and points out the need to lengthen the transect in order to confirm or contradict this last conclusion at the basin scale.

In order to validate the modelling parameter values, the attenuation rate constants assessed during both sampling campaigns will be applied to simulate daily of concentrations of 4-NP, NP;EC and NP;EO for 2010 and compared to monthly sampling campaigns. To this end, 11 sampling campaigns were carried out from February to December 2010 at Maisons-Laffite, Seine Aval WWTP effluent, the Oise River, and Meulan (downstream of Triel-sur-Seine).

At last, the impact of global changes (global warming, population growth, optimisation of WWTP) on daily concentrations will be studied for the middle and the late 21st century. This is presented in a companion paper entitled: “Modelling the fate of nonylphenolic compounds in the Seine River - part 2: assessing the impact of global change on daily concentrations” (Cladière et al., 2013a).

6. Acknowledgments

The authors want to gratefully acknowledge the Paris public sanitation service (SIAAP) and especially Vincent Rocher and Céline Briand for their valuable assistance for sampling the effluent of Seine Aval WWTP. The authors kindly thank Alexis Groleau and Nicolas Escoffier, who provided access to the 15min-chloropyll a monitoring data of the Seine River. The authors also acknowledge Mohamed Saad for his technical assistance.

This study was supported by the PIREN-Seine research programme.

We thank Science of the Total Environment to permit us to publish the post-print of the manuscript.

7. References

Beven KJ. Preferential flows and travel time distributions: Defining adequate hypothesis tests for hydrological process models. Hydrological Processes 2010; 24: 1537-1547.

