Singular Vector Methods for Fundamental Matrix Computation

Abstract : The normalized eight-point algorithm is broadly used for the computation of the fundamental matrix between two images given a set of correspondences. However, it performs poorly for low-size datasets due to the way in which the rank-two constraint is imposed on the fundamental matrix. We propose two new algorithms to enforce the rank-two constraint on the fundamental matrix in closed form. The first one restricts the projection on the manifold of fundamental matrices along the most favorable direction with respect to algebraic error. Its complexity is akin to the classical seven point algorithm. The second algorithm relaxes the search to the best plane with respect to the algebraic error. The minimization of this error amounts to finding the intersection of two bivariate cubic polynomial curves. These methods are based on the minimization of the algebraic error and perform equally well for large datasets. However, we show through synthetic and real experiments that the proposed algorithms compare favorably with the normalized eight-point algorithm for low-size datasets.
Type de document :
Communication dans un congrès
R. Klette, M. Rivera, and S. Satoh. PSIVT, Oct 2013, Guanajuato, Mexico. Springer, 8333, pp.290-301, 2013, Lecture Notes in Computer Science
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-00866141
Contributeur : Pascal Monasse <>
Soumis le : jeudi 26 septembre 2013 - 09:45:21
Dernière modification le : lundi 15 janvier 2018 - 11:43:26
Document(s) archivé(s) le : vendredi 27 décembre 2013 - 04:32:27

Fichier

PSIVT2013_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00866141, version 1

Citation

Ferran Espuny, Pascal Monasse. Singular Vector Methods for Fundamental Matrix Computation. R. Klette, M. Rivera, and S. Satoh. PSIVT, Oct 2013, Guanajuato, Mexico. Springer, 8333, pp.290-301, 2013, Lecture Notes in Computer Science. 〈hal-00866141〉

Partager

Métriques

Consultations de la notice

291

Téléchargements de fichiers

171