Determination of in-situ biodegradation rate constants of nonylphenolic compounds in the Seine River
Mathieu Cladière, Lauriane Vilmin, Céline Bonhomme, Johnny Gasperi, Nicolas Flipo, Bruno Tassin

To cite this version:
Mathieu Cladière, Lauriane Vilmin, Céline Bonhomme, Johnny Gasperi, Nicolas Flipo, et al.. Determination of in-situ biodegradation rate constants of nonylphenolic compounds in the Seine River. 14th EuCheMS International Conference on Chemistry and the Environment, Jun 2013, Barcelone, Spain. 2013. hal-00862202

HAL Id: hal-00862202
https://hal-enpc.archives-ouvertes.fr/hal-00862202
Submitted on 16 Sep 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1- INTRODUCTION

Assessing the fate of endocrine disrupting compounds (EDC) in the environment is currently a key issue for determining their impacts on aquatic ecosystems. The 4-nonylphenol (4-NP) is a well known EDC as well as its precursors, the nonylphenol monoethoxylate (NP1EO) and the nonylphenol acetic acid (NP1EC). To date, the biodegradation rate constants of nonylphenolic compounds have been mostly studied in laboratory and only Jonkers et al. (2005) focus on *in-situ* rate constants but in estuarine salt water. Therefore data on *in-situ* biodegradation of nonylphenolic compounds in river water are scarce or not up to date.

This study aims at evaluating the *in-situ* biodegradation of 4-NP, NP1EC and NP1EO in the Seine River downstream of Paris City.

2- METHODOLOGY

- 40 km long transect downstream of Paris city
- 2 sampling campaigns: July and September 2011
- Hours of sampling estimated according to velocity of the Seine River
- Samples collected in the same volume of water
- Analysis: UPLC-MS-MS & quantification of 4-NP, NP1EC and NP1EO
- Results & calibrating a sub-model of NP1EO biodegradation of ProSe model
- The spatial and temporal variabilities of concentrations are considered for calibration
- Calibration of $K_i = K_i'$, K_2 and K_3 based on first order kinetics equations
- Calibration of "precursor inputs" to symbolize biodegradation of NP1EO and NP1EC

2- RESULTS

July

- Biodegradation rate constants are far higher than those reported by Jonkers et al., (2005) or by Staples et al., (2001).

September

- Biodegradation rate constants are close to those reported by Jonkers et al., (2005) or by Staples et al., (2001).

3- DISCUSSION / CONCLUSION

The variability of bacterial biomass likely induces the variance of biodegradation rate constants of nonylphenolic compounds.

The first-order kinetic approach seems reliable to describe a punctual state of biodegradation but does not take into account the variabilities generated by the fluctuation of bacterial biomass.