
Chapter 1
Justification of the Bending-Gradient theory
through asymptotic expansions

Arthur Lebée*, Karam Sab

Abstract In a recent work, a new plate theory for thick plates was suggested where
the static unknowns are those of the Kirchhoff-Love theory, to which six compo-
nents are added representing the gradient of the bending moment [1]. This theory,
called the Bending-Gradient theory, is the extension to multilayered plates of the
Reissner-Mindlin theory which appears as a special case when the plate is homo-
geneous. This theory was derived following the ideas from Reissner [2] without
assuming a homogeneous plate. However, it is also possible to give a justification
through asymptotic expansions. In the present paper, the latter are applied one order
higher than the leading order to a laminated plate following monoclinic symmetry.
Using variational arguments, it is possible to derive the Bending-Gradient theory.
This could explain the convergence when the thickness is small of the Bending-
Gradient theory to the exact solution illustrated in [3]. However, the question of the
edge-effects and boundary conditions remains open.

1.1 Introduction

The classical theory of plates, known also as Kirchhoff-Love plate theory is based
on the assumption that the normal to the mid-plane of the plate remains normal after
transformation. This theory is also the first order of the asymptotic expansion with
respect to the thickness [4]. Thus, it presents a good theoretical justification and
was soundly extended to the case of periodic plates [5, 6]. It enables to have a first-
order estimate of the macroscopic deflection as well as local stress fields. In most
applications the first-order deflection is accurate enough. However, this theory does
not capture the local effect of shear forces on the microstructure because shear forces
are one higher-order derivative of the bending moment in equilibrium equations
(Qα = Mαβ ,β ).
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Because shear forces are part of the macroscopic equilibrium of the plate, their
effect is also of great interest for engineers when designing structures. However,
modeling properly the action of shear forces is still a controversial issue. Reiss-
ner [2] suggested a model for homogeneous plates based on a parabolic distribu-
tion of transverse shear stress through the thickness (Reissner-Mindlin theory). This
model performs well for homogeneous plates and gives more natural boundary con-
ditions than those of Kirchhoff-Love theory. Thus, it is appreciated by engineers and
broadly used in applied mechanics. However, the direct extension of this model to
laminated plates raised many difficulties.

Two main path were followed for deriving models suitable for laminated plates:
axiomatic approaches and asymptotic approaches.

In asymptotic approaches, a plate model is derived directly from the full 3D
formulation of the problem, assuming the thickness of the plate goes to zero. In
these approaches, the asymptotic expansion method plays a central role. As already
mentioned, the leading order leads to Kirchhoff-Love plate theory [4, 5, 6]. Hence
one needs to seek higher orders for bringing out the effect of shear forces. However,
in the cases of laminated plates, this procedure does not lead to Reissner-Mindlin
plate theory [7, 8].

In axiomatic approaches, 3D fields are assumed a priori and a plate theory is
derived using integration through the thickness and variational tools. The reader can
refer to the following reviews [9, 10, 11, 12]. Most suggestions leading to Reissner-
Mindlin-like theories show discontinuous transverse shear stress through the thick-
ness or are limited to some geometric configurations (orthotropy or cylindrical bend-
ing for instance). In this field, these limitations even led to the suggestion of “lay-
erwise” models which give more satisfying results but are much more numerically
intense than Reissner-Mindlin theory [12, 13]. Finally, let us point out that the the-
ory suggested by Reissner [2] is usually considered as an axiomatic approach since
the parabolic transverse shear stress distribution of the stress was derived without
asymptotic arguments. Consequently, some work took literally this distribution and
applied it to laminated plates. Like in many unsuccessful axiomatic approaches this
led to discontinuous displacement fields and raised an unjustified suspicion over the
original work.

Revisiting the approach from Reissner [2] directly with laminated plates, Lebée
and Sab [1, 3] showed that the transverse shear static variables which come out
when the plate is heterogeneous are not shear forces Qα but the full gradient of the
bending moment Rαβγ = Mαβ ,γ . Using conventional variational tools, they derived
a new plate theory – called Bending-Gradient theory – which is actually turned into
Reissner-Mindlin theory when the plate is homogeneous. This new plate theory is
seen by the authors as an extension of Reissner’s theory to heterogeneous plates
which preserves most of its simplicity. It was applied to the cylindrical bending of
carbon fibers laminated plates and compared to exact solutions in [3]. Very good
agreement for the transverse shear distribution as well as in-plane displacement was
pointed out and convergence with the slenderness was observed.

Originally designed for laminated plates, the Bending-Gradient theory was also
extended to in-plane periodic plates using averaging considerations such as Hill-
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Mandel principle and successfully applied to sandwich panels [14, 15] as well as
space frames [16].

Because the derivation of the Bending-Gradient theory followed the ideas from
Reissner [2], one can argue that it is basically an axiomatic approach. However, it is
the intention of the present paper to demonstrate that there is a close link between the
derivation of the Bending-Gradient theory and the asymptotic expansion method.
Since the Bending-Gradient is turned into the Reissner-Mindlin theory when the
plate is homogeneous, this link will be also demonstrated for the original work from
Reissner [2].

In order to derive the Bending-Gradient theory through asymptotic expansions,
we first set in Section 1.2 the 3D problem, its symmetries and the asymptotic ex-
pansions framework. For the sake of simplicity we choose the constitutive material
and the loadings of the plate such that the bending moment is fully uncoupled with
the membrane stress. Then in Section 1.3 we perform the standard resolution of the
auxiliary problems and conclude that bringing out transverse shear effects through
this approach is not satisfying. Then in Section 1.4 we derive the Bending-Gradient
theory using variational considerations.

1.2 The asymptotic expansion framework

In this section, the asymptotic expansion framework is set in the special case of a
laminated plate. This procedure was established by Sanchez-Palencia [17] for lin-
ear dynamics of 3D continuum. It starts with the definition of the 3D problem of
the laminated plate which is under consideration. Then this problem is scaled in or-
der to separate the in-plane and the out-of-plane variables and we assume that the
fields follow an expansion depending on a small parameter: the inverse of the plate
slenderness. Finally, the equations are gathered for each order of this parameter.

1.2.1 Notations

Vectors and higher-order tensors, up to sixth order, are used in the following. When
using short notation, several underlining styles are used: vectors are straight un-
derlined, u−. Second order tensors are underlined with a tilde: M∼ and K∼ . Third order
tensors are underlined with a parenthesis: R

_
and Γ

_
. Fourth order tensors are are dou-

bly underlined with a tilde: D∼∼ and s∼∼. Sixth order tensors are doubly underlined with
a parenthesis: h

__
and I

__
. The full notation with indices is also used. Then we follow

Einstein’s notation on repeated indices. Furthermore, Greek indices α,β ,δ ,γ = 1,2
denotes in-plane dimensions and Latin indices i, j,k, l = 1,2,3, all three dimensions.

The transpose operation T• is applied to any order tensors as follows: (Ta)
αβ ...ψω

=
aωψ...βα . Three contraction products are defined, the usual dot product (a− ·b− = aibi),
the double contraction product (a∼ : b∼ = ai jb ji) and a triple contraction product
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(a
_
···a_ = aαβγ aγβα ). The derivation operator ∇− is also formally represented as a vec-

tor: a∼ ·∇− = ai j∇ j = ai j, j is the divergence and a∼⊗∇− = ai j∇k = ai j,k is the gradient.
Here ⊗ is the dyadic product.

1.2.2 The 3D problem

The laminated plate occupies a domain Ω t = ωL×]− t
2 ,

t
2 [ where ωL is the middle

surface of the plate (its typical size is L) and t its thickness. The boundary of the
plate, ∂Ω t , is decomposed into three parts:

∂Ω
t = ∂Ωlat∪∂Ω

+
3 ∪∂Ω

−
3

with ∂Ωlat = ∂ω
L×]− t

2
,

t
2
[ and ∂Ω

±
3 = ω

L×
{
± t

2

}
.

(1.1)

The plate is fully clamped on its lateral boundary, ∂Ωlat, and is submitted to the
same distributed and purely transverse force f

−
= f3(x1,x2)e−3 both on its upper and

lower boundaries ∂Ω
+
3 and ∂Ω

−
3 .

The fourth-order stiffness tensor C∼∼
t (x3) characterizing the elastic properties of

the constituent material at every point x−=(x1,x2,x3) of Ω t is introduced. We assume
the following monoclinic symmetry: C t

3αβγ
= C t

α333 = 0. In addition, C∼∼
t does not

depend on (x1,x2) and is an even function of x3 to ensure full uncoupling between
in-plane and out-of-plane problems. Thus, the constitutive equation writes as:

σ∼
t
(
x−
)
=C∼∼

t (x3) : ε∼
t
(
x−
)

(1.2)

where σ∼
t =
(

σ t
i j
(
x−
))

is the stress tensor and ε∼
t =
(

ε t
i j
(
x−
))

is the strain tensor at
point x−. The tensor C∼∼

t follows the classical symmetries of linear elasticity and is
positive definite.

The full 3D elastic problem, P3D, is to find in Ω t a displacement vector field
u−t , a strain tensor field ε∼

t and a stress tensor field σ∼
t such that the static conditions

(SC3D,t):

SC3D,t :

{
σ∼

t ·∇− = 0 on Ω
t (1.3a)

σ∼
t ·
(
±e−3

)
= f

−
on ∂Ω

±
3 , (1.3b)

the kinematic conditions (KC3D,t):

KC3D,t :
{

ε∼
t = u−

t ⊗s
∇− on Ω

t (1.4a)
u−

t = 0 on ∂Ωlat (1.4b)

and the constitutive law (1.2) are satisfied. Here,
(
e−1,e−2,e−3

)
is the orthonormal

basis associated with coordinates (x1,x2,x3) and •⊗s∇− denotes the symmetric part
of the gradient operator.
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1.2.2.1 Variational formulation of the 3D problem

The strain and stress energy density w3D and w∗3D are respectively given by:

w3D (
ε∼

)
=

1
2

ε∼ : C∼∼
t : ε∼, w∗3D (

σ∼

)
=

1
2

σ∼ : S∼∼
t : σ∼ (1.5)

They are related by the following Legendre-Fenchel transform:

w∗3D (
σ∼

)
= sup

ε∼

{
σ∼ : ε∼−w3D (

ε∼

)}
(1.6)

The kinematic variational approach states that the strain solution ε∼
t of P3D is the

one that minimizes P3D among all kinematically compatible strain fields:

P3D (
ε∼

t
)
= min

ε∼∈KC3D,t

{
P3D (

ε∼

)}
(1.7)

where P3D is the potential energy given by:

P3D (
ε∼

)
=
∫

Ω t
w3D (

ε∼

)
dΩ

t−
∫

ωL

(
f
−
·u−++ f

−
·u−−
)

dω
L (1.8)

and u−± = u−(x1,x2,±t/2) are the 3D displacement fields on the upper and lower
faces of the plate.

The static variational approach states that the stress solution σ∼
t of P3D is the one

that minimizes P∗3D among all statically compatible stress fields:

P∗3D (
σ∼

t
)
= min

σ∼ ∈SC3D,t

{
P∗3D (

σ∼

)}
(1.9)

where P∗3D is the complementary potential energy given by:

P∗3D (
σ∼

)
=
∫

Ω t
w∗3D (

σ∼

)
dΩ

t (1.10)

1.2.2.2 Effect of symmetries

For the sake of simplicity, we chose the 3D plate problem such that only flexural
part is involved and no membranal part.

The 3D problem P3D is skew-symmetric through a planar symmetry with respect
to the mid-plane of the plate (known also as “mirror symmetry” in laminates engi-
neering) because C∼∼

t is an even function of only x3. This means that, when applying
the transformation x3→−x3 the problem remains unchanged but the boundary con-
dition (1.3b) changes its sign. Consequently the in-plane displacement ut

α (x1,x2,x3)
is an odd function of x3 and the out-of-plane displacement ut

3 (x1,x2,x3) is an
even function of x3. Similarly, the in-plane stress σ t

αβ
(x1,x2,x3) and transverse
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compression σ t
33 (x1,x2,x3) are odd functions of x3 and the transverse shear stress

σ t
α3 (x1,x2,x3) is an even function of x3.

In terms of resultants and averaged displacements, the integration through the
thickness of ut

α and σ t
αβ

vanish and then the plate problem will be purely flexural.
Of course, this result affects also the asymptotic expansion procedure and enables
many simplifications.

1.2.3 Scaling

Once the 3D problem is set, we scale it for clearly separating the in-plane variables
(which are related to macroscopic problems) and the out-of-plane variable (which
is related to microscopic perturbations). Hence, L is the typical scale of the in-plane
variables (e.g. the span and also the wavelength of the loadings). We introduce the
following change of variable Yα = L−1xα for the in-plane variable where Yα ∈ ω .
The domain ω is the scaled mid-plane of the plate. Moreover we define z= t−1x3 for
the out-of-plane variable, z ∈]− 1

2 ,
1
2 [. Consequently, we define the small parameter

as: η = t/L.
Based on this change of variables, the fourth-order elasticity tensor can be rewrit-

ten as:
C∼∼

t (x3) =C∼∼

(
t−1x3

)
=C∼∼

(z) (1.11)

whereC∼∼ is a function of z. In the following, double-stroke fonts denote fields which
are only function of the local variable z (i.e. localization fields).

The distributed forces are classically scaled the following way (see: [4, 5, 18]):

f
−
(x1,x2) = η

2 F3 (Y1,Y2)

2
e−3 (1.12)

Similarly, in the following, fields with capital letters are only function of (Y1,Y2)
(i.e. macroscopic fields).

Furthermore, from the fields of the 3D problem (u−t ,ε∼
t ,σ∼

t) we define the non-
dimensional fields (u−,ε∼,σ∼ ) as follows: u−t (x1,x2,x3) = Lu− (x1/L,x2/L,x3/t) = Lu− (Y1,Y2,z)

ε∼
t (x1,x2,x3) = ε∼ (x1/L,x2/L,x3/t) = ε∼ (Y1,Y2,z)

σ∼
t (x1,x2,x3) = σ∼ (x1/L,x2/L,x3/t) = σ∼ (Y1,Y2,z)

(1.13)

The derivation rule for those functions is:

∇− =

(
d

dx1
,

d
dx2

,
d

dx3

)
= L−1

(
∂

∂Y1
,

∂

∂Y2
,0
)
+ t−1

(
0,0,

∂

∂ z

)
= L−1

∇− Y + t−1
∇− z.

(1.14)
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We will also use the variational formulation of the 3D problem. Hence we provide
here the scaled variational formulation. The set of statically compatible fields can
be rewritten as:

SC3D :


σ∼ ·∇− (Y,z) = 0 on Ω , (1.15a)

σ∼ ·
(
±e−3

)
=

η
2

2
F3e−3 on ∂Ω

±
3 , (1.15b)

where ∇− (Y,z) = ∇− Y +
1
η

∇− z. The kinematically compatible fields becomes (KC3D):

KC3D :


ε∼ = u−⊗

s
∇− (Y,z) on Ω , (1.16a)

u− = 0 on ∂ω×]− 1
2
,+

1
2
[ (1.16b)

Then the potential energy rewrittes as:

P3D (
ε∼

)
= tL2

∫
ω

(〈
w3D (

ε∼

)〉
− η

u+3 +u−3
2

F3

)
dω (1.17)

where 〈•〉 is the integration through the thickness: 〈•〉=
∫ 1

2
− 1

2
• dz. The complemen-

tary energy becomes also:

P∗3D (
σ∼

)
= tL2

∫
ω

〈
w∗3D (

σ∼

)〉
dω (1.18)

Now,C∼∼ , ω and F3 being fixed, the homogenization problem is to find a consistent
approximation of the solution of the 3D problem P3D (1.2-1.3-1.4) assuming η is
small.

1.2.4 Expansion

The asymptotic expansion method [17, 19] will be used to provide a formal jus-
tification of the Bending-Gradient theory. The starting point of the method is to
assume that the solution to (1.2-1.3-1.4) can be written as a series in power of η in
the following form: 

u− = η
−1u−−1 + η

0u−0 + η
1u−1 + · · ·

ε∼ = η
0ε∼

0 + η
1ε∼

1 + · · ·
σ∼ = η

0σ∼
0 + η

1σ∼
1 + · · ·

(1.19)

where p = −1,0,1,2... and u− p,ε∼
p and σ∼

p are functions of (Y1,Y2,z) which follow
the same parity as the 3D solution (Section 1.2.2.2). The series are started from
the order η

0 for σ∼ and ε∼, and from the order η
−1 for u−. Then, the expansion (1.19)
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– taking into account the change of variable – must be inserted in the equations
(1.2-1.3-1.4) and all the terms of the same order η

p must be identified.

1.2.4.1 Statically admissible fields

The 3D equilibrium equation, σ∼
t ·∇− = 0 on Ω t , becomes:

L
(
σ∼

t ·∇−
)
= η

−1
(

σ∼
0 ·∇− z

)
+ η

0
(

σ∼
0 ·∇−Y +σ∼

1 ·∇− z

)
+ · · ·= 0.

Identifying all the terms of the above series to be zero, it is found :

σ
0
i3,3 = 0 (1.20)

for the order η
−1,

σ
p
iα,α +σ

p+1
i3,3 = 0 (1.21)

for the order η
p with p≥ 0. The derivation •,i is performed without ambiguity with

respect to (Y1,Y2,z). The boundary condition, σ∼
t · e−3 = ± f

−
on ∂Ω

±
3 , gives the fol-

lowing equations:

σ
p
i3

(
Y1,Y2,±

1
2

)
= 0 (1.22)

for the order p≥ 0 and p 6= 2. When p = 2 we have:

σ
2
α3

(
Y1,Y2,±

1
2

)
= 0 and σ

2
33

(
Y1,Y2,±

1
2

)
=±1

2
F3 (Y1,Y2) (1.23)

1.2.4.2 Kinematically compatible fields

From the compatibility equation, it is found that the strain rate field can be written
as:

ε∼
t = Lu−⊗

s
∇− = η

−2
ε∼
−2 + η

−1
ε∼
−1 + η

0
ε∼

0 + · · · (1.24)

with:
ε
−2
αβ

= 0, ε
−2
α3 =

1
2

u−1
α,3 and ε

−2
33 = u−1

3,3 (1.25)

and for all p≥−1:

ε
p
αβ

=
1
2

(
up

α,β +up
β ,α

)
, ε

p
α3 =

1
2

(
up+1

α,3 +up
3,α

)
and ε

p
33 = up+1

3,3 (1.26)

The boundary condition over ∂Ωlat leads to:

∀p≥−1 and ∀(Y1,Y2) ∈ ∂ω, u−
p = 0. (1.27)
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1.3 Explicit or cascade resolution

Now that the asymptotic expansion framework is set, we detail the explicit resolu-
tion which is classically performed (see [5, 7] for instance). Basically it starts with
the derivation of low order displacements which do not gerenate local strain but
are related to purely macroscopic displacement fields. Then the zeroth-order equa-
tions are gathered. They enable the definition of the first auxiliary problem and the
construction of the well-known Kirchhoff-Love macroscopic plate model. Then the
first-order is solved the same way. Of course it would be possible to carry on the
process any order higher.

1.3.1 Low order displacement fields

The assumption (1.19) provides the following equations:

ε∼
−2 = 0, (1.28)

and
ε∼
−1 = 0, (1.29)

From (1.28) it is deduced that u−−1 is a rigid-body velocity field in z. Moreover, the
in-plane displacement has zero average because of the symmetry condition (Sec-
tion 1.2.2.2). Hence:

u−
−1 =U−1

3 (Y1,Y2)e−3. (1.30)

Using (1.29) and the boundary conditions (1.27) it can be found that u−0 has the
following form:

u−
0 =

−zU−1
3,1

−zU−1
3,2

U 0
3

 , (1.31)

with the boundary conditions:

U−1
3 =U−1

3,α nα =U 0
3 = 0 ∀(Y1,Y2) ∈ ∂ω. (1.32)

where n− is the outer normal to ∂ω . Note that, since U−1
3 is null over ∂ω , its tangen-

tial derivative will be also null over ∂ω , hence only the normal gradient U−1
3,α nα is

required to be explicitly set to zero in this boundary condition.
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1.3.2 Zeroth-order plate model (Kirchhoff-Love)

1.3.2.1 Zeroth-order auxiliary Problem

Gathering equilibrium equation for order -1, compatibility equation, boundary con-
ditions and constitutive equations of order 0 we get the zeroth-order auxiliary prob-
lem for z ∈ [− 1

2 ,
1
2 ]:

σ
0
i3,3 = 0 (1.33a)

σ
0
i j =Ci jklε

0
kl (1.33b)

ε0
αβ

= zK−1
αβ

, ε0
α3 =

1
2

(
u1

α,3 +U 0
3,α

)
and ε0

33 = u1
3,3 (1.33c)

σ 0
i3
(
z =± 1

2

)
= 0 (1.33d)

where we define the lowest-order curvature as:

K−1
αβ

=−U−1
3,αβ

(1.34)

Solving this problem does not raise difficulty. Using short notation, the displacement
field writes as:

u−
1 = u∼−

K : K∼
−1− zU 0

3 ⊗∇−Y +U 1
3e−3 (1.35)

More precisely, the localization related to the curvature is:

u
K
3αβ

=−
[∫ z

− 1
2

y
C33αβ

C3333
dy
]∗

and u
K
αβγ

= 0 (1.36)

where [•]∗ denotes the averaged-out distribution: [•]∗ = •− 〈•〉. Finally U 1
3 is an

integration constant which will load the next auxiliary problem. (There are no in-
plane integration constants because of the symmetry already invoked with lower
orders). The stress localization writes as:

σ∼
0 = s∼∼

K : K∼
−1 (1.37)

where the fourth-order stress localization tensor is:

s
K
αβγδ

= zCσ

αβγδ
and s

K
i3γδ

= 0 (1.38)

andCσ

αβγδ
=Cαβγδ−Cαβ33C33γδ/C3333 denotes the plane-stress elasticity tensor.

Hence the plate is under pure plane-stress at this order.
The strain is derived using the local constitutive equation:

ε
0
αβ

= zK−1
αβ

, ε
0
α3 = 0 and ε

0
33 =−

zC33αβ

C3333
K−1

αβ
(1.39)
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This confirms Kirchhoff’s assumption regarding the in-plane strain. The reader’s
attention is drawn to the fact that the out-of-plane strain is not zero, as already men-
tioned in several works [4, 5] in contrast to the original assumption from Kirchhoff.

Hence, for given macroscopic fields U−1
3 and its derivatives, the microscopic

strain and stress are fully determined at this order. However, we also need U 0
3 and U 1

3
for estimating the displacement field. This requires solving higher-order problems.

At this order, there remains to derive the macroscopic problem which enables the
derivation of U−1

3 .

1.3.2.2 Macroscopic problem

The Macroscopic equilibrium is derived integrating the first two components of z×
(1.21) for p = 0. This gives after integrating by parts over z:

M0
αβ ,β −Q1

α = 0 (1.40)

where the zeroth-order bending moment is defined as:

M0
αβ

(Y1,Y2) =
〈

zσ
0
αβ

〉
, (1.41)

and the first-order shear force is:

Q1
α (Y1,Y2) =

〈
σ

1
3α

〉
. (1.42)

It can be easily established that
〈
σ 0

3α

〉
= 0 because of the equilibrium (1.20) and

the boundary condition (1.22). Therefore, averaging the third component of Equa-
tion (1.21) for p = 0 leads to a trivial equation. Using the second order boundary
condition (1.23, p = 2) and averaging the third component of the first-order equilib-
rium equation (1.21), for p = 1 gives:

Q1
α,α +F3 = 0. (1.43)

We obtain also the constitutive equation by plugging the local stress derived in
Equation (1.37) into the definition of M∼

0. This leads to the well-known Kirchhoff-
Love constitutive equation:

M∼
0 = D∼∼ : K∼

−1 where: D∼∼ =
〈
z2
C∼∼

σ
〉

(1.44)

Gathering the preceeding results leads to the definition of the Kirchhoff-Love
plate problem: 

M∼
0 :
(
∇− Y ⊗∇− Y

)
+F3 = 0, on ω (1.45a)

M∼
0 = D∼∼ : K∼

−1, on ω (1.45b)

K∼
−1 =U−1

3 ∇− Y ⊗∇−Y , on ω (1.45c)

U−1
3 = 0 and

(
U−1

3 ⊗∇−Y

)
·n− = 0 on ∂ω (1.45d)
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Finally, solving this macroscopic problem enables the derivation of the macro-
scopic displacement fields U−1

3 . However U 0
3 and U 1

3 remain unknown.
The well-known limitation of Kirchhoff-Love plate model is that it does not in-

corporate the effect of shear forces. In order to bring out the contribution of trans-
verse shear, we need to go further in the expansion.

1.3.3 First-order plate model

1.3.3.1 First-order auxiliary problem

Gathering equilibrium equation for order 0, compatibility equation, boundary con-
ditions and constitutive equations of order 1 we get the first-order auxiliary problem
for z ∈ [− 1

2 ,
1
2 ]:

σ
0
iα,α +σ

1
i3,3 = 0 (1.46a)

σ
1
i j =Ci jklε

1
kl (1.46b)

ε1
αβ

= 1
2

(
u1

α,β +u1
β ,α

)
, ε1

α3 =
1
2

(
u2

α,3 +u1
3,α

)
and ε1

33 = u2
3,3 (1.46c)

σ 1
i3
(
z =± 1

2

)
= 0 (1.46d)

In this auxiliary problem, the zeroth-order displacement field u−1 (Equation (1.35))
and stress field σ∼

0 (Equation (1.37)) are local fields which depend linearly on K∼
−1,

U 0
3,α and U 1

3 . Hence, the first-order solution u−2 (as well as ε∼
1 and σ∼

1) will be a
linear superposition of localization fields which depend on the gradient of those
macroscopic fields.

The displacement field solution of this problem writes as:

u−
2 = u

_−
K∇ ···

(
K∼
−1⊗∇−Y

)
+u∼−

K : K∼
0− zU 1

3 ⊗∇−Y +U 2
3e−3 (1.47)

where the displacement localization tensor related to the curvature gradient writes
as:

u
K∇

αβγδ
=−

[∫ z

− 1
2

(
4Sα3η3

∫ y

− 1
2

vCσ

ηβγδ
dv+δαβu

K
3γδ

)
dy
]∗

and u
K∇

3βγδ
= 0

(1.48)
The first order stress writes as:

σ∼
1 = s

_∼

K∇ ···
(
K∼
−1⊗∇−Y

)
+s∼∼

K : K∼
0 (1.49)

where we defined the fifth-order localization tensor as:

s
K∇

αβγδη
= 0, s

K∇

α3βγδ
=−

∫ z

1
2

yCσ

αβγδ
dy and s

K∇

33βγδ
= 0 (1.50)
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Hence, this order involves only transverse shear effects.

1.3.3.2 Higher-order macroscopic problem

Exactly as for the zeroth-order, it is possible to derive the macroscopic equilibrium
equation as:

M1
αβ ,βα

= 0 (1.51)

which holds also for higher orders (p ≥ 1). For the constitutive equation, we have
again:

M∼
1 =
(〈

zσ
1
αβ

〉)
= D∼∼ : K∼

0 (1.52)

Finally, U 0
3 is solution of the same Kirchhoff-Love problem as with the zeroth-

order case (Equation (1.45)), without external loads. Thus the solution is trivially
zero everywhere. This is due to the monoclinic symmetry of the local constitu-
tive equation. It is the analogue of the centro-symmetric assumption in the case
of asymptotic expansion of a 3D medium (see [20] for instance). Thus, if we want
to capture transverse shear effects following the asymptotic expansion procedure,
we have to go one order higher. At this order, the macroscopic problem will not be
trivial. However, it will require the derivation of the second gradient of the curvature
K∼
−1 and consequently the fourth derivative of the deflection. This raises an issue in

terms of physical meaning of this variable as well as of numerical implementation.
In contrast, it is remarkable that transverse shear effects are included in the lo-

calization field already at this order. Hence we suggest to stop at this order the
asymptotic expansion and switch to variational arguments for deriving the Bending-
Gradient theory.

1.3.4 Additional remarks on the asymptotic expansion approach

Before going further in the derivation of the Bending-Gradient theory, let us point
out some useful remarks regarding the asymptotic expansion procedure.

In the present paper, we performed the asymptotic expansion up to the very
next order after the classical homogenization procedure. However, this formalism
has already been studied up to “infinite order” in other elasticity problems (see
Smyshlyaev and Cherednichenko [21] for instance) and convergence results were
derived [22]. Those works show that the fully reconstructed field u− is actually a
double sum: a sum over orders, as expected because of the expansion, but also over
degrees of derivative of the macroscopic displacement field. This is also the case in
the present plate problem. If we gather all the fields derived in the cascade resolution
we get the following:
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u− =
(

U−1
3
η

+U 0
3 + ηU 1

3 + η
2U 2

3 + . . .

)
e−3− z

(
U−1

3 + ηU 0
3 + η

2U 1
3 + . . .

)
⊗∇−Y

+ η

(
u∼−

K :
(
K∼
−1 + ηK∼

0 + . . .
))

+ η
2
(
u
_−

K∇ ···
(
K∼
−1⊗∇−Y + . . .

))
+ . . .

(1.53)

Assuming that this double sum converges, it is legitimate to define:

U3 =
∞

∑
p=−1

η
p+1U p

3 (1.54)

and rewrite the total displacement field as:

u− =
U3

η
e−3− zU3⊗∇−Y + η u∼−

K : K∼ + η
2
u
_−

K∇ ···K∼ ⊗∇−Y + . . . (1.55)

where K∼ = U3∇− Y ⊗∇−Y . This was suggested by Boutin [23] and further justified in
[21]. We have also for the stress field:

σ∼ = s∼∼
K : K∼ + η s

_∼

K∇ ···K∼ ⊗∇−Y + . . . (1.56)

Finally, this reasoning also holds true for the equilibrium equation and we formally
get:

M∼ :
(
∇− Y ⊗∇− Y

)
+F3 = 0 (1.57)

where Mαβ =
〈
zσαβ

〉
. Hence, it seems that going higher-order in the asymptotic

expansion only involves higher gradients of the displacement inside the constitu-
tive equation. However, as already pointed out in these papers, the problem remains
ill-posed as it stands here. Some caution must be taken when considering the con-
stitutive equation as well as the boundary conditions if one wants to derive a math-
ematically sound problem.

First, in order to derive the constitutive equation it seems straightforward to take
directly the elastic energy of the infinite order stress or strain (Equation (1.56)) and
to truncate this energy up to a given order afterward. However, this will lead to a
non-positive quadratic form and makes the higher-order problem unstable. Hence,
as pointed out by [21] it is critical to truncate the expansion of the stress or strain
before taking the related energy to ensure positivity.

Second, whereas the boundary conditions are set at each order in the cascade
resolution of the asymptotic expansion (here Equation (1.45d) at each order), in
the format presented here, it is not possible to make distinction between orders and
then the problem is not well-posed anymore. Here, variational tools will enable the
derivation of consistent boundary conditions with the choice of macroscopic degrees
of freedom.
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1.4 The Bending-Gradient theory

Keeping in mind the difficulties mentioned regarding the asymptotic expansion, the
Bending-Gradient theory is derived as follows. First, instead of keeping the first
gradient of the curvature as higher-order unknown, we introduce the gradient of the
bending moment. This will relax the compatibility condition between K∼ and K∼ ⊗∇−Y .
After this change of variable, we define the stress localization as the truncation of the
infinite order stress. Then we introduce the set of statically compatible macroscopic
fields. Finally, using variational arguments, the kinematics as well as the boundary
conditions of the plate model are derived. Once the plate model is solved, we are
able to reconstruct an approximation of the 3D displacement field.

We select first the bending moment and its gradient instead of the curvature and
its gradient for carrying the energy. Hence we define the bending gradient as:

R
_
= M∼ ⊗∇−Y (1.58)

Using Kirchhoff-Love constitutive equation and the following change of variable,

R
_
= D∼∼ : K∼ ⊗∇−Y (1.59)

it is possible to rewrite the strain and stress localization fields derived with the
asymptotic expansion (Section 1.3) only in terms of M∼ and R

_
:

σ∼
BG = s∼∼

M : M∼ + η s
_∼

R ···R_ (1.60)

where:
s∼∼

M = s∼∼
K : d∼∼, s

_∼

R = s
_∼

K∇ : d∼∼ and d∼∼ = D∼∼
−1 (1.61)

It is easy to check that this stress field satisfies the 3D equilibrium equation (1.15),
as well as the z = ±1/2 face boundary conditions, up to the order η

1. Hence, even
if it does not define properly a restriction of SC3D, it remains a good approximation
in the sense of the asymptotic expansion.

Now, based on the macroscopic equilibrium equations derived through the asymp-
totic expansion and the definition of R

_
, we suggest the following set of statically

compatible fields for the Bending-Gradient theory:

SCBG :

{
R
_
= M∼ ⊗∇−Y (1.62a)(

i∼∼
···R_
)
·∇−Y +F3 = 0 (1.62b)

where the shear forces were substituted and we used the following relation:

i∼∼
···R_ = M∼ ·∇−Y (1.63)

where iαβγδ = 1
2

(
δαγ δβδ +δαδ δβγ

)
is the identity for in-plane fourth-order tensors

following the symmetries of linear elasticity.
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Plugging σ∼
BG into the complementary energy of the full 3D problem leads to the

following functional:

P∗BG (M∼ ,R_)= ∫
ω

w∗KL (M∼ )+ η
2w∗BG (R

_

)
dω (1.64)

where the stress elastic energies are defined as:

w∗KL (M∼ )= 1
2

M∼ : d∼∼ : M∼ and w∗BG (R
_

)
=

1
2

TR
_
···h__ ···R_ (1.65)

with:
h
__
=
〈

T
s
_∼

R : S∼∼ : s
_∼

R
〉

(1.66)

This sixth-order tensor is the compliance related to the transverse shear of the plate.
It is strictly identical to the one derived in [1]. Let us recall here that it is positive,
symmetric, but not definite. More details about h

__
properties were discussed in [1]

NB: There is no uncoupling in the complementary energy (1.64) between M∼ and
R
_

because of the monoclinic symmetry of the local constitutive equation. In the
auxiliary problems, this symmetry enforces the localization related to M∼ to be purely
in-plane and the one related to R

_
to be pure transverse shear. Hence the cross terms

in the 3D elastic energy vanish.
Now we define the generalized strains as:

χ
∼
=

∂w∗KL

∂M∼
and Γ

_
=

∂w∗BG

∂R
_

(1.67)

which leads to the following constitutive equations:{
χ
∼
= d∼∼ : M∼ (1.68a)

Γ
_
= h

__

···R_ (1.68b)

Introducing respectively Φαβγ , U3 as Lagrange multipliers of Equations (1.62a)
and (1.62b) and taking the variations with respect to the static variables leads to the
following definition for the strains:

KCBG :

{
χ
∼
= Φ

_
·∇−Y (1.69a)

η
2
Γ
_
= Φ

_
+ i∼∼·∇−YU3 (1.69b)

where both Φ
_

and Γ
_

are third-order tensors which follows the same index sym-
metry as R

_
. Setting η

2 = 0 in those definitions leads exactly to Kirchhoff-Love
strains. Hence, the Bending-Gradient curvature is slightly different from the one
of the asymptotic expansion and Equation (1.69a) rewrites:

χ
∼
= K∼ + η

2
Γ
_
·∇−Y (1.70)
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Namely it is the sum of the conventional curvature and a small correction term which
relaxes this compatibility relation.

Considering the variations of the Lagrangian on the edges leads also to the fol-
lowing clamped boundary conditions:

U3 = 0 and Φ
_
·n− = 0 on ∂ω (1.71)

Finally we have a well-posed plate theory.
Once the exact solution of the macroscopic problem is derived, it is possible to

reconstruct the local displacement field. We suggest the following 3D displacement
field where U3, Φ

_
are the fields solution of the plate problem:

u−
BG =

U3

η
e−3− zU3⊗∇−Y + η u∼−

K : χ
∼
+ η

2
u
_−

K∇ ···
(

χ
∼
⊗∇−Y

)
(1.72)

Defining the strain as ε∼
BG = S∼∼

: σ∼
BG it is possible to check that:

ε
(
u−

BG)
(Y,z)− ε∼

BG = η
2
((

δ∼ ⊗
s
u
_−

K∇

)
::
(

χ
∼
⊗∇−

2
Y

)
+ zΓ

_
·∇−Y

)
(1.73)

which shows that the compatibility equation between the reconstructed displace-
ment field u−BG and strain localization ε∼

BG is satisfied up to the η
2 order.

1.5 Conclusion

Finally, we derived a plate model which enables the full description of local 3D
fields (u−BG, ε∼

BG and σ∼
BG) including the effects of transverse shear. Compared to the

classical theory from Reissner [2], we just add four macroscopic variables included
into the generalized rotation Φ

_
and which are related to transverse shear warping.

Contrary to the asymptotic expansions approach or the approach suggested in [21],
our theory does not require the derivation of the first or even the second gradient of
the curvature. Actually, when looking at the definition of strains in Equation (1.69),
only the first derivatives of U3 and Φ

_
are involved. Having low-order interpolation is

a serious advantage compared to “strain-gradient-like” approaches given in [7, 21].
Now, let us recall that the derivation of the Bending-Gradient theory through

asymptotic expansions was purely formal. The small parameter η was essentially
used for discriminating between orders. More precisely, the 3D local fields chosen
for the Bending-Gradient theory satisfy the 3D compatibility equation and the 3D
equilibrium equation one order higher than the Kirchhoff-Love fields. However, this
is not a proof of convergence even if the good results in [3] are clearly encouraging.
Especially, it is broadly acknowledged that the boundary have a critical role on that
matter when going in higher orders. This question raises already with asymptotic
expansions: it was demonstrated that the approximation which is derived in the bulk
is not compatible with the actual 3D boundary condition and can only be fulfilled
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weakly (see [24, 25] for a clear illustration in the case of beams and also [26]). In
the case of the Bending-Gradient theory the boundary conditions are different from
the asymptotic expansions and requires further analysis which is out of the scope of
this paper.
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nus, Masson, Paris, ISBN 2225826439, 1992.

[20] N. Triantafyllidis, S. Bardenhagen, The influence of scale size on the stability
of periodic solids and the role of associated higher order gradient continuum
models, Journal of the Mechanics and Physics of Solids 44 (11) (1996) 1891–
1928, ISSN 00225096.

[21] V. P. Smyshlyaev, K. D. Cherednichenko, On rigorous derivation of strain gra-
dient effects in the overall behaviour of periodic heterogeneous media, Journal
of the Mechanics and Physics of Solids 48 (6-7) (2000) 1325–1357, ISSN
00225096.

[22] N. Bakhvalov, G. Panasenko, Homogenisation: averaging processes in
periodic media, Kluwer Academic Publishers, Dordrecht; Boston, ISBN
9780792300496, 1989.

[23] C. Boutin, Microstructural effects in elastic composites, International Journal
of Solids and Structures 33 (7) (1996) 1023–1051, ISSN 00207683.

[24] N. Buannic, P. Cartraud, Higher-order effective modeling of periodic heteroge-
neous beams. I. Asymptotic expansion method, International Journal of Solids
and Structures 38 (40-41) (2001) 7139–7161, ISSN 00207683.

[25] N. Buannic, P. Cartraud, Higher-order effective modeling of periodic heteroge-
neous beams. II. Derivation of the proper boundary conditions for the interior
asymptotic solution, International Journal of Solids and Structures 38 (40-41)
(2001) 7163–7180, ISSN 00207683.

[26] V. L. Berdichevsky, Variational-asymptotic method of constructing a theory of
shells, Journal of Applied Mathematics and Mechanics 43 (4) (1979) 711–736,
ISSN 00218928.


