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Abstract

In this paper, we propose to consider the estimation of agrée shape from
a set of different segmentation results using both activearo's and information
theory. The reference shape is then defined as the minimurritééaon that ben-
efits from both the mutual information and the joint entropyh@ input segmen-
tations. This energy criterion is here justified using samiles between informa-
tion theory quantities and area measures, and presentemitiauous variational
framework. This framework brings out some interesting exabn measures such
as the specificity and sensitivity. In order to solve thispghaptimization prob-
lem, shape derivatives are computed for each term of therionit and interpreted
as an evolution equation of an active contounmiitual shape is then estimated
together with the sensitivity and specificity. Some syndadtexamples allow us
to cast the light on the difference between our mutual shagen average shape.
The applicability and robustness of our framework has akEenhtested for the
evaluation of different segmentation methods of the lefitreular cavity from
cardiac MRI.

Keywords: Active contours, segmentation evaluation, shape graglishtpe
optimization, average shape, cardiac MRI.
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1. Introduction

Constructing a reference shape from a set of different setiemn results
is an important point when dealing with segmentation evaunawvithout know-
ing the gold standard. It can also be useful in order to combifferent expert
segmentations in a single reference shape. The refereape shust then take
advantage of the information provided by each input shapewleing robust to
outliers. The estimation of such a reference shape can #aemooleled using in-
formation theory (mutual information and joint entropyjabgh the definition of
a shape optimization problem. In this paper, we proposerigpate what we call
a “mutual shape” using the framework of active contours dnaghe gradients. Our
method is illustrated on a cardiac Magnetic Resonance Irgadiiivl) study and
applied to the estimation of a reference shape of the leftrieeitar cavity, using
the contours provided by six different algorithms.

As far as segmentation evaluation without gold standar@imcerned, let us
note that two main strategies have been classically adoptefirst one consists
in choosing one parameter and in evaluating the performiavet of each seg-
mentation algorithm according to the relevance of this patar within a selected
database (e.g. in the domain of cardiac MR, the left ventaiogjection fraction
is the most important global physiological parameter dapmicthe myocardial
contraction). Such an evaluation may be performed withayroand truth using
some assumptions on the distribution of the chosen pararfsste for example
[30, 40]). The second strategy consists in the estimati@reference shape from
all the segmentation entries. Each individual segmemtasadhen compared to
the estimated reference contour using some quantitatizgsunes (average dis-
tance to the reference contour, Hausdorff distance, Diefficeent, specificity
and sensitivity measures ...). We can say that this strateggsponds to a verifi-
cation step of the proposed algorithms accuracy, whileerféhmer strategy, this
is rather a validation step according to the user goal (gegtien fraction). As
far as the verification issue is concerned, the STAPLE algori(Simultaneous
Truth and Performance Level Estimation) proposed by Walrgehl. [42] is now
classically used in this difficult context. Their algoritroansists in one instance
of the EM (Expectation Maximisation) algorithm where theetisegmentation is
estimated by maximizing the likelihood of the complete dddaeir pixel-wise
approach leads to the estimation of a reference shape ameoltisly with the
sensitivity and specificity of each input segmentation.nktbese measures, the



performance level of each input segmentation can be estthaaid a classification
of all the segmentation entries can be performed.

The algorithms proposed above in order to estimate a shégremnee are local
and treat each pixel independently. The MAP-STAPLE [7] misiecal by using
a small window or patch around the pixel. Moreover, the exfee domain does
not appear in the proposed model since it is defined only giradbe union of
the selected pixels or through a thresholding of some featwising such local
or semi-local approaches, it appears difficult to introdgiaal information on
the estimated shape (e.g information on the regularity@ttmtour or continuity
of the labels within a given domain). In order to cope withselrawbacks, we
propose to revisit the seminal work of Warfield [42] within@ntinuous optimiza-
tion setting by considering such a shape estimation unaeurhbrella of shape
optimisation tools [12] and deformable models [22]. Indebde computation of
a reference shape can be advantageously modeled as theioptiha well cho-
sen energy criterion and estimated by a shape gradientriebed corresponds
to the deformation of an active shape. Such an estimatedschdsely related to
the introduction of shapes similarity measures. For exanguich shape optimiza-
tion algorithms have already been proposed in order to ctenghape averages
[6, 38] or more recently median shapes [2] by minimisingedi#int shape metrics
like the Hausdorff distance in [6] or the symmetric areaad#hce between shapes
in [38]. Some other approaches also take advantage of wptbariated distances
between level-set shapes (see for example [32]).

However, the shapes obtained using the previous varidtdg@rithms cannot
be considered as reference shapes especially in the cag#iefsossegmentation.
One of the contributions of this paper is then to take adgpnta the analogies
between information theory and area measures in order toa@stwhat we call
a “mutual shape”. We propose to maximize the mutual inforomabetween the
n input segmentations while minimizing the joint entropycBua statistical cri-
terion can be interpreted as a robust measure of the synenae&a difference.
In this variational setting, we propose to add a classiaallegization term based
on the curvature of the deformable contour. Such a term ighted using a reg-
ularization parameter that controls the smoothness of bi@med contour. The
statistical model brings out both the sensitivity and sji@ty parameters and
these parameters are estimated jointly with the referengeahshape in similar
to the STAPLE algorithm. However, the energy criterion iedent from STA-
PLE and justified using analogies between information thgoantities and area
measures. Moreover, the advantage of our formalism is teeraaglicitly appear
the domain and the associated contour. Such a formalism saya interesting
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in order to add some geometrical or photometric priors tliye the criterion to
minimize.

The proposed algorithm is first tested on synthetic exangflewiing the dif-
ferences between a classic average variational shape bassedymmetric area
minimization [38], a simple majority voting shape and thegwsed mutual shape.
It is also evaluated in order to classify the performancelewf different seg-
mentation methods of the left ventricular cavity. The ob¢ai mutual shape is
compared with a classic average shape and with a refereape sltawn by an
expert. The robustness of the estimation to some outliestsstested for these
real examples.

In section 2, our mathematical framework and the proposiericn for the
estimation of the mutual shape are both presented. Theigntes then estimated
in a continuous framework and expressed using domain oouoirttegrals in sec-
tion 3. Such a continuous criterion can then be derived usiiragpe optimization
tools in order to compute the mutual shape (see section gperitrental results
on synthetic examples are detailed in section 5 and on MResagsection 6.

2. Problem statement

Let U be a class of domains (open regular bounded sets;3)eof RY (with
d = 2 or 3). In this paper theoretical results are statedifer2 ord = 3 but the
experimental results are conducted on 2D-images. We déyafs an element
of U of boundaryQ;. We considef{Q1,...,Qn} a family of n shapes where each
shape corresponds to the segmentation of the same unkngect Okin a given
image. The image domain is denoted @y RY. Our aim is to compute a ref-
erence shapg that can closely represent the true objec(Fig.1). We propose
to define the problem through a statistical representati@hapes embedded in
an information theory criterion. Let us first recall the mahmape representation
models and criteria proposed in the literature.

2.1. Shape representation

The computation of a reference shape is closely linked tahioéce of a rep-
resentation. An analytical representation may be used[@8]nvhere the authors
propose a statistical study of shapes by representing tiseanfiaite number of
points. Some authors prefer to choose an implicit reprasentof shapes which
avoids the parametrization step. For example, in [2, 5] ebape represented us-
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FIGURE 1: Diagram of the problem statement : evaluation of a reference ghpm a
set ofn segmented shapes of the same object.

ing their characteristic function as follows :

40={3 i xsa W

wherex € Q is the location of the pixel within the image. We denote(ythe
complementary shape & in Q with Q;UQ; = Q.

One may also takes advantage of the distance function assddio each
shape. In [32] the authors propose to perform a principalpmmnt analysis on
shapes in order to provide a statistical shape prior. Indn@esvein, some statisti-
cal shape priors have been proposed by [10, 34] using thikcitmepresentation.

More recently shapes have been represented using Legeidnents in or-
der to define shape priors for segmentation using activeocon{16, 17]. This
representation can also be easily included in a variatiesiéing [16, 17, 31].

We may also consider that each shape is a realization of amandriable.
Such a representation has been introduced in [42] in orderatuate a refer-
ence shape in a statistical framework, in [41] for the motpgical exploration of
shape spaces and statistics, and also in [19, 25] for imageesgation using in-
formation theory. In this paper, we take advantage of tlagstical representation
that appears to be well adapted to the definition of a stedistriterion. The shape
is represented through a random variabjevhose observation is the characteris-
tic functiond; defined in (1). The reference shgpes also represented through an
unknown random variabl& with the associated characteristic functigr) = 1
if xepandt(x)=0if xe .

2.2. Definition of average shapes

We also need to formalize the unknown shape using the defirofia criterion
to minimize. In the literature, average shapes are defirredd the minimization
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of the sum of the distances of the unknown shapeeach shap@; as follows :
n

n=arg rQinZd(Qi,u*) (2)
L

Of course, the definition of the distandeis crucial and may lead to different
results and average shapes. For example, an average simape camputed by
minimizing the area of the symmetric differences [38] usiti@;, ) := |Qi AW
where|.| stands for the cardinal of the considered domain. In a coatis opti-
mization framework, the criterion to minimize accordingtoan be expressed as
follows :

SD() = _i\mur - ; (fa-amnax+ [ acom) @)

In [5, 6], the authors prefer to introduce the Hausdorffatise to perform shape
warping while in [2], the authors modify the previous criterin order to compute
a median shape

In addition to the previous works, we can also cite [41] whbeeauthors pro-
pose to explore shape spaces using mathematical morphdlogyptimal shape
is computed using a watershed performed on the squared suhe afistance
functions or using a morphological computation of a med&tnAnother class of
algorithms was proposed for the estimation of an unknowipelticom multiple
channels (color or multimodal segmentation). We can cieentbrk of Chan et al.
[4] or the multimodal segmentation approaches proposetbind4]. These works
were not designed at first for segmentation evaluation eyt #re worth men-
tioning because they propose to treat the different channed single criterion
(may also be useful for information fusion). Moreover in [24], some informa-
tion theory quantities are used. Our work is different esgcdue to the fact
that we consider both the maximization of mutual informattmupled with the
minimization of joint entropies and the joint estimationeMaluation quantities
(sensitivity and specificity measures).

2.3. Proposition of a criterion for the estimation of a mutshape

Our goal is here to mutualize the information given by eagmsntation to
define a reference shape. Such a reference shape cannotdideced as a sim-
ple average shape. In this context, we propose to take ayaof the analogies
between information measures (mutual information, joirit@py) and area mea-
sures.



Mutual information
I(D;, T) = mes(D; NT)

Joint Entropy -k__‘\_‘ T
H(D,;,T) = mcs(ﬁ., u T)

FIGURE 2: Mutual information and joint entropy as area measures

As previously mentioned); represents the random variable associated with
the characteristic functiod of the shap&; andT the random variable associated
with the characteristic functionof the reference shape Using these notations,
H(Dj, T) represents the joint entropy between the variableandT, andl (D;, T)
their mutual information. In [36, 43], it is shown that Shanis information mea-
sures can be interpreted in terms of area measures as follows

H(D;i,T) =megD;uT) and I(D;,T)=megDiNT), (4)

with X the abstract set associated with the random varitéed mes a signed
measure defined on an algebra of sets with valu¢s-i®, +o[. The signed mea-
sure must satisfy mé8) = 0 and mef J;_; Ac) = Sk, megAy) for any sequence
{A}i_, of disjoint sets. Each quantity can then be viewed as an tiperan the
sets (Fig.2). These properties will help us to better uridadsthe role of each
term chosen in our criterion.

When estimating a classic average shape using the crit&)par(e performs
the minimization of the sum of the union of the sha@gsvith p while maximiz-
ing the sum of the intersection between the same shapes. Byggnaith this
criterion, we prefer to minimize a measure of the union whikximizing a mea-
sure of the intersection through the use of information gjtias. In other words,
the sum of the joint entropies (union of sets) will be miniedzwhile the sum
of the mutual information quantities (intersection) wi# lmaximized. In order to
minimize a single criterion, we use the classic relatiomieein mutual informa-
tion and conditional entropyl(D;, T) = H(D;) —H(Di/T). SinceH(D;/T) > 0
andH (D;) is independent of , we will rather minimizeH (D;, T ). Due to all these



considerations and properties, we propose to minimizedt@afing criterion :
n
HT%=ZﬂﬂDJ7+H®MU%=NKU+MNU7 (5)
i=
where the sum of joint entropies is denoted3y(T) = 5! ;H(D;,T) and the
sum of conditional entropies M1 (T) = S ; H(D;/T).

Note that this criterion is implicitly based on the assumptihat random vari-
ablesD; are considered as being independent. This assumption canbelered
by the fact that the differerf; are generated from different and independent seg-
mentation algorithms. In order to get rid of this assumptione can think of
maximizing the mutual information of joint random variabl¢D,, D2, ..,D, T)
but this criterion also leads to some computational issuetsare difficult to solve.

3. Expression of the criterion in a continuous framework

In order to take advantage of the previous statisticalroie(5) within a con-
tinuous shape optimization framework, we propose to exgfesjoint and condi-
tional probability density functions according to the refece shapg. This step
is detailed in this section for both the mutual informatiow @he joint entropy.

3.1. Maximization of mutual information (MI)

Here we try to expresdll (T) =S ; H(D;/T) in a continuous setting accord-
ing to the unknown shape Denoting byt andd; the observations of the random
variablesT andD;, the conditional entropy obD; knowing T can be written as
follows :

HOYT)=— S [p(t)

te{0,1}

pmmwmmpmmwi, (6)

die{0,1}

with p(T =t) = p(t) andp(D; = di/T =t) = p(d; /t).
The conditional probabilityp(d; = 1/t = 1) corresponds to the sensitivity param-
eterp; (true positive fraction) :

pi(W) = pldi = 1/t =1) = ﬁ [ a0 (7)

The conditional probabilityp(d; = 0/t = 0) corresponds to the specificity param-
eterq; (true negative fraction) :

() = p(ch = 0/t = 0) = Fﬁu JICRIE @®)
8



In the rest of the paper, for the sake of simplicipy(p) is replaced byp; and
gi (W) by gi. The random variabl& takes the value 1 with a probabilityt = 1) =
|1/ /|| and 0 with a probabilityp(t = 0) = [f|/|Q|. TheMI criterion can then be
expressed according (o

=)

MIG)=-3 [ 14 ((L-p)log(1-p)-+plogp) ©
115l
ial

The parameterg; andg; depend explicitly o, which must be taken into account
in the optimization process. Indeed|ifis updated in an iterative process, the
parameterg; and g, must also be updated which implies a joint estimation of
these quantities with the unknown mutual shape.

+ (giloggi+ (1—qi)log(1—q;))

3.2. Minimization of joint entropy

Let us now express, according foand in a continuous setting, the sum of
the joint entropiedH(T) = 51 H(T,D;). The following expression of the joint
entropy is considered :

te{0,1} di{0,1}

The following estimates for the joint probabilities arerthesed@=0ora=1) :

1
PG =at=1)= @/u((l— a)(1— di(x)) + ad(x)) dx, (11)
1
pd=at=0) = o [ (1-a)(1—d(x) +ad(x)) e (12)
The criterion to minimize is now denoted B¥ () and can be written as follows :
HW =~ ; | (2= di0)log (A () +0(x)log (Bi(w)) dx

+ [ (1=d00)log(A®) +d(log (B[N o] +C. (13

with A = [ (1-d()dx. Am = [ (1-d(x)dx (14)



and Bi(W) — /u di(x)dx, Bi(H) = /p di (x)dx. (15)

The termC is equal tonlog(Q) is independent from.

3.3. Continuous expression of the criterion

Using the two previous sections, we can express the gloltation to mini-
mize according tqu as follows :

E(W = JHW+MI(W

I v

_ .Z[IQ! ((1—pi)log(1— pi) + pilogpi)
&l

=

(giloggi + (1—gi)log(1—q))

]

+ oo [ (=) log (A () + () log (B (1)) o
Q] Ju

+ o [ (@0 log (A () + di(x)log (Bi()) dx] +C, (16
Q| Ju

wherep;, g, A andB; are some quantities depending on the unknown slpape
expressed using integrals oyer

In this given form, the minimization of such a criterion ca@ tonsidered
using active contours and shape gradients as detailed foltbeing section.

4. Optimization using shape gradients

In order to compute a local minimum of the criteriBhwe propose to take ad-
vantage of the framework developed in [1] which is based erstiape optimiza-
tion tools proposed in [12, Chap.8]. The main idea is to defamnitial curve
(or surface) towards the boundaries of the region of inteFesmally, the contour
then evolves according to the following Partial Differah&quation (PDE) :

aor(zt)
= = VO HN() (17)

wherel (z 1) is the evolving curvez a parameter of the curve,the evolution
parametery(x, ) the amplitude of the velocity ix = I'(z 1) directed along the
normal of the curveN(x,T). The evolution equation and more particularly the
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velocity v must be computed in order to make the contour evolve towardpa-
mum of the energy criterion (16). From an initial cuivgdefined by the user, we
will have TIim I(t) = pat convergence of the process.

—»00

The main issue lies in the computation of the velogityn order to find the
unknown shapeli at convergence. This term is deduced from the derivative of
the criterion according to the shape. The method of deawais explained in
details in [1, 20] and is based on shape derivation prinsidieveloped formally
in [12, 39]. For completeness, we recall some useful defimtiand theorems and
we then explain briefly how the evolution equation of an a&twntour can be
deduced from the shape derivative. For each part of theriortethe associated
shape derivatives are computed with some explanationssotetivation.

4.1. Main mathematical tools

The following theorem is the central theorem for derivatadnntegral do-
mains of the formj, k(x, ) dx. It gives a general relation between the Eulerian
derivative and the shape derivative for region-based terms

Theorem 1 Let Q be a C domain inR" and V a C! vector field. Let k be a
C! function. The functional (u) = Juk(x, ) dx is differentiable and its Eulerian
derivative in the direction o¥ is the following :

< J(W),V >= /“ks(x, W dx—/auk(x,p)(V-N)da (18)

where k is the shape derivative of k defined kykp) = lim_, OM
The termN denotes the unit inward normal fin and dh its area element (ifR?,

we have d = ds where s stands for the arc length).

The Eulerian derivative af in the directionV is defined as

JMT) —IW
<J(w),V>= Ilmf

—0

if the limit exists, withp(t) = T; (V) (W) the transformation gfi through the vector
field V. The proof of the theorem can be found in [12, 20].

4.2. Methodology for the computation of the evolution eiquat

The following proposition gives us a way to compute the etioluequation
of the active contour when the Eulerian derivative can beesged as an integral
over the boundary of the domain.
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Proposition 1 Let us consider that the shape derivative of the criterigp)Jdn
the directionV may be written in the following way :

< J(W),V >= —/auv(x,u)(v ‘N)da (19)

Interpreting this equation as the?linner product on the space of velocities, the
straightforward choice in order to minimizé ) consists in choosinyg = vN for
the deformation. We can then deduce that, from an initiat@er o, the boundary
Ju can be found at convergence of the following evolution egaat

or
0t

with v the velocity of the curve artdhe evolution parameter.

The shape derivatives of the criteB&(p) (3), MI () (9) andJH(p) (13), can be
written in the form (19) which allows us to find some geomeirieDEs of the
form (20) for each criterion. The derivation is developeerdafter.

=V(X,T)N (20)

4.3. Shape derivatives

This paragraph details the computations of the shape diggsafSD(p) (3),
MI (1) (9) andJH (W) (13).

4.3.1. Shape derivative for the criterion §)
Theorem 2 The shape derivative in the directidhof the functional SQu) de-
finedin (3)is:

< SD(W),V >= —/_i(l—Zdi (x))(V-N)da 21)
=

Corollary 1 From Theoren(l), the velocity that will drive an active contour to-
wards a minimum of the criterion SP) is reduced to :

N
Vsp = Zl(l — 2di (X)) (22)

where p is directed along\.
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4.3.2. Shape derivative for the criterion k)
The computation of the shape derivativeMf (l) is more complex because
the functions inside the integrals dependwon

Theorem 3 The shape derivative in the directidh of the functional M{p) de-
finedin (9)is:

<MI'(p V>:_/ (i S [(1—di(x Iog< G ) (23)
’ o2 b
—Gi
di(x )Iog< )D(V-N)da (24)
Pi
with N the inward normal of the boundary of p (denoted by

Corollary 2 From the Theorenfl) and (3), the velocity that will drive an active
contour towards a minimum of the criterion Jf is then equal to :

Vi = IQIZ[l o (x Iog( q'p>+d.()log( pf")} (25)

where Y, is directed along\.

4.3.3. Shape derivative for the criterion Ji
Theorem 4 The shape derivative in the directidn of the functional JHu) de-
fined in (13)is:

<IH(W),V >= —/r (&i [di(x)log (%) (26)
+1-d00)log (R ) ])(v-N)da

whereN is the inward normal of the boundary of u (denoted)yand where the
functionals Aand B are given by equationd4) and (15).

Corollary 3 From Theoren{l) and(4), the velocity that will drive an active con-
tour towards a minimum of the criterion JH) takes the following expression :

= Z[ log( ;)+(1—di(x))|og(%)] 27)
where yy is directed along\.
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4.4. Global evolution equations for the different criteria
A standard regularization term is added in the criterion toimize in order
to favor smooth shapes :

Redu) = [ ds
op
This term corresponds to the minimization of the curve Ienlitis balanced with

a positive coefficiend in the energy criterion and leads to the following velocity
in the evolution equation :

wherex is the curvature of the contoli(T).
Finally, we propose to define our mutual reference shapeigffiréhe mini-
mization of a global criterion calledt (Information Theoretic criterion) :

Jr (W) = IH(W) +MI (W) + ARed ). (29)

In order to minimize this criterion, the following evoluticequation is used :

or
(6_) = (V3H +VmiI +AVReg N (30)
T/

wherevy, vin andvregare defined respectively in equations (25), (27) and (28).
In the experimental results, the mutual reference shapksdascampared to the
classic average shape that corresponds to the minimizeaittiwe following crite-
rion :

Jsp(M) = SD(M) +AReg ). (31)

In order to minimize this second criterion, the followingo&wtion equation is
applied:
or
(5¢). = (o My 32)
T/ sp
wherevsp andvregare defined respectively in equations (22) and (28).
Note also that using this formalism, some other prior infation (photometric

or geometric) can be inserted by adding some additionatitede in the PDE. For
example, we may take advantage of the tools developed irl[3,7, 31, 34].
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5. Experimental results on a synthetic example

The behaviour of our mutual shape estimation is tested ontastjc example.
We propose to compare the mutual shape with the classicgazebape and with
a simple majority voting. We also study the joint evolutidrtlze sensitivity and
specificity parameters.

5.1. Difference between a mutual shape and a classic aveteagees

In this section, the behaviour of such a mutual informativepe is illustrated
by a synthetic example that highlights the difference betwthe mutual shape
and a classic average shape. A test sequence consistirfteodidi segmentations
of a lozenge (Fig.3) was built. The first entry is the true segtation mask, the
other entries represent the segmentation/df df the true lozenge (Fig.3(b)).

® o 1 <

(@) (b)

FIGURE 3: The image to segment is given in (a) and the different segmentation entries
(masks) for this image are given in (b).

When computing the average of the different characterigtictions using the
formula : S, di/n, we can remark (Fig.4(b)) that some masks share an intersec-
tion. Indeed the values of the average image belong to tleevadt[0,0.6]. The
value 0 corresponds to black points in Fig.4(a) and the v@lée&orresponds to
the white grey level in this image. We then binarize this agerimagda in an
image namedit displayed in (Fig.4(b)). Ifa(x) > 0.5 thenl a1 = 0 (black points)
and ifIa(x) < 0.5 thenlat = 255 (white points). This procedure gives us a sim-
ple majority voting procedure. The result is the black lingide the lozenge. The
result obtained using this procedure is also dependenteotihteshold parameter
choice.

Then an active contour evolves according to the evolutiaraggn of the mu-
tual shape (30) and of the SD shape (32). The initial contoutHe evolution
is chosen as a circle including the lozenge (Fig.5(a) andbfag). The mutual
shape algorithm is able to recover the whole lozenge anckis different from a
classic average shape (see Fig.5 and Fig.6). The curveesvahd segments the
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4} _

(@) (b)

FIGURE 4: The average imagg (a) and the corresponding binarized average image
(b) of the masks of the Fig.3(b) (simple majority voting procedure).

whole lozenge by an iterative process (images resulted diferent iterations in
Fig.5(b) and Fig.5)(c)). The final contour is given in Figlb(The mutual shape is
compared to a shape average computed using the minimizdtiba classic sym-
metrical difference (criteriodsp with evolution equation (32)). The evolution is
given in Fig.6. In this case, the final contour is similar te tiesult obtained by
computing a binarized medat (Fig.4(b)) since it corresponds to a line due to
the small overlap between masks 2 and 5. The same small \satakan for the
regularization parameterin order to give an higher importance to the data term.

® & o o

(a) Initial contour (b) 1t. 80 (c) It. 140 (d) Mutual shape

FIGURE 5: Evolution using the mutual shape (evolution equation (30) with10). In the
first image (a), the initial contour is in white (circle) and the other white linesessmnt
the boundaries of the different segmentation entries. Intermediate rebtdined from
80 and 140 iterations are displayed in images (b) and (c) and the final estimatedl
shape in (d) (240 iterations).

5.2. Difference between the mutual shape and the union of éis&sn

An outlier (Fig.7(a)) was introduced in the initial sequeraf masks in order
to test the robustness of the mutual shape estimation. dndee goal is to test
that the mutual shape is also different to a simple union eftlifferent masks. In
Fig.7, the different steps of the evolution of the contowr displayed. The final
contour (Fig.7(d)) fits the lozenge and excludes the outlgn the final contour.
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(a) Initial contour (b) 1t. 300 (c) It. 400 (d) SD shape

FIGURE 6: Evolution using the SD shape (evolution equation (32) wita 10). In the
first image, the initial contour is in white (circle) and the other white lines remtethe
boundaries of the different segmentation entries. Intermediate resultsexbfeom 300
and 400 iterations are displayed in images (b) and (c) and the final estimatgtbpe in
(d) (600 iterations).

* o o0 |0

(a) Input outlier  (b) Initial (c)I1t. 100  (d)1t. 380 (e) Mutliahape

FIGURE 7: Introduction of an outlier (a) in the initial sequence of masks (Fig.3.a t) an
estimation of the mutual shape (evolution equation (30) with 10). In the image (b),
the initial contour is in white and the other white contours and lines represediffarent
boundaries of the initial masks (the segmentation entries and the outlier).

5.3. Joint evolution of the sensitivity and specificity paeters

When the active contour evolves using the evolution equ#&86j the param-
etersp; andgq; are estimated jointly with the mutual shape as proposed APEE
[42]. The joint evolution of these parameters associatezhtdn segmentation re-
sult are shown in Table 1. These results are obtained whesidming the differ-
ent entries displayed in the first row of this Table. Accogdio the final values
reported in Table 1, we can conclude that the best segmemtaiiresponds to the
shape 1 withp; = 1 andg; = 1 and that the shape 6 is an outlier since the sensitiv-
ity coefficient is equal to 0. The other segmentations cpoed to one quarter of
the lozenge which leads to a sensitivity parameter arouaddlue of 025. Note
that the initial values ofy; andq; are computed directly using the initial contour
as an intial guess of the reference shppe

We can notice that the paramemgris less relevant. Indeed this parameter
is estimated using the external domaji) &nd is then estimated using a higher
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number of pixels. It should be normalized in order to be camalple to thep;
value. One solution consists in the selection of a smallaking area (a mask
that includes the union of masks and that limits the size @f#gion outside this
union in order to get two regions with a comparable size).

In order to give an idea of the computational cost, it takesiad 5 s. to per-
form the estimation of the mutual shape for an image 2866 using an Intel
Core i7 2.70GHz and a code written in C++ within the image prsiogslibrary
Pandoré.

V'S A 4 . y ®

Iterations| mask 1 mask 2 mask 3 mask 4 mask 5 mask 6

It. 0 p1=035| po=0.09 | p3=0.09 | p4,=0.08 | ps =0.09 | ps =0.15
(Fig. 7.b) | qi=1 =1 =1 Q=1 =1 Gg=1

It. 100 p1=060| p=0.15| p3=0.15| p4=0.13 | p5s=0.16 | ps =0.27
(Fig.-7c)| =1 =1 =1 gs=1 s =1 Os =1
Final pr=1 p=024 | p3=026| p4=022 | ps=027| ps=0

(Fig. 7.d)| qu=1 =1 =1 Q=1 =1 | gg=093

TABLE 1: Joint evolution of the contour and of the sensitivity and specificity aoeffts
pi andg; for the all the segmentation entries (masks 1 to 6) corresponding to the evolution
of the contour displayed in Fig.7 (initial contour, iteration 100 and final camitou

6. Application to the evaluation of different segmentationrmethods of the left
ventricular cavity from cardiac MRI

The estimation of such a mutual shape is here tested for thepenvised eval-
uation of segmentation methods of the left ventricular tyafrom cardiac cine-
MRI. It takes place in a larger project on medical segmentagzaluation first
introduced in [26, 18] and developed thereafter in [21, Z7,3D]. To illustrate
our method, one image is extracted from a series acquirddaM8SFP sequence
in a short axis orientation. The test carried out on this ienegn be used for all
the images from all the series.

In order to compare a given sha@ewith a reference shap®cs, we mainly
use three quantitative values : the classic Dice coeffi¢[2@}), the maximum and

1. available at https ://clouard.users.greyc.fr/Pandore
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the average distance to the reference contdys{anddmean. The quantity DC
[13] is a similarity measure between two sets that rangestie interval0, 1] :

2|QﬁQref|
DC(Q,Qref) = . 33
(2 Eret) = o] e %)

This measure is equal to 1 when the two sets are equal and Otiweiare dis-
joints.

The distance between a point of the contbup the contoul ¢ is computed as
follows :

d(y,lref) (Iy =x{[)- (34)

From this previous definition, we can compute the maximum twedaverage
distance (in pixels) using :

= inf
Xel et

Amax(;Mref) = Tefli_Xd(%rref), (35)

1
Omear I, Tref) = m Zd(%rref)- (36)
ye
where|l"| gives the number of pixelge I'.

6.1. Estimation of the mutual shape for one slice

The segmentation inputs correspond to the segmentatiotigedtained by
different research teams [8, 9, 14, 15, 28, 31, 37] for a MRiesbf the 2009
MICCAI challenge database (SCNO5, slice 4, time 20) [35] (Pigl®e corre-
sponding contours of the different entries of the algoritima given in Fig.8. The
expert contour is available for this slice and represemdedd.8(g).

6.1.1. Comparison of the mutual shape with the expert contoditiae SD shape

The mutual shape is estimated using the evolution equa86h ffom the
masks of the Fig.8. The initial contour is chosen near thearorof the masks
union and the regularization parameter is fixed to the va@e 1

The estimated mutual shape is shown in Fig.9(a) as well ashidyee obtained
using SD in Fig.9(c). The maximum distance to the expertmontdnay and the
mean distance to the expert contodsan were calculated in order to validate
the robustness of our algorithm. The mutual shape is nelaeeexpert contour
in terms of distance. In Fig.9(b) and (d), the expert conisuwirawn in white
while the estimated shape is drawn in different colors atiogrto the distance to
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(a) method 1 (b) method 2

s Jto

(d) method 4 (e) method 5 (f) method 6

FIGURE 8: The final contours of the six methods are given in (a),(b),(c),(d(f(e)hese
methods all aim to segment the left ventricular cavity from a MRI slice (SCHIés 4,
time 20). The expert contour is also given in (Q).

the expert contour. DC is equal t089 for the mutual shape and to87 for the
SD shape using the same regularization paranmeted00. The influence of this
parameter is developed in the next section.

6.1.2. Influence of the regularization parameter

The influence of the parametethat controls the weight of the regularization
parameter was then tested.We report in Table 2 the differ@oes of the three
parametersmean dmaxandDC for the two shapes “mutual shape” and “SD shape”
according to the regularization paramekeiWe also show the influence of this
parameter on the different contours obtained for the muthape in Fig.10. In
both cases, a value afaround 100 may improve the evaluation coefficidd@
dmeananddmax This can be easily explained by the fact that the left veualar
cavity is a convex structure. Choosing a high valueNfanay then help to provide
such a convex shape. Reasonable values for the segmentétilois structure
range into the intervgdll00— 300 . The best value is probably around 100 for the
mutual shape and 300 for the SD shape but there are very fésvatites when
taking a regularization parameter into the interj&00— 300. When taking a
higher value fo\, the regularization term takes a higher importance thaa e
term leading to an under-segmentation of the cavity.
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(a) mutual and expert shape (b) distances to the expertéantiiual shape

(c) SD and expert Shape (d) distances to the expert for theh&pes
(in red and green) Othean= 1.80, dmax= 5.22,DC = 0.87)

FIGURE 9: Qualitative and quantitative comparisons of the mutual shape ((a) grahgb
the SD shape ((c) and (d)). In the images (a) and (c), the final canéwargiven in red
and the expert contour in greek £ 100)). In the images (b) and (d) the expert contour
(in white) is superimposed with the final contour (the different colorsesmond to the
distance to the expert contour : the pondf the contour is in blue whed(x) < 2, in
green when Z d(x) < 4 and in red whel(x) > 4).

6.2. Robustness to outliers

In order to study the robustness, we introduce some ouslieapes represented
in Fig.11. The outliers (1) and/or (2) and/or (3) were introdd to the initial
sequence of masks (Fig.8). The variation of the chosen meamDC, dmean
dmax is then studied. The results are reported in Table 3 and aozdpto the
ones obtained while estimating the reference shape usengléissic symmetric
difference (32). We remark that the quantitative paransedes quite stable when
adding outliers to the initial sequence up to 3 added ostimdrich represent half
of the number of initial masks. Using the SD shape, the coeffidés not as stable
as with the mutual shape.
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(@A =0 (b) A = 10 (c) A = 100 (d) A = 300
dmean: 186 dmean: 186 dmean: 165 dmean: 166
dmaX: 500 dmaX: 500 dmax: 335 dmaX: 354

FIGURE 10: Influence of the parametgron the final mutual shape. In the images (a), (b)
and (c), the expert contour (in white) is surimposed with the final contoudifferent
colors according to the distance to the expert contour : the gaihthe contour is in blue
whend(x) < 2, in green when 2 d(x) < 4 and in red whel(x) > 4).

The evolution of the curve with both the mutual shape and fhesBape is
displayed in Fig.12. The initial contour is chosen near ® whion of the mask
(choosing exactly the union can sometimes conduct to lo@ainma due to the
initial values ofq; that are all equal to 1).

Outlier shape (3)

FIGURE 11: Contours of the different outliers.

6.3. Joint estimation of the sensitivity and specificitygmaeters

During the curve evolution, the parametgrandg; are estimated jointly with
the mutual shape and allow us to perform a classificationeop#rformance level
of each segmentation. According to the final values repartédble 4, we can
conclude that the best segmentation corresponds to shapktBat the shapes 1
and 2 have smaller sensitivity and specificity values. Suclassification seems
to be visually coherent.
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(a) Mutual shape
A 0 10 100 | 300 | 500
DC | 0.885| 0.884| 0.887| 0.886| 0.861
Jnean|| 1.86 | 1.86 | 1.65 | 1.66 | 1.94
Omax || 5.00 | 5.00 | 3.35 | 3.54 | 4.72

(b) SD shape
A 0 10 100 | 300 | 500
DC | 0.867| 0.869| 0.873| 0.873| 0.870
Omean|| 1.98 | 1.87 | 1.80 | 1.78 | 1.84
Omax || 5.83 | 5.83 | 5.22 | 5.00 | 5.22

TABLE 2: Influence of the regularization parametam the final shape for both the mutual
shape (a) and the SD shape (b).

When computingp; andg; note that it works better when the regions inside
and outside the contour have a comparable number of pixeleeld adding a pixel
in each region will then lead to a comparable change in thepodation ofp; and
gi- In this work, in order to deal with this issue, a region okr@st outside the
contour is defined at the beginning of the evolution. Howeaeegion of interest
that evolves during the curve evolution could be a bettartgni but needs further
investigation and probably the framework introduced in][33

7. Conclusion

In this work, we propose a continuous optimization framdwior the STA-
PLE algorithm using a different criterion to minimize thainges from informa-
tion theory. We take advantage of information theory quistsuch as the mutual
information and joint entropy. We propose a new criteriogdzbon the minimiza-
tion of a robust area difference that can be expressed usirigaminformation
and joint entropy. We search for an unknown reference shegiartinimizes the
sum of joint entropies while maximizing the sum of mutuabimhation between
each entry shape and the unknown reference shape. The zgtioniis performed
using active contours by computing a shape gradient andseceted evolution
equation. Shape derivatives are detailed for the givearait but also for a clas-
sic area difference minimization. Our theoretical forraatiis valid for 2D slices
or 3D images. Some experimental results are provided in 2iy&w on both syn-
thetic and real cardiac cine-MRI images. The robustness @f an estimate is
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(a) Quantitative results with the mutual shape (evolution equation(30))
Outlier shape number(s)
Comparison meas| none 1 2 1+2 3 1+2+3
DC 0.887| 0.887| 0.884 | 0.884| 0.887 0.870
Omean 165 | 165 | 1.65 | 1.69 | 1.65 1.84
Omax 335 | 335 | 3.35| 3.35| 3.35 5.03
(b) Quantitative results with the symmetric difference (evolution ejuation (32))
Outlier shape number(s)
Comparison meas| none 1 2 1+2 3 1+2+3
DC 0.873| 0.860| 0.860| 0.797| 0.871 0.788
Omean 180 | 1.96 | 2.00 | 2.67 | 1.82 2.75
dmax 522 | 541 | 566 | 8.94 | 5.66 9.39

TABLE 3: Comparison of the final contour with the expert contour in presencetbérs.

] Classification usingp; andg \
i 1 2 3 4 5 6

g | 093|097 097|091 1 | 0.99
pi | 0.77| 0.68| 0.98| 0.85| 0.83| 0.92

TABLE 4: Specificity and specificity parametgosandg; for the different segmentation
methods of the left ventricular cavity displayed in Fig.8 (without consideriagtiiliers).

tested by adding some outliers to the input sequence. We #haivihe mutual
shape acts differently and is more robust to outliers thaerotonventional ap-
proaches.

As far as perpectives are concerned, one of the main issugsonaern the
choice of the main objective for the evaluation. Indeed in case, in cardiac
imaging, the goal was to estimate the volume of the cardiaitycdn this case,
adding a prior term on the shape of the endocardium may babigulf the ob-
jective is different, some other prior shapes may be addezh(as the homogene-
ity of the inside region for example). Our mathematical feavork seems well
adapted for this purpose since other information may bdyeadded in the cri-
terion to minimize. Our work in progress concerns also thegarison of our
method to STAPLE algorithms and will be extended to a larggaldase of real
cardiac cine-MRI images.
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(a) Initial contour (red) (b) iteration 900 (c) Mutual finddape

(d) SD final shape

FIGURE 12: Evolution of the curve for the mutual shape and the SD shape. The initial
contour is given in red (a) surimposed on the contours of the diffeegmientation entries
(blue). For the mutual shape, the iteration 900 is shown in (b) while the famabar given

in (c). In order to compare, we show the final contour for the SD (symne¢tiitference)
criterion.

Acknowledgements

This work took place in a larger project on segmentationweat&n named
MediEval supported by the GdR 2647 Stic Santé (CNRS-INSERM).

Annexes

We give here some proofs in order to detail the computaticshape deriva-
tives.

Proof of theorem 2

Proof : The criterion (3) can be divided into two parts : thetfone depends
on the domairu and is denoted b$D; (p) with SDy = /(1 —di(x))dx while the
second one depends on the complementary domaimaodl is denoted b$D, (L)
with SD, = [;di(x)dx.

From Theorem (1) and using the fact that the derivaltiyis equal to 0 §; is
independent off), the following equation can be obtained :

< SOy (W),V >= —/k(x, W(V-N)da
ou
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with k(x, p) = 1 —di(x).
In order to deriveSD,, the same theorem is applied :

< SDy(H),V >= —/di (X)(V-Ny)da
o

with N> the inward normal of the boundary pf
Sincep andpi share the same bounddrywith opposite normal vectors (i.&l =
—N>), we find the derivative given in (21).

Proof of theorem 3
Proof : Using Theorem (1), the shape derivativepiadndg; are equal to :

<PV = ﬁ [(p—d(0)(v N)da

<q,V>= %/r(l—di(x) _q)(V-N)da.

Let us denote; (W) = || f(pi) with f(pi) = (1— pi)log(1— pi) + pilog(pi), we
can deduce :

K.V >= = [1(p)+(p—a)F'(p)(V-N)da,

with f/(p;) = log 1_L‘pi the classic derivative of according to the variablg,. After
simplifications, we get :

<K/(.V >= — [ (clogp + (1~ d)log(1—py)(V-N)da

In the same mannek; (1) = || f(qi) with f(gi) = (1—qi)log(1—q) + gilogg;
and then :

<E(W,V>= /r((l—di(x))logqi +di(x)log(1—qi))(V-N)da.

By adding the different terms, we find the final shape derieativ
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Proof of theorem 4

Proof : As with the theorem 2, the criterion is separated ffedint terms,
such thatlH(p) = —ﬁ S (IHL (W) + IHL(W) +C with :

JHi (1) = log A () /“ (1—d(x)) dx + logBi (W) / di(x) dx
IH3(H) = logAi (R) /u (1-di(x)) dx + logBi (R / di(x

The termC denotes a constant independenfiof
The shape derivative &; () lead to< Al(M),V >= — [-(1—di(x))(V -N)daand
respectively< B/(n),V >= — [ di(x)(V -N)da.

The classic theorems for the derivation of products andtfons can be ap-
plied to deriveJH!, which leads to :

<OHYGV 5= — oA [(1-d)(V- N)da+% [a-dox

~logBi(1) [ d(v-N)da+ B’ SEYE [qx

Replacing the shape derivativeA{ ) andB; (1) by their expressions in the above
formula, we find :

< (MY (WY >=— [ (L) IogA\ (1) + ¢ logBi() + 1) (V- N)da

In a similar manner, using the fact that the inward normahefrhoving boundary
of pis equal to—N, we find :

< (JHY (W), V >=/r((l—di(X))IogAi(p)+di(X) logBi (1) + 1) (V - N)da.

By adding the two derivatives, the shape derivativdlafp) is finally obtained.
[
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