Removal of priority and emerging pollutants by biological and tertiary treatments

Romain Mailler
Johnny Gasperi
Ghassan Chebbo
Plan

1. Scientific context
 - A WWTP today
 - Conventional and tertiary treatment

2. Issues and goals

3. Focus on tertiary treatment
 - Methodology
 - CarboPlus®
 - Sampling strategy
 - Primary results

4. Significance and limitations for developing countries?

5. Planning
A WWTP today

Wastewater

Pre-treatment
- Removal of voluminous solids, grease and sand

Primary treatment
- Removal of total suspended solids (TSS)

Biological treatment
- Removal of nutrients – C/N/P

Sludge treatment

Discharge to environment

Presence of micropollutants

Incineration, agricultural use, disposal

WWW-YES-Workshop 2013 - Romain MAILLER - 05/06/13
Context

- General
 - Presence of micropollutants in WWTPs discharges \((\text{Heberer 2002}) \)
 - European regulation: WFD \((2000/60/EC) \)

- Conventional treatments
 - Fate of some compounds not well documented in WWTPs
 - Conventional primary and biological (conventional activated sludge) treatments quite well studied \((\text{Clara et al. 2005; Ruel et al. 2010}) \)
 - Lack of knowledge on enhanced primary treatment (coagulation/flocculation), biofiltration and MBR at industrial scale

- Tertiary treatments
 - Hardening of regulations, anticipation of water operators and insufficient efficiency of conventional WWTPs \(\Rightarrow \text{development of tertiary treatments} \)
 - Efficiency of activated carbon for micropollutants removal was highlighted in literature \((\text{Delgado et al. 2012; Margot et al. 2011; Nowotny et al. 2007}) \)
Issues and goals

- Primary and biological treatments
 - Efficiency of biofiltration for micropollutants? Comparison with conventional activated sludge (CAS) treatment
 - MBR a relevant solution to improve biological treatment of micropollutants?
 - Removal mechanisms at industrial scale
 - Comparison of the three main biological treatments (process and facility)

- Need to develop tertiary treatments and to study them
 - What about emerging pollutants?
 - Efficiency of activated carbon for persistent pollutants?
 - Impact of operational parameters?
 - Type and dose of activated carbon?
 - How to regulate micropollutants adsorption processes? UV signal a relevant indicator?

- Presentation: *focus on tertiary treatment*
CarboPlus®

- Concept
 - Contact of PAC with water in a reactor
 - Fluidized bed of PAC
 - Coagulant and polymer addition prevents PAC discharge with water
 - *No filtration system needed*

- Operational parameters
 - Capacity of 50 m³/h
 - SRT of a couple of days (3-7)
 - HRT of about 15 minutes

- Fed with treated water from biofiltration unit (SIAAP - Seine Centre)
Organization of campaigns

Phase 1
PAC Optimization
- June – October 2013 (16 weeks)
- 12 campaigns
 - 4 configurations
 - Influence of operational conditions, dose and type of PAC

Phase 2
PAC Optimized regime
- October – December 2013 (13 weeks)
- 6 campaigns
 - Best configuration
 - Variability of results, efficiency and cost of CarboPlus, removal mechanisms

Phase 3
Micro-grain configuration
- January – November 2014 (48 weeks)
- 12 campaigns
 - Comparison between powder and micro-grain
 - Efficiency, cost, biological activity, etc.?
Sampling strategy

- Screening: 135 persistent and/or problematic compounds
 - Pharmaceuticals and hormones
 - Pesticides
 - Priority substances (WFD)
 - Metals
- Accredited laboratory for all compounds except metals (independent protocol - LEESU)
- Sampling of inlet and outlet water with automatic samplers (4°C)
- 24 h average samples (organics) or punctual (metals)
- Measure of total fraction and UV signal
- 30 campaigns in 18 months (70 samples)

→ Large scale and high frequency approach
Primary results

- Characterization of 4 activated carbons
 - Laser granulometry
 - Electron microscopy
 - Removal of UV$_{254}$ signal after 45min contact

<table>
<thead>
<tr>
<th>PAC</th>
<th>UV before (mg/L)</th>
<th>UV after (mg/L)</th>
<th>Removal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.651</td>
<td>0.574</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>0.651</td>
<td>0.586</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>0.651</td>
<td>0.611</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>0.651</td>
<td>0.638</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAC</th>
<th>UV before (mg/L)</th>
<th>UV after (mg/L)</th>
<th>Removal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.639</td>
<td>0.605</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0.639</td>
<td>0.562</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>0.639</td>
<td>0.504</td>
<td>21</td>
</tr>
</tbody>
</table>

Effect of activated carbon type

Effect of activated carbon dose

WWW-YES-Workshop 2013 - Romain MAILLER - 05/06/13
Developing countries...

- A vague notion: what a developing country?
 - Diversity in terms of infrastructures (i.e. Brazil vs. Mozambique)
 - Inequality between economically dynamic countries and the poorest countries

- Significance:
 - Wastewater treatment and quality of discharges are crucial issues
 - Improving knowledge on contamination and treatment of wastewater is useful for all operators and scientists in the world
 - Tertiary treatments could be directly applied in developing countries where biological treatment often doesn’t exist

- Limitations: a developed countries issue?
 - In the 59 poorest countries in the world, half of the people have no access to water and sewer system (United Nations source)
 - Sewer systems often in poor condition (when they exist!)
 - When sewer systems: other conventional water quality parameters are more problematic (nitrogenous/phosphorous pollution, total suspended solids, etc.)
 - A lot of countries couldn’t afford tertiary treatment now
Planning

- Conventional treatments
 - Final correction and submission of an article (July 2013)
 - Campaigns on MBR unit from SIAAP’s La Morée WWTP (second semester of 2014)
- Tertiary treatments
 - Large scale pilot campaigns: from June 2013 to November 2014
 - Complementary lab scale experiments (2013-2014)
 - Paper (2015)
- PhD oral presentation (end of 2015)
Thank you for your attention
Any questions?