Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A combinatorial proof of a theorem of Freund

Abstract : In 1989, Robert W. Freund published an article about generalizations of the Sperner lemma for triangulations of n-dimensional polytopes, when the vertices of the triangulations are labeled with points of Rn. For y ? Rn, the generalizations ensure, under various conditions, that there is at least one simplex containing y in the convex hull of its labels. Moreover, if y is generic, there is generally a parity assertion, which states that there is actually an odd number of such simplices. For one of these generalizations, contrary to the others, neither a combinatorial proof, nor the parity assertion were established. Freund asked whether a corresponding parity assertion could be true and proved combinatorially. The aim of this paper is to give a positive answer, using a technique which can be applied successfully to prove several results of this type in a very simple way. We prove actually a more general version of this theorem. This more general version was published by van der Laan, Talman and Yang in 2001, who proved it in a non-combinatorial way, without the parity assertion. © 2007 Elsevier Inc. All rights reserved.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Frédérique Bordignon Connectez-vous pour contacter le contributeur
Soumis le : mardi 18 juin 2013 - 11:49:53
Dernière modification le : samedi 15 janvier 2022 - 03:51:46

Lien texte intégral



Frédéric Meunier. A combinatorial proof of a theorem of Freund. Journal of Combinatorial Theory, Series A, Elsevier, 2008, 115 (2), pp.317-325. ⟨10.1016/j.jcta.2007.04.003⟩. ⟨hal-00835237⟩



Consultations de la notice