Greedy colorings for the binary paintshop problem - École des Ponts ParisTech Access content directly
Journal Articles Journal of Discrete Algorithms Year : 2010

Greedy colorings for the binary paintshop problem

Abstract

Cars have to be painted in two colors in a sequence where each car occurs twice; assign the two colors to the two occurrences of each car so as to minimize the number of color changes. This problem is denoted by PPW (2, 1). This version and a more general version-with an arbitrary multiset of colors for each car-were proposed and studied for the first time in 2004 by Epping, Hochstättler and Oertel. Since then, other results have been obtained: for instance, Meunier and Sebo{combining double acute accent} have found a class of PPW (2, 1) instances for which the greedy algorithm is optimal. In the present paper, we focus on PPW (2, 1) and find a larger class of instances for which the greedy algorithm is still optimal. Moreover, we show that when one draws uniformly at random an instance w of PPW (2, 1), the greedy algorithm needs at most 1/3 of the length of w color changes. We conjecture that asymptotically the true factor is not 1/3 but 1/4. Other open questions are emphasized. © 2008 Elsevier B.V. All rights reserved.

Domains

Sociology

Dates and versions

hal-00835222 , version 1 (18-06-2013)

Identifiers

Cite

H. Amini, Frédéric Meunier, H. Michel, A. Mohajeri. Greedy colorings for the binary paintshop problem. Journal of Discrete Algorithms, 2010, 8 (1), pp.8--14. ⟨10.1016/j.jda.2008.05.002⟩. ⟨hal-00835222⟩
91 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More