Graph laplacian for interactive image retrieval
Hichem Sahbi, Patrick Etyngier, Jean-Yves Audibert, Renaud Keriven

To cite this version:
Hichem Sahbi, Patrick Etyngier, Jean-Yves Audibert, Renaud Keriven. Graph laplacian for interactive image retrieval. ICASSP, Mar 2008, Las Vegas, United States. pp.817-820, 2008. <hal-00835145>

HAL Id: hal-00835145
https://hal-enpc.archives-ouvertes.fr/hal-00835145
Submitted on 18 Jun 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
 GRAPH LAPLACIAN FOR INTERACTIVE IMAGE RETRIEVAL

Hichem Sahbi1, Patrick Etyngier2, Jean-Yves Audibert2 and Renaud Keriven2

(1) UMR 5141 CNRS, Telecom ParisTech, France. (2) Certis Lab, ENPC ParisTech, France.

1. INTRODUCTION

Interactive image search or relevance feedback is the process which helps a user refining his query and finding difficult target categories. This consists in a step-by-step labeling of a very small fraction of an image database and iteratively refining a decision rule using both the labeled and unlabeled data. Training of this decision rule is referred to as transductive learning.

Our work is an original approach for relevance feedback based on Graph Laplacian. We introduce a new Graph Laplacian which makes it possible to robustly learn the embedding of the manifold enclosing the dataset via a diffusion map. Our approach is two-folds: it allows us (i) to integrate all the unlabeled images in the decision process and (ii) to robustly capture the topology of the image set. Relevance feedback experiments were conducted on simple databases including Olivetti and Swedish as well as challenging and large scale databases including Corel. Comparisons show clear and consistent gain of our graph Laplacian method with respect to state-of-the-art relevance feedback approaches.

Index Terms— Statistical Learning, Graph Laplacian and Image retrieval.
using a linear operator learned on both the labeled and the unlabeled sets. The main contributions of this work are:

(i) In contrast to existing relevance feedback methods which only rely on the labeled set of images, our approach integrates the unlabeled data in the training process through the cluster assumption [8, 9] (As discussed in Section 3.1). These unlabeled data turn out to be very useful when only few labeled images are available since it allows us to favor decision boundaries located in low density regions of the image database, which are very often encountered in practice.

(ii) In the second main contribution of this work, we derive a new from of the graph Laplacian which makes it possible to embed the dataset in a robust way. This graph Laplacian, based on diffusion map, captures the conditional probabilities of transition from any sample to another with a path of a given length. Its particularity is to only consider the intermediate paths with high transition likelihoods (see Section 3.2).

In the remainder of this paper, we consider the following notation. X is a random variable standing for a training sample taken from \mathcal{X} and Y its class label in $\{-1, +1\}$ ($Y = 1$ if the sample X belongs to the targeted class and -1 otherwise), $G = (V, E)$ denotes a graph where V is a set of vertices and E are weighted edges. We use also t, l as indices for iterations. Among terminologies a display is a set of images taken from the database which are shown to the user at iteration t. The paper is organized as follows: Section 2 introduces the overall architecture of the RF process. Section 3 describes our RF model based on the weighted robust graph Laplacian and the display model. Section 4 provides an experimental study using different databases including specific ones; face databases and also generic databases. We discuss the method and we conclude in Section 5.

2. OVERVIEW OF THE SEARCH PROCESS

Let $S = \{X_1, ..., X_n\}$, $\{Y_1, ..., Y_n\}$ denote respectively a training set of images and the underlying unknown ground truth. Here Y_i is equal $+1$ if the image X_i belongs to the user’s “class of interest” and $Y_i = -1$ otherwise. Let us consider $D_t \subset S$ as the display shown at iteration t and \mathcal{Y}_t the labels of D_t. Our interaction consists in asking the user questions such that his/her responses make it possible to reduce the semantic gap according to the following steps:

- “Page Zero”: Select a display D_1 which might be a random set of images or the prototypes found after applying clustering or Voronoi subdivision.

- Reduce the “semantic gap” iteratively ($t = 1, ..., T$):
 1. Label the set D_t using a (possibly stochastic) known-only-by-the-user function $Y_t = L(D_t)$.
 2. Train a decision function $f_t : \mathcal{X} \rightarrow \{-1, +1\}$ on the (so far) labeled training set $T_t = \bigcup_{i=1}^{t} (D_i, Y_i)$ and the unlabeled set of images $S - \bigcup_{i=1}^{t} D_i$ estimating $\arg\min_{f: \mathcal{X} \rightarrow \{-1, +1\}} P[f(X) \neq Y]$.
 3. Select the next display $D_{t+1} \subset S - \bigcup_{i=1}^{t} D_i$. Let f_D be a classifier trained on T_t and a display D. The issue of selecting D_{t+1} can be formulated at iteration $t+1$ as $D_{t+1} = \arg\min_{D \in D_t} P[f_D(X) \neq Y]$.

3. GRAPH LAPLACIAN AND RELEVANCE FEEDBACK

Graph Laplacian methods emerged recently as one of the most successful in transductive inference [7], (spectral) clustering and dimensionality reduction. The underlying assumption is: the probability distribution generating the (input) data admits a density with respect to the canonical measure on a sub-manifold of the Euclidean input space. Let M denote this sub-manifold and p the probability distribution of the input space with respect to the canonical measure on M (i.e. the one associated with the natural volume element dV). Note that M can be all the Euclidean space (or a subset of it of the same dimension) so that p can simply be viewed as a density with respect to the Lebesgue measure on the Euclidean space.

3.1. Transductive Learning using the Graph Laplacian

In transductive inference, one searches for a smooth function $f : \mathcal{X} \rightarrow \mathcal{Y}$ from the input feature space into the output space such that $f(X_i)$ is close to the associated output Y_i on the training set and such that the function is allowed to vary only on low density regions of the input space. Graph Laplacian is a transductive method that we hereafter describe. It is based on a neighborhood graph in which the nodes are the input data from both the labeled and unlabeled sets. Let $X_1, ..., X_n$ denote these data and let $K : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a symmetrical non-negative function giving the similarity between two input points. The typical kernel is the Gaussian $K(x', x'') = \exp(-\|x' - x''\|^2/2\sigma^2)$ and its degree function is defined as $d(x) = \sum_{i=1}^{n} K(X_i, x)$. The kernel K induces a weighted undirected graph G in which the nodes
are \(X_1, \ldots, X_n\) and in which any two nodes are linked with an edge of weight \(K(X_i, X_j)\). Let \(W\) be the \(n \times n\) matrix in which the generic element is \(K(X_i, X_j)\). Let \(D\) be the diagonal \(n \times n\) matrix for which the \(i\)-th diagonal element is \(d(X_i)\). The matrix \(L = D^{-1}W\) defines the random walk graph Laplacian where the entry at row \(i\) and column \(j\) characterizes the probability of a walk from the node \(X_i\) to \(X_j\). For a given \(f : \mathcal{X} \to \mathcal{Y}\), let \(F\) be the vector defined as \(F_i = f(X_i)\). Now, \(F\) is obtained by minimizing \(F^tLF\) under the constraints \(F_i = Y_i\) for labeled points.

3.2. Our Robust k-step Graph Laplacian

When embedding a dataset using the one step random walk graph Laplacian \(L\), the main drawback is its sensitivity to noise. This comes from short-cuts, when building the adjacency graph (or estimating the scale parameter of the Gaussian kernel). Therefore, the actual topology of the manifold \(\mathcal{M}\) will be lost (see Fig. 2, left). In [10], the authors consider instead a graph Laplacian based on the power of \(L\): \(L_k = L_{k-1}L\). The matrix \(L_k\) models a Markovian process where the conditional k-step transition likelihood (between two data \(X_i\) and \(X_j\)) is the sum of the conditional likelihoods of all the possible \((k-1)\)-steps linking \(X_i\) and \(X_j\). This results into low transition probabilities in low density areas. Nevertheless, when those areas are noisy, the method fails in capturing the correct topology (see Fig. 2, middle).

The limitation, mentioned above, motivates the introduction of a new (called robust) graph Laplacian\(^1\), recursively defined as \(L_k = [(L_k^{-1} \times L)^{\alpha}]^\circ\), \((1/\alpha \in [1, +\infty])\). Let \(L(i,j)^{\beta}\) denote the \(j\)-th entry of the \(i\)-th row of \(L^{\beta}\). Again, \(L\) is the one step random walk graph Laplacian where each entry \(L(i,j)\) corresponds to the probability of a walk from \(X_i\) to \(X_j\) in one step, also denoted \(P_1(i,j)\). This quantity characterizes the first order neighborhood structure of the graph \(G\). In the context of diffusion maps[10], the idea is to represent higher order neighborhoods by taking powers of the matrix \(L\), so \(L_k(i,j) = P_k(i,j)\) will be the probability of a walk from \(X_i\) to \(X_j\) in \(k\) steps. Here \(k\) acts as a scale factor and makes it possible to increase the local influence of each node in the graph \(G\). The matrix \(L_k\) can be inferred from \(L_k^{-1}\) and \(L\) by summing the conditional probabilities over different paths, i.e., \([P_k(j|i)]^{\beta} = \sum_{l=1}^{n} [P_{k-1}(l|i)]^{\beta} \cdot [P_1(j|l)]^{\beta}\). We refer to a \(k\)-path as any path of \(k\) steps in the graph \(G\). Depending on \(\alpha\) the general form of the graph Laplacian \(L_k\) implements different random walks. When \(\alpha \to 1\): \(P_k(j|i)\) is the average transition probability of the \(k\)-paths linking \(X_i\) to \(X_j\). So \(L_k\) implements exactly the one in [10] whereas when \(\alpha \to 0\): \([P_k(j|i)]^{\beta}\) converges to \(\max\{[P_{k-1}(l|i)]^{\beta} \cdot [P_1(j|l)]^{\beta}\}\), so \(L_k(i,j)\) corresponds to the most likely transition probability of \(k\)-steps. In case \(\alpha \in [0,1]\): \([P_k(j|i)]^{\beta}\) is dominated by the largest terms in \([P_{k-1}(l|i)]^{\beta} \cdot [P_1(j|l)]^{\beta}\). The effect of noisy terms will then be reduced. Fig. (2, right) shows an example of the application of \(L_k\) in embedding of Swiss roll data (\(k = 10\) and \(\alpha = 0.2\)). Clearly, the topology of the data is now preserved.

3.3. Display Model

The data in \(\mathcal{S}\) are mapped into a manifold \(\mathcal{M}\) such that any two elements \(X_i\) and \(X_j\) in \(\mathcal{S}\) with close conditional probabilities \(\{P_k(i|\cdot)\}\) and \(\{P_k(j|\cdot)\}\) will also be close in \(\mathcal{M}\). Let \(\Lambda\) be the diagonal matrix of positive eigenvalues of \(L_k\) and \(\Psi\) the underlying matrix of eigenvectors. Considering \(L_k = \Psi \Lambda \Psi^t\), the embedding of a training sample in \(\mathcal{S}\) is \(\psi : X_i \mapsto (\sqrt{\psi_1(X_i)}, \ldots, \sqrt{\psi_d(X_i)})^t\). \(d\) is the intrinsic dimension which corresponds to the largest index \(l \in 1, \ldots, n\) such that \(\lambda_l > \delta \lambda_1\) for some \(\delta \to 0\) [10]. The diffusion distance can then be expressed in \(\mathcal{M}\) as \(D_{\mathcal{M}}(X_i, X_j) = \|P_k(i.|) - P_k(j.|)\|^2 = \sum_l \lambda_l (\psi_l(X_i) - \psi_l(X_j))^2\). This distance plays a key role in propagating the labels from the labeled to unlabeled data following the shortest path or the average path (depending on the setting of \(\alpha\)).

We define a probabilistic framework which, given a subset of displayed images \(D_1, \ldots, D_t\) until iteration \(t\), makes it possible to explore the manifold \(\mathcal{M}\) in order to propose a subset of images \(D_{t+1}\). When we use the unlabeled data by using a transductive algorithm, the heuristics still rely on the following basic assumption: at each iteration, one can select the display in order to refine the current estimate of the decision boundary or one can select the display in order to find uncharted territories in which the actual decision boundary is present. The first display strategy exploits our knowledge of the likely position of the decision boundary while the second one explores new regions.
Exploitation: let $D \subset S$ and $D' = \{X \in D, f_t(X) > 0\}$, the next display is $D_{t+1} \leftarrow \arg \max_{D'} P(D' | D_1, ..., D_t)$. Assuming the data in D_{t+1} are chosen independently:

$$P(X_j | D_1, ..., D_t) \propto \max_{y_j \in \mathbb{T}} \frac{1}{D_M(X_i, X_j)} \sum \frac{1}{D_M(X_i, X_l)}$$

Exploration: equivalently we replace the max with min. We consider in this work a mixture between the two above strategies where at each iteration t of the interaction process, half of the display (of size 8 in practice) is taken from exploitation and the other set taken from exploration.

4. PERFORMANCE

Experiments were conducted on simple databases: Olivetti (0.4k images) and Swedish (1,1k) as well as difficult ones: Corel (10k). Each face in Olivetti is encoded using 20 coefficients of KPCA while each contour C in the Swedish set is encoded using 14 eigenvalues of KPCA on C [11]. Images in the Corel database are encoded simply using 3D RGB color histograms of 125 dimensions so the classes are very spread and the RF task is more challenging.

We evaluate the performance of our RF scheme using the standard recall measure. We compared our method to standard representative RF tools including inductive methods: support vector machines (SVMs), Bayesian inference (based on Parzen windows) and closely related transductive ones: graph-cuts. In all these methods, we use the same display strategy (i.e., combined exploration exploitation). We train the SVMs and Parzen classifiers using the triangular kernel as an extensive study in [12] showed that SVM based relevance feedback using the triangular kernel achieved far better results than other kernels, so we limit our comparison to SVM and Parzen using this kernel only. Again, for graph Laplacian, the scale parameter of the Gaussian kernel is set as $\sigma = \mathbb{E}_{X, X' \in N_m(X)} \left[(X - X')^2 \right]$. Here $N_m(X)$ denotes the set of m nearest neighbors of X (in practice $m = 10$). The results reported in Fig. (3), show that in almost all the cases, the recall performances of RF (using graph-Laplacian) are better than SVMs, Parzen and graph-cuts based RF. Clearly, the use of unlabeled data as a part of transductive learning (in graph Laplacian and graph cuts), makes it possible to improve the performance substantially. Furthermore, the embedding of the data through graph Laplacian makes it possible to capture the topology of the data, so learning the decision rule becomes easier.

5. CONCLUSION

This work introduces an original approach for RF based on transductive learning using graph Laplacian. It demonstrates clearly that the proposed semi-supervised learning method is three-edged sword: it is effective in order (1) to handle transductive learning (in contrast to inductive learning), via the robust graph Laplacian which implements the clustering assumption and uses the unlabeled data as a part of the training process (2) to capture the topology of the data so the similarity measure and the propagation of the labels to unlabeled data is done through the manifold enclosing the data (3) to achieve a clear and consistent improvement with respect to the most powerful and used techniques in relevance feedback including SVMs and Parzen windows.

6. REFERENCES

