Graph laplacian for interactive image retrieval

Abstract : Interactive image search or relevance feedback is the process which helps a user refining his query and finding difficult target categories. This consists in a step-by-step labeling of a very small fraction of an image database and iteratively refining a decision rule using both the labeled and unlabeled data. Training of this decision rule is referred to as transductive learning. Our work is an original approach for relevance feedback based on Graph Laplacian. We introduce a new Graph Laplacian which makes it possible to robustly learn the embedding of the manifold enclosing the dataset via a diffusion map. Our approach is two-folds: it allows us (i) to integrate all the unlabeled images in the decision process and (ii) to robustly capture the topology of the image set. Relevance feedback experiments were conducted on simple databases including Olivetti and Swedish as well as challenging and large scale databases including Corel. Comparisons show clear and consistent gain of our graph Laplacian method with respect to state-of-the art relevance feedback approaches.
Type de document :
Communication dans un congrès
ICASSP, Mar 2008, Las Vegas, United States. pp.817-820, 2008
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-00835145
Contributeur : Pascal Monasse <>
Soumis le : mardi 18 juin 2013 - 13:57:40
Dernière modification le : mercredi 20 février 2019 - 14:41:40
Document(s) archivé(s) le : jeudi 19 septembre 2013 - 04:09:53

Fichier

ICASSP08.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00835145, version 1

Citation

Hichem Sahbi, Patrick Etyngier, Jean-Yves Audibert, Renaud Keriven. Graph laplacian for interactive image retrieval. ICASSP, Mar 2008, Las Vegas, United States. pp.817-820, 2008. 〈hal-00835145〉

Partager

Métriques

Consultations de la notice

311

Téléchargements de fichiers

109