
HAL Id: hal-00835096
https://enpc.hal.science/hal-00835096

Submitted on 18 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GPU-boosted online image matching
Alexandre Chariot, Renaud Keriven

To cite this version:
Alexandre Chariot, Renaud Keriven. GPU-boosted online image matching. ICPR, Dec 2008, Tampa,
United States. pp.1-4. �hal-00835096�

https://enpc.hal.science/hal-00835096
https://hal.archives-ouvertes.fr


GPU-boosted online image matching

Alexandre Chariot and Renaud Keriven

CERTIS, Ecole des ponts, Paris-Est, France

{chariot, keriven}@certis.enpc.fr

Abstract

Matching feature points between images is a key

point in many Computer Vision tasks. As the num-

ber of images increases, this rapidly becomes a bot-

tleneck. We here present how to use the power of

GPUs to obtain image matching in typically 20 ms

for one thousand points. This speedup makes ap-

plications like interactive image matching possible.

Such a portable system, dedicated to 3D large scale

reconstruction, is reported.

1. Motivation

Matching a given image with many other ones,
i.e. the process of detecting common points be-
tween an incoming image and a set of images, is a
key task in many Computer Vision problems like
Structure From Motion[5] or Object Recognition.
This is usually done by detecting interest points
(features) and matching them amongst images. A
widespread tool for feature detection and charac-
terization is the Scale Invariant Feature Transform

(SIFT), proposed by David Lowe[7]. After an in-
variant Difference of Gaussian based detection of
point plus scale pairs, features are described by a
high dimension vector, in R

128. In most cases, an
initial step is to find the k-nearest neighbors of a
given descriptor in R

128 (usually, k = 2). With
hundreds of images, each one of them containing
thousands of features, matching descriptors rapidly
becomes an under-estimated but crucial step with
respect to computing time, even with recent CPUs.
This clearly is a main bottleneck. The increasing
programming flexibility and computational power
offered by Graphics Processing Units (GPUs), as
well as their low cost, provide a now standard way
of getting large speed-ups for many algorithms.
Point matching is a good candidate for such an
implementation. We have developed a GPU-based
image matching method that processes a large set

of images in a very reasonable time, typically 20ms
per image pair for one thousand features. Such a
running time allows interactive online applications,
such as matching every new image with previous
ones during an acquisition process. Our implemen-
tation uses the OpenGL library and the Cg shad-
ing language but is not restricted to this particular
choice (other usual choices are GLSL or Cuda).

2. Previous work

2.1 Feature point based matching

SIFT SIFT[8] provides a local feature detector
and descriptor, robust to translation, rotation, scal-
ing and illumination changes. The method is com-
posed of the two following steps:
(i) Feature detection: A Gaussian scale space pyra-
mid is built from the input image, yielding the con-
struction of Differences of Gaussian (DoG) images.
Candidate features are localized in this DoG scale
space as local extrema. They are then refined and
are assigned an orientation which is the highest
peak in the histogram of local gradients orienta-
tions.
(ii) Feature description: Features are afterward de-
scribed by a vector in R

D, with D = 128, repre-
senting gradient orientation histograms on 4 × 4
neighborhoods in the closest image in scale.
Some work have been proposed to improve
SIFT running time: a GPU-based SIFT
implementation[12] and Speeded Up Robust

Features (SURF)[3].

SIFT on GPU This work by S.N.Sinha et al.[12]
accelerates some parts of the SIFT algorithm using
the hardware capacities of GPUs. Almost the whole
feature detection process is deported on GPU. Gra-
dient histograms and descriptor construction are
computed on CPU. For technical reasons, this part
would not be efficient on GPU. A 10x speedup is
obtained, allowing applications on video-sized im-
ages.



SURF SURF is a variation of SIFT, proposed by
H.Bay et al.[3]. Relying on the Hessian of the im-
age, detection is speeded up thanks to fast deriva-
tives computations using an integral image[13]. De-
scriptors are also simplified, consisting of sums of
first order derivatives, giving a R

64 vector.
SIFT on GPU and SURF accelerate feature ex-

traction for each image. Yet, they do not reduce
matching time, which is the main bottleneck.

2.2 Approximate Nearest Neighbors

Given two images I and J , matching consists in
finding a feature i in I and a feature j in J , such as
their respective descriptors are ”close” in R

d for a
certain distance d(i, j). A naive algorithm compar-
ing each pair of features yields a quadratic complex-
ity O(m2), m being the (mean) number of features
per image. This complexity could be reduced to
O(m ∗ log(m)) at the price of approximation, using
Approximate Nearest Neighbors (ANN)[1].

Note that D. Lowe uses a Best-Bin-Search al-
gorithm, a slight variant of kd-tree search, on
which ANN is also based. When looking for non-
ambiguous matches, the following filter is also rec-
ommended: for each feature i ∈ I, the two nearest
neighbors j and j′ in J are found (j beeing the
closest one) and the match (i, j) is kept if the ratio
d(i, j)/d(i, j′) is lower than a given threshold. We
will refer to this process as the two best matches

filter.
Unfortunately, the improved complexity of ANN

is not sufficient for online applications. Our claim
here is that this asymptotic complexity is not ef-
ficient enough for the typical number of features
per image (typically a few thousands). On the con-
trary, a GPU implementation of the naive quadratic
match will prove to be significantly faster than
ANN-based matching (up to 30 times). In the
sequel, we briefly recall GPU computing princi-
ples, before describing our matching implementa-
tion. A last section gives computational times and
speedups, mentions a practical application and con-
cludes.

3. GPU Matching

3.1 General Purpose computation on
GPU

General Purpose Computation on GPU

(GPGPU) refers to the use of the parallelism
of graphics hardware for non graphical calcula-
tions. A large panel of parallel computational
schemes are well suited to this kind of treatment.

The reader is invited to consult [4] for an overview
and [11, 10] for advanced examples.

GPU pipelines Figure 1 summarizes the orga-
nization of a recent GPU and its parallel pipelines
(typically 128 ones). Each pipeline receives a part
of the vertices flow from the CPU application. A
first programmable computing unit (Vertex Unit)
processes these vertices, modifies their positions
and/or other attributes like normals, colors, etc.
They are then passed to a second programmable
unit (Geometry Unit) which possibly generates new
geometrical primitives. Then, the rasterizer pro-
duces fragments (briefly said, pixels), that are fi-
nally processed by the third and last programmable
unit (Fragment Unit), which computes a color for
each fragment and stores the result in a (not nec-
essarily) displayed buffer.

Vertex
Unit

Geometry
Unit

Rasterizer
Fragment

Unit

Video Memory
(Textures)

GPU

CPU

Application

V
er

tic
es

flo
w

T
ex

tu
re

s
re

ad
ba

ck

T
ex

tu
re

s
se

nd
in

g

R
 / 

W R
 / 

W

R
 / 

W

Figure 1. Simplified GPU pipeline

Computational model For our purpose, only
Fragment Units are used. Rendering a simple rect-
angle, the card computes in parallel

∀(u, v), Tout(u, v) = F(Tin1
, Tin2

, ..., Tinn
, u, v)

where Tout is an output texture, Tink
input textures,

(u, v) the pixel coordinates and F a computing ker-
nel (or shader). Textures are assimilated to 2D ar-
rays storing integer or floating point data. F can
read any input texture location (gather operations
are allowed), but can only write to its own location.
For instance, it is possible to calculate Tout(u, v) =
Tin(u+1, v), but not Tout(u+1, v) = Tin(u, v). The
main limitation of GPGPU programming is this im-
possibility to perform this scatter operation. This
model is commonly known as the Concurrent Read
Exclusive Write (CREW) model.



3.2 SURF with GPU

Although it is not our main contribution, we
have implemented a mixed version of SURF de-
scriptors. As in [12], the image derivatives are
computed on the GPU, while descriptors are still
constructed on CPU, using the original library[2],
yielding some speedup. Our implementation is
straightforward. Again, because descriptor compu-
tation is only done once for each image in less than
a second, we do not consider it as a bottleneck, con-
trary to image matching that has to be conducted
for each pair of images.

��

��

� � �

��

�
�

�

��

����� �
�
�
�

��

� �
����

��

��

��

�
�

��

�

�
	�

���

�
�
	
A

B � �CD��E �E 	E A�
F � F�CD��E �E 	E A�

������ � � ����	ABC�

BDEF��	��DA

������ � � ��C�	���C �C��B��DA

Figure 2. GPU Matching

3.3 Matching

The matching process is done on GPU according
to figure 2. Given two images I and J , the principle
is the following:
(i) the GPU computes in parallel the distances for
each pair of descriptors (i, j) ∈ I × J .
(ii) targeting to two best matches filtering (see sec-
tion 2.2), the GPU then looks for the two closest
descriptors ji and j′i for each descriptor i using a
so-called reduction operation. Note that the sym-
metric computation is conducted at the same time
from J to I, though we will only detail it from I to
J .

More precisely, for each image I, let mI be the
number of features detected in I and D the dimen-
sion of descriptors (D = 64 for SURF). A texture
TI of size mI ×D is created and filled with the mI

descriptors values, each one occupying a column.
Note that for sake of clarity, we will suppose that
the features are indexed by integers and denote in-
differently by i a feature of I, its descriptor and its
index.

Given I and J , a new texture Tdist of size
mI × mJ is created and filled with a first shader
computing the Euclidean distances d(i, j). Actu-
ally, because the matching should also output a

reference to the matched points ji and j′i, and
not only their distances to i, Tdist stores pairs of
distance×index. This is easily handled by GPU, for
which basic types go from scalars to 4D vectors:

Tdist(i, j) = (

D
∑

k=1

(TI(i, k) − TJ(j, k))2, j)

The second step is an iterative texture reduction,
done with an unique second shader, in which the
height of the final texture will be scaled down to 2,
to keep the two nearest neighbors for each i. This

pyramid of textures goes from T 0

red = Tdist to T
kf

red

where kf depends on mJ : kf = log
2
mJ − 1. The

kth iteration producing a texture T k
red from T k−1

red

uses the following shader:

T k
red(u, 2v) =

min
{

T k−1

red (u, 4v), T k−1

red (u, 4v + 1)

T k−1

red (u, 4v + 2), T k−1

red (u, 4v + 3)
}

T k
red(u, 2v + 1) =

smin
{

T k−1

red (u, 4v), T k−1

red (u, 4v + 1)

T k−1

red (u, 4v + 2), T k−1

red (u, 4v + 3)
}

where min
{

·
}

(respectively smin
{

·
}

) returns the
first (respectively the second) minimum of 4 pairs,
according to the order on the first element of the

pairs. Finally, T
kf

red is sent back to the CPU, giving,
for each feature i of I, the two nearest neighbors

and the related distances: (d(i, ji), ji) = T
kf

red(i, 1)

and (d(i, j′i), j
′

i) = T
kf

red(i, 2).
Note that, as a final optimization not detailed

here, we actually use textures of 4D vectors in-
stead of 2D vectors. Doing so, we merge T k

red(u, 2v)
and T k

red(u, 2v + 1) at the same location (u, v) of
a smaller texture and, more importantly, compute
min and smin at once.

4. Results and discussion

All GPU tests were run on a 3GHz Xeon CPU
equipped with an nVidia GeForce 8800 Ultra card
enclosing 128 stream processors and 768 Mo of
internal memory. Table 1 shows matching times
in ms per image pair. Neither features extrac-
tion nor ANN tree construction are taken into ac-
count, since they are done once for every image.
Our GPU matching method is compared to ANNs
and naive O(m2) CPU matchings, in function of
the average number m of features in each image.
As expected, both times for CPU naive match-
ing and our method grow approximately quadrat-



m 512 1024 2048 4096
CPU 160 660 4230 24220
ANN 73 290 1200 7990
GPU 6.8 19 71 270

CPU/ANN 2.2 2.3 3.5 3.0
CPU/GPU 23.5 34.6 59.6 89.7
ANN/GPU 10.7 15.3 16.9 29.6

Table 1. Times in ms per image pair

and Speedup, w.r.t the number m
of features. CPU=naive O(m2) algo-

rithm, ANN=Approx. Nearest Neighbors,

GPU=our method

… to image matching

From scene
capture…

Red : Not matched
Blue : Matched
Green : Matched with one

given image

Figure 3. Our portable setup for interac-

tive image acquisition (see text)

ically with m. Yet cache effects, fast GPU mem-
ory and CPU/GPU memory transfers make the
times for the CPU method to grow faster than ex-
pected while they grow slower than expected for our
method. This explains the speedup going from 23
to 90. Our ANN implementation uses the ANNLib
open library[9]. Although more efficient than the
naive CPU approach, this yield running times that
do not follow the predicted asymptotic complex-
ity. This might easily be explained by the small
number of points w.r.t. the high space dimension
(d = 64). As a result, we observe a 11 to 30 speedup
between our method and ANNs. Boosted by these
new possibilities, we developed a first application
dedicated to help users to take photos of a large
scale scenes for 3D reconstruction purposes[6]. In
our portable setup (figure 3), several digital reflex
cameras communicate via WiFi connections with

a laptop equipped with an nVidia GeForce 8800M
GPU. By incrementally matching images and dis-
playing matched regions, the system guides users to
places that have not yet been taken enough. Image
pair matching runs in typically 25 ms, providing
acceptable waiting delays between shots.

Conclusion This paper has presented a GPU-
boosted system that makes possible online image
matching applications, even in portable setups. We
plan to make our matching application available on
the WEB. This will be the first step of a large scale
interactive 3D reconstruction system.

References

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Sil-
verman, and A. Y. Wu. An optimal algorithm for
approximate nearest neighbor searching in fixed
dimensions. J. ACM, 45(6):891–923, 1998.

[2] H. Bay, T. Tuytelaars, and L. V. Gool. SURF

library, 2006. http://www.vision.ee.ethz.ch/

~surf/.
[3] H. Bay, T. Tuytelaars, and L. V. Gool. SURF:

Speeded up robust features. In ECCV 2006 Pro-

ceedings, pages 404–417, 2006.
[4] GPGPU.org. General purpose computation on

gpus. Website, 2004. http://gpgpu.org/.
[5] R. I. Hartley and A. Zisserman. Multiple View

Geometry in Computer Vision. Cambridge Uni-
versity Press, second edition, 2004.

[6] P. Labatut, J.-P. Pons, and R. Keriven. Efficient
multi-view reconstruction of large-scale scenes us-
ing interest points, delaunay triangulation and
graph cuts. In ICCV, Rio de Janeiro, Oct 2007.

[7] D. G. Lowe. Object recognition from local scale-
invariant features. In ICCV, pages 1150–1157,
1999.

[8] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. Int. J. Comput. Vision,
60(2):91–110, 2004.

[9] D. M. Mount and S. Arya. ANN: A library for
approximate nearest neighbor searching. Website,
2006. http://www.cs.umd.edu/~mount/ANN/.

[10] H. Nguyen. GPU Gems 3. Addison-Wesley Pro-
fessional, 2007.

[11] M. Phar and R. Fernando. GPU Gems 2. Addison-
Wesley Professionnal, 2005.

[12] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and
Y. Genc. Gpu-based video feature tracking and
matching. Workshop on Edge Computing Using

New Commodity Architectures, 2006.
[13] P. Viola and M. Jones. Rapid object detection

using a boosted cascade of simple features. In
CVPR 2001 Proceedings, volume 1, pages I–511–
I–518 vol.1, 2001.


