Context-dependent kernel design for object matching and recognition
Hichem Sahbi, Jean-Yves Audibert, Jaonary Rabarisoa, Renaud Keriven

To cite this version:

HAL Id: hal-00835081
https://hal-enpc.archives-ouvertes.fr/hal-00835081
Submitted on 18 Jun 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract

The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern recognition problems such as object recognition and bioinformatics.

We focus in this paper on object recognition using a new type of kernel referred to as “context-dependent”. Objects, seen as constellations of local features (interest points, regions, etc.), are matched by minimizing an energy function mixing (1) a fidelity term which measures the quality of feature matching, (2) a neighborhood criteria which captures the object geometry and (3) a regularization term. We will show that the fixed-point of this energy is a “context-dependent” kernel (“CDK”) which also satisfies the Mercer condition. Experiments conducted on object recognition show that when plugging our kernel in SVMs, we clearly outperform SVMs with “context-free” kernels.

1. Introduction

Object recognition is one of the biggest challenges in vision and its interest is still growing [10]. Among existing methods, those based on machine learning (ML), show a particular interest as they are performant and theoretically well grounded [5]. ML approaches, such as the popular support vector networks [6], basically require the design of similarity measures, also referred to as kernels, which should provide high values when two objects share similar structures/appearances and should be invariant, as much as possible, to the linear and non-linear transformations. Kernel-based object recognition methods were initially holistic, i.e., each object is mapped into one or multiple fixed-length vectors and a similarity, based on color, texture or shape [29, 8], is then defined. Local kernels, i.e., those based on bags or local sets were introduced in order to represent data which cannot be represented by ordered and fixed-length feature vectors, such as graphs, trees, interest points, etc [11]. It is well known that both holistic and local kernels should satisfy certain properties among them the positive definiteness, low complexity for evaluation, flexibility in order to handle variable-length data and also invariance. Holistic kernels have the advantage of being simple to evaluate, discriminating but less flexible than local kernels in order to handle invariance. While the design of kernels gathering flexibility, invariance and low complexity is a challenging task; the proof of their positive definiteness is sometimes harder [9]. This property also known as the Mercer condition ensures, according to Vapnik’s SVM theory [30], optimal generalization performance and also the uniqueness of the SVM solution.

Consider a database of objects (images), each one seen as a constellation of local features, for instance interest points [24, 19, 18], extracted using any suitable filter [13]. Again, original holistic kernels explicitly (or implicitly) map objects into fixed-length feature vectors and take the similarity as a decreasing function of any well-defined distance [3]. In contrast to holistic kernels, local ones are designed in order to handle variable-length and unordered data. Two families of local kernels can be found in the literature; those based on statistical “length-insensitive” measures such as the Kullback Leibler divergence, and those which require a preliminary step of alignment. In the first family, the authors in [17, 21] estimate for each object (constellation of local features) a probability distribution and compute the similarity between two objects (two distributions) using the “Kullback Leibler divergence” in [21] and the “Bhattacharyya affinity” in [17]. Only the function in [17] satisfies the Mercer condition and both kernels were applied for image recognition tasks. In [33], the authors discuss a new type of kernel referred to as “principal angles” which is positive definite. Its definition is based on the computation of the principal angles between two linear

---

1In case of object recognition, invariance means robustness to occlusion, geometric transformations and illumination.
subspaces under an orthogonality constraint. The authors
demonstrate the validity of their method on visual recogni-
tion tasks including classification of motion trajectory and
face recognition. An extension to subsets of varying car-
dinality is proposed in [26]. In this first family of kernels,
the main drawback, in some methods, resides is the strong
assumption about the used probabilistic models in order to
approximate the set of local features which may not hold
true in practice.

In the second family, the “max” kernel [32] considers
the similarity function, between two feature sets, as the sum
of their matching scores and unlike discussed in [32] this
kernel is actually not Mercer [2]. In [20], the authors in-
troduced the “circular-shift” kernel defined as a weighted
combination of Mercer kernels using an exponent. The
latter is chosen in order to give more prominence to the
largest terms so the resulting similarity function approxi-
mates the “max” and also satisfies the Mercer condition.
The authors combined local features and their relative an-
gles in order to make their kernel rotation invariant and
they show its performance for the particular task of object
recognition. In [7], the authors introduced the “interme-
diate” matching kernel, for object recognition, which uses
virtual local features in order to approximate the “max”
while satisfying the Mercer condition. Recently, [12] in-
troduced the “pyramid-match” kernel, for object recogni-
tion and document analysis, which maps feature sets using
a multi-resolution histogram representation and computes
the similarity using a weighted histogram intersection. The
authors showed that their function is positive definite and
can be computed linearly with respect to the number of lo-
cal features. Other matching kernels include the “dynamic
programming” function which provides, in [2], an effec-
tive matching strategy for handwritten character recogni-
tion, nevertheless the Mercer condition is not guaranteed.

![Figure 1](image1.png)

**Figure 1.** This figure shows a comparison of the matching results when using a naive matching strategy without geometry, (which consists in finding the set of possible matches by minimizing a dis-
tance between the color descriptors) and our “context-dependent”
matching.

<table>
<thead>
<tr>
<th>Naive matching</th>
<th>'H'</th>
<th>'I'</th>
<th>'S'</th>
<th>'T'</th>
<th>'r'</th>
</tr>
</thead>
<tbody>
<tr>
<td>'S'</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>'T'</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>'r'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

| Context-dependent | -   | -   | -   | -   | -   |

<table>
<thead>
<tr>
<th>Naive matching</th>
<th>'H'</th>
<th>'I'</th>
<th>'S'</th>
<th>'T'</th>
<th>'r'</th>
</tr>
</thead>
<tbody>
<tr>
<td>'S'</td>
<td>0</td>
<td>0</td>
<td>- .38</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>'T'</td>
<td>0</td>
<td>- .36</td>
<td>- 0</td>
<td>.39</td>
<td>0</td>
</tr>
<tr>
<td>'r'</td>
<td>0</td>
<td>0</td>
<td>- 0</td>
<td>0</td>
<td>- .38</td>
</tr>
</tbody>
</table>

**Table 1.** This table shows a simple comparison between similarity
measures when using naive matching (upper table) and context-
dependent matching (lower table).

### 1.1. Motivation and Contribution

The success of the second family of local kernels strongly depends on the quality of alignments which are
difficult to obtain mainly when images contain redundant
and repeatable structures. Regardless the Mercer condition,
a naive matching kernel (such as the “max”), which looks
for all the possible alignments and sums the best ones,
will certainly fail and results into many false matches (see
Figures 1 and 2, left). The same argument is supported in
[24], for the general problem of visual features matching,
about the strong spatial correlation between interest points
and the corresponding close local features in the image
space. This limitation also appears in closely related areas
such as text analysis, and particularly string alignment.
A simple example, of aligning two strings (“Sir” and “Hi
Sir”) using a simple similarity measure \( I_{c_1=c_2} \) between
any two characters \( c_1 \) and \( c_2 \), shows that without any
extra information about the context (i.e., the sub-string)
surrounding each character in (“Sir” and “Hi Sir”), the
alignment process results into false matches (See Table 1).
Hence, it is necessary to consider the context as a part of
the alignment process when designing kernels.

In this paper, we introduce a new kernel, called “context-
dependent” (or “CDK”) and defined as the fixed-point of
an energy function which balances an “alignment qual-
ity” term and a “neighborhood” criteria. The alignment
quality is inversely proportional to the expectation of
the Euclidean distance between the most likely aligned
features (see Section 2) while the neighborhood criteria
measures the spatial coherence of the alignments; given
a pair of features \( (f_p, f_q) \) with a high alignment quality,
the neighborhood criteria is proportional to the alignment
quality of all the pairs close\(^2\) to \( (f_p, f_q) \). The general form
of “CDK” captures the similarity between any two features
by incorporating also their context, i.e., the similarity of
the surrounding features. Our proposed kernel can be

\(^2\)The closeness is defined in Section 2.
viewed as a variant of “dynamic programming” kernel [2] where instead of using the ordering assumption we consider a neighborhood assumption which states that two points match if they have similar features and if they satisfies a neighborhood criteria i.e., their neighbors match too. This also appears in other well studied kernels such as Fisher [15], which implements the conditional dependency between data using the Markov assumption. “CDK” also implements such dependency with an extra advantage of being the fixed-point and the (sub)optimal solution of an energy function closely related to the goal of our application. This goal is to gather the properties of flexibility, invariance and mainly discrimination by allowing each local feature to consider its context in the matching process. Notice that the goal of this paper is not to extend local features to be global and doing so (as in [22, 1]) makes local features less invariant, but rather to design a similarity kernel (“CDK”) which captures the context while being invariant. Even though we investigate “CDK” in the particular task of object recognition, we can easily extend it to handle closely related areas in machine learning such as text alignment for documents retrieval [23], machine translation [28] and bioinformatics [25].

In the remainder of this paper we consider the following terminology and notation. A feature refers to a local interest point \( x_i^p = (\psi_g(x_i^p), \psi_f(x_i^p), y_p) \), here \( i \) stands for the \( i^{th} \) sample of the subset \( S_p = \{x_1^p, \ldots, x_n^p\} \) and \( y_p \in \mathbb{N}^+ \) is a unique index which provides the class of the subset including \( x_i^p \). \( \psi_g(x_i^p) \in \mathbb{R}^2 \) stands for the 2D coordinates of the interest-point \( x_i^p \) while \( \psi_f(x_i^p) \in \mathbb{R}^s \) corresponds to the descriptor of \( x_i^p \) (for instance the 128 coefficients of the SIFT [19]). We define \( \mathcal{X} \) as the set of all possible features taken from all the possible images in the world and \( \mathcal{X} \) is a random variable standing for a sample in \( \mathcal{X} \). We also consider \( k_t: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) as a symmetric function which, given two samples \( (x_i^p, x_j^q) \), provides a similarity measure. Other notations will be introduced as we go along through different sections of this paper which is organized as follows. We first introduce in Section 2, our energy function which makes it possible to design our context-dependent kernel and we show that this kernel satisfies the Mercer condition so we can use it for support vector machine training and other kernel methods. In Section 3 we show the application of this kernel in object recognition. We discuss in Section 4 the advantages and weaknesses of this kernel and the possible extensions in order to handle other tasks such as string matching and machine translation. We conclude in Section 5 and we provide some future research directions.

2. Kernel Design

Define \( \mathcal{X} = \bigcup_{p \in \mathbb{N}^+} S_p \) as the set of all possible interest points taken from all the possible objects in the world. We assume that all the objects are sampled with a given cardinality i.e., \( |S_p| = n, |S_q| = m, \forall p, q \in \mathbb{N}^+ \) (\( n \) and \( m \) might be different). Our goal is to design a kernel \( K \) which provides the similarity between any two objects (subsets) \( S_p, S_q \) in \( \mathcal{X} \).

Definition 1 (Subset Kernels) let \( \mathcal{X} \) be an input space, and consider \( S_p, S_q \subseteq \mathcal{X} \) as two finite subsets of \( \mathcal{X} \). Define the similarity function or kernel \( K \) between \( S_p = \{x_1^p, \ldots, x_n^p\} \) and \( S_q = \{x_1^q, \ldots, x_m^q\} \) as

\[
K(S_p, S_q) = \sum_{i=1}^{n} \sum_{j=1}^{m} k(x_i^p, x_j^q),
\]

(1)

here \( k \) is symmetric and continuous on \( \mathcal{X} \times \mathcal{X} \), so \( K \) will also be continuous and symmetric. Since \( K \) is defined as the cross-similarity \( k \) between all the possible sample pairs taken from \( S_p \times S_q \), it is obvious that \( K \) has the big advantage of not requiring any (hard) alignment between the samples of \( S_p \) and \( S_q \). Nevertheless, for a given \( S_p, S_q \) the value of \( K(S_p, S_q) \) should be dominated by \( \max_{i,j} k(x_i^p, x_j^q) \), so \( k \) should be appropriately designed (see Section 2.1).

Let \( X \) be a random variable standing for samples taken from \( S_p \) and \( X' \) is defined in a similar way for the subset \( S_q \). We design our kernel \( k(x_i^p, x_j^q) = \mathbb{P}(X' = x_j^q | X = x_i^p) \) as the joint probability that \( x_j^q \) matches \( x_i^p \). Again, it is clear enough (see Figures 1.2 and Table 1) that when this joint probability is estimated using only the sample coordinates (without their contexts), this may result into many false matches and wrong estimate of \( \{\mathbb{P}(X' = x_j^q | X = x_i^p)\}_{i,j} \).

Before describing the whole design of \( k \), we start with our definition of context-dependent kernels.

Definition 2 (Context-Dependent Kernels) we define a context-dependent kernel \( k \) as any symmetric, continuous and recursive function \( k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) such that \( k(x_i^p, x_j^q) \) is equal to

\[
c(x_i^n, x_j^q) \times h \left( \sum_{k,l} k(x_k^n, x_l^q) \forall (x_i^n, x_k^n, x_j^q, x_l^q) \right),
\]

(2)

here \( c \) is a positive (semi) definite and context-free (non-recursive) kernel, \( \forall (x, x', y, y') \) is a monotonic decreasing function of any (pseudo) distance involving \( (x, x', y, y') \) and \( h(x) \) is monotonically increasing.

2.1. Approach

We consider the issue of designing \( k \) using a variational framework. Let \( I_p = \{1, \ldots, n\}, I_q = \{1, \ldots, m\}, \mu = \{k(x_i^n, x_j^q)\}, d(x_i^n, x_j^q) = \|\psi_f(x_i^n) - \psi_f(x_j^q)\|_2 \) and \( N_p(x_i^n) = \{x_k^n \in S_p : k \neq i, \|\psi_g(x_i^n) - \psi_g(x_k^n)\|_2 \leq \epsilon_p\} \).
\( \epsilon_p \) defines a neighborhood and \( \mathcal{N}_q \) is defined in the same way for \( \mathcal{S}_q \). Consider \( \alpha, \beta \geq 0, \mu = \{ k(x_i^p, x_j^q) \} \) is found by solving

\[
\min_{\mu} \sum_{i \in \mathcal{I}_p, \beta \in \mathcal{I}_q} k(x_i^p, x_j^q) d(x_i^p, x_j^q) + \\
\beta \sum_{i \in \mathcal{I}_p, j \in \mathcal{I}_q} k(x_i^p, x_j^q) \log(k(x_i^p, x_j^q)) + \\
\alpha \sum_{i \in \mathcal{I}_p, j \in \mathcal{I}_q} k(x_i^p, x_j^q) \left( 1 - \sum_{x_i^q, x_j^q \in \mathcal{N}_p(x_i^q), \mathcal{N}_q(x_j^q)} k(x_i^p, x_j^q) \right)
\]

s.t. \( k(x_i^p, x_j^q) \in [0, 1], \ i \in \mathcal{I}_p, \ j \in \mathcal{I}_q \)

\[
\sum_{i, j} k(x_i^p, x_j^q) = 1
\]

(3)

The first term measures the quality of matching two descriptors \( \psi_i(x_i^p), \psi_j(x_j^q) \). In the case of SIFT, this is considered as the distance, \( d(x_i^p, x_j^q) \), between the 128 SIFT coefficients of \( x_i^p \) and \( x_j^q \). A high value of \( d(x_i^p, x_j^q) \) should result into a small value of \( k(x_i^p, x_j^q) \) and vice-versa. The second term is a regularization criteria which considers that without any a priori about the aligned samples, the entropy is minimized. This term also helps defining a simple solution and solving the constrained minimization problem easily (see. appendix). The third term is a neighborhood criteria which considers that a high value of \( k(x_i^p, x_j^q) \) should imply high kernel values in the neighborhoods \( \mathcal{N}_p(x_i^p) \) and \( \mathcal{N}_q(x_j^q) \). This criteria makes it possible to consider the context (spatial configuration) of each sample in the matching process.

We formulate the minimization problem by adding an equality constraint and bounds which ensure that \( \{ k(x_i^p, x_j^q) \} \) is a probability distribution.

Proposition 1 (3) admits a solution in the form of a context-dependent kernel \( k_t(x_i^p, x_j^q) = v_t(x_i^p, x_j^q) / Z_t \), with \( t \in \mathbb{N}^+ \), \( Z_t = \sum_{i, j} v_t(x_i^p, x_j^q) \) and \( v_t(x_i^p, x_j^q) \) defined as

\[
\exp \left( -\frac{d(x_i^p, x_j^q)}{\beta} - 1 \right) \times \\
\exp \left( \frac{2\alpha}{\beta} \sum_{k, t} \mathcal{V}(x_i^p, x_k^p, x_j^q, x_t^q) k_{t-1}(x_k^p, x_t^q) \right)
\]

(4)

which is also a Gibbs distribution.

Proof. see appendix.

In (4), we set \( \nu_p \) to any positive definite kernel (see proposition 3) and we define \( \mathcal{V}(x_i^p, x_k^p, x_j^q, x_t^q) = g(x_i^p, x_k^p) \times g(x_j^q, x_t^q) \) where \( g \) is a decreasing function of any (pseudo) distance involving \((x_i^p, x_j^q)\), not necessarily symmetric. In practice, we consider \( g(x_i^p, x_k^p) = 1 \) \( (x_i \in \mathcal{S}_p, x_j \in \mathcal{S}_q) \)

It is easy to see that \( k_t \) is a P-kernel on any \( \mathcal{S}_p \times \mathcal{S}_q \) (as the joint probability over sample pairs taken from any \( \mathcal{S}_p \) and \( \mathcal{S}_q \) sums to one), so the value of the subset kernel \( K(S_p, S_q) \) defined in (1) is constant and useless. To make \( k_t \) up to a factor a P-kernel on \( \mathcal{X} \times \mathcal{X} \) (and not on \( \mathcal{S}_p \times \mathcal{S}_q \)), we cancel the equality constraint in (3) and we can prove in a similar way (see. appendix) that \( k_t(x_i^p, x_j^q) \) is equal to \( v_t(x_i^p, x_j^q) \) which is still a context-dependent kernel.

2.2. Mercer Condition

Before stating our result about the positive definiteness of \( k_t \) and also \( K \), we remind some elementary definitions and results. Let \( \mathcal{X} \) be an input space and let \( k_t : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) be symmetric and continuous. \( k_t \) is Mercer, i.e., positive (semi) definite, if and only if any Gram (kernel scalar product) matrix built by restricting \( k_t \) to any finite subset of \( \mathcal{X} \) is positive (semi) definite. A Mercer kernel \( k_t \) guarantees the existence of a reproducing kernel Hilbert space \( \mathcal{H} \) where \( k_t \) can be written as a dot product i.e., \( \forall \Phi_t : \mathcal{X} \rightarrow \mathcal{H} \) such that \( \forall x, x' \in \mathcal{X}, k_t(x, x') = \langle \Phi_t(x), \Phi_t(x') \rangle \).

Proposition 2 (Closure[27]) the sum and the product of any two Mercer kernels is a Mercer kernel. The exponential of any Mercer kernel is also a Mercer kernel.

Proof. see, for instance, [27].

Now, let us state our result about the positive definiteness of the “CDK” kernel.

Proposition 3 let \( \mathcal{V}(x_i^p, x_k^p, x_j^q, x_t^q) = g(x_i^p, x_k^p)g(x_j^q, x_t^q) \), consider \( g : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) and \( k_0 \) positive definite. The kernel \( k_t \) is then positive definite.

Proof. initially \( t = 0 \), \( k_0 \) is by definition a positive definite kernel. By induction, let us assume \( k_{t-1} \) a Mercer kernel i.e., \( \exists \Phi_{t-1} : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) s.t. \( \forall x, x' \in \mathcal{X}, k_t(x, x') = \langle \Phi_{t-1}(x), \Phi_{t-1}(x') \rangle \), \( \forall x, x' \in \mathcal{X} \). Now, the sufficient condition will be to show that \( \sum_{y, y'} \mathcal{V}(x, y, x', y') k_{t-1}(y, y') \) is also a Mercer kernel. Then, by the closure of the exponential and the product (see proposition 2), \( k_t \) will then be Mercer.

We need to show

\[
\forall x_1, \ldots, x_d \in \mathcal{X}, \forall c_1, \ldots, c_d \in \mathbb{R}, \ \langle *, \rangle = \sum_{i, j} c_i c_j \left( \sum_{y, y'} \mathcal{V}(x_i, y, x_j, y') k_{t-1}(y, y') \right) \geq 0
\]

(5)
We have
\[
\begin{align*}
(\ast) & = \sum_{i,j} c_i c_j \sum_{y,y'} g(x_i, y) g(x_j, y') k_{t-1}(y, y') \\
& = \sum_{y,y'} \left( \sum_i c_i g(x_i, y) \right) \times \left( \sum_j c_j g(x_j, y') \right) k_{t-1}(y, y') \\
& = \sum_{y,y'} \gamma_y \gamma_{y'} k_{t-1}(y, y') \\
& = \left\| \sum_y \gamma_y \Phi_{t-1}(y) \right\|_H \geq 0. \square
\end{align*}
\]

\[ (6) \]

**Corollary 1** $K$ defined in (1) is also a Mercer kernel.

**Proof.** The proof is straightforward for the particular case $n = \infty$. As $k_t(x^p_i, x^q_j) = \langle \Phi_t(x^p_i), \Phi_t(x^q_j) \rangle$, we can write $K(S_p, S_q) = \sum_{i,j} \langle \Phi_t(x^p_i), \Phi_t(x^q_j) \rangle = \langle \sum_i \Phi_t(x^p_i), \sum_j \Phi_t(x^q_j) \rangle$ and this corresponds to a dot product in some Hilbert space. The proof can be found in [27, 14] for the general case of finite subsets of any length. $\square$

### 2.3. Algorithm and Setting

The factor $\beta$, in $k_t$, acts as a scale parameter and it is selected using
\[
\beta \leftarrow E_r \left[ E_{(X^r_1, X^r_2, d(X^r_1, X^r_2) \leq \epsilon)} [d(X^r_1, X^r_2)] \right] \tag{7}
\]

Here $E$ denotes the expectation and $X^r_1$ (also $X^r_2$) denotes a random variable standing for samples in $S_r$. The coefficient $\alpha$ controls the tradeoff between the alignment quality and the neighborhood criteria. It is selected by cross-validation and it should guarantee $k_t(x^p_i, x^q_j) \in [0, 1]$. If $A = \sup_{i,j} \sum_{k,\ell} g(x^p_i, x^p_k) \times g(x^q_j, x^q_{\ell})$, $\alpha$ should then be selected in $[0, \frac{\beta}{2A}]$ (see appendix).

Let $P_{i,j}$ denotes the $i^{\text{th}}$ row of the $j^{\text{th}}$ column of $P$. Consider $P$, $Q$ as the intrinsic adjacency matrices of $S_p$ and $S_q$ respectively defined as $P_{i,k} = g(x^p_i, x^p_k)$, $Q_{j,\ell} = g(x^q_j, x^q_{\ell})$. Let $U$ denotes the unit matrix and consider
\[
D_{i,j} = d(x^p_i, x^q_j), \quad \mu^{(t)}_{i,j} = k_t(x^p_i, x^q_j).
\]

Now, $\mu^{(t)}_{i,j}$ is iteratively found using Algorithm ("CDK") (see table 2) and converges to a fixed point (see appendix).

### 3. Peformance

#### 3.1. Databases

Experiments were conducted on the Swedish set (15 classes, 75 images per category) and a random subset of 75 images per category)

**Algorithm (CDK)**

**Initialization:**

Set $\beta$ using (7) and $\alpha \in [0, \frac{\beta}{2A}]$

Set $\mu^{(0)} \leftarrow k_0, t \leftarrow 0$

**Repeat** until $t \rightarrow T_{max}$ or $\|\mu^{(t)} - \mu^{(t-1)}\|_2 \rightarrow 0$

\[
\mu^{(t)} \leftarrow \exp \left( -D/\beta + \frac{2\alpha}{\beta} P \mu^{(t-1)} Q - U \right)
\]

<table>
<thead>
<tr>
<th>Table 2. The “CDK” kernel evaluation.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
MNIST digit database (10 classes, 200 images per category). Each class in Swedish (resp. MNIST) is split into 50 + 25 (resp. 100 + 100) contours for training and testing. Interest points were sampled from each contour in MNIST (resp. Swedish) and encoded using the 60 (resp. 16) coefficients of the shape-context descriptor [4].

3.2. Generalization and Comparison

We evaluate $k_t$, $t \in \mathbb{N}^+$ using two initializations: (i) linear $k_0(x, x') = k_t(x, x') = (x, x')$ (ii) and polynomial $k_0(x, x') = k_p(x, x') = (x, x')^2$. Our goal is to show the improvement brought when using $k_t$, $t \in \mathbb{N}^+$, so we tested it against the standard context-free kernels $k_l$ and $k_p$ (i.e., $k_t$, $t = 0$). For this purpose, we train a “one-versus-all” SVM classifier for each class in both MNIST and Swedish using the subset kernel $K(S_p, S_q) = \sum_{x \in S_p, x' \in S_q} k_t(x, x')$. The performance are measured, on different test sets, using $n$-fold cross-validation ($n = 5$).

We remind that $\beta$ is set using (7) as the left-hand side of $k_t$ corresponds to the Gaussian kernel with scale $\beta$. In practice, $\beta = 0.1$. The influence (and the performance) of the right-hand side of $k_t$ increases as $\alpha$ increases (see Figure 3), nevertheless and as shown in the appendix, the convergence of $k_t$ to a fixed point is guaranteed only if $\alpha \in [0, \frac{\beta}{2A}]$. Therefore, it is obvious that $\alpha$ should be set to $\frac{\beta}{2A}$ where $A = \sup_{i,j} \sum_{k,l} g(x_i^p, x_k^p) \times g(x_j^q, x_l^q)$ (in practice, $0 \leq g \leq 1$ and $A = 1$).

Tables (3, 4), show the 5-fold cross validation errors on MNIST and Swedish for different iterations; we clearly see the out-performance and the improvement of the “CDK” kernel ($k_t$, $t \in \mathbb{N}^+$) with respect to the context-free kernels used for initialization ($k_0 = k_l$ and $k_0 = k_p$.)

4. Remarks and Discussion

The adjacency matrix $P$, in $k_t$, provides the intrinsic properties and also characterizes the geometry of an object $S_p$. Let us remind $N_p(x_i^p) = \{x_k^p \in S_p : k \neq i, \|\psi_g(x_i^p) - \psi_g(x_k^p)\|_2 \leq \epsilon_p\}$ and $P_{i,j} = I_{(x_i^p \in N_p(x_j^p))}$. It is easy to see that $P$ is translation and rotation invariant and can also be made scale invariant when $\epsilon_p$ is adapted to the scale of $\psi_g(x_i^p)$. It follows that the right-hand side of our kernel is invariant to any 2D similarity transformation. Notice, also, that the left-hand side of $k_t$ involves similarity invariant descriptors $\psi_f(x_i^p), \psi_f(x_j^q)$ so $k_t$ (and $K$) is similarity invariant.

The out-performance of our kernel comes essentially from the inclusion of the context. This strongly improves the precision and helps including the intrinsic properties (geometry) of objects. Even though tested only on visual object recognition, our kernel can be extended to many other pattern analysis problems such as bioinformatics,
Finally, one current limitation of our kernel $k_t$ resides in its evaluation complexity. Assuming $k_{t-1}$ known, for a given pair $x_i^p$, $x_j^q$, this complexity is $O(\max(N^2, s))$, where $s$ is the dimension of $\psi_f(x_i^p)$ and $N = \max_{i,p} \#(\mathcal{N}_p(x_i^p))$. It is clear enough that when $N < \sqrt{s}$, the complexity of evaluating our kernel is strictly equivalent to that of usual kernels such as the linear. Nevertheless, the worst case ($N \gg \sqrt{s}$) makes our kernel evaluation prohibitive and this is mainly due to the right-hand side of $k_t(x_i^p, x_j^q)$ which requires the evaluation of kernel sums in a hypercube of dimension 4. A simple and straightforward generalization of the integral image (see for instance [31]) will reduce this complexity to $O(s)$.

5. Conclusion

We introduced in this paper a new type of kernels referred to as context-dependent. Its strength resides in the improvement of the alignments between interest points which is considered as a preliminary step in order to increase the robustness and the precision of object recognition.

We have also shown that our kernel is Mercer and applicable to SVM learning. The latter is achieved for shape recognition problems and has better performance than SVM with context-free kernels. Future work includes the comparison of our kernel with other context-free kernels and its application in scene and object understanding using more challenges and databases.

Appendix

Proposition 1 (cont.)

Proof. Let us consider

$$\mu = \{k(x_i^p, x_j^q) = \exp(-U_{ij}), i \in \mathcal{I}_p, j \in \mathcal{I}_q\},$$

and $U = \{U_{ij}\}$. Per definition the bounds on $\{k(x_i^p, x_j^q)\}$ are satisfied. Now, the objective function (3) can be rewritten as

$$\min_{U, \lambda} \sum_{i,j} \exp(-U_{ij}) - \beta \sum_{i,j} \exp(-U_{ij}) U_{ij}^2 - \alpha \sum_{i,j,k,l} \mathcal{V}(x_i^p, x_k^p, x_j^q, x_l^q) \exp(-U_{ij}) \exp(-U_{kl})$$

s.t.

$$\sum_{j} \exp(-U_{ij}) = 1, \ \forall i \in \mathcal{I}_p$$

By introducing Lagrange coefficients $\lambda$ for the equality constraint ($\sum_{i,j} \exp(-U_{ij}) = 1$), the above constrained minimization problem can now be rewritten:

$$\min_{U, \lambda} \mathcal{L}(U, \lambda) =$$

$$\min_{U, \lambda} \sum_{i,j} \exp(-U_{ij}) d(x_i^p, x_j^q) - \beta \sum_{i,j} \exp(-U_{ij}) U_{ij}^2 - \alpha \sum_{i,j,k,l} \mathcal{V}(x_i^p, x_k^p, x_j^q, x_l^q) \exp(-U_{ij}) \exp(-U_{kl})$$

$$\lambda \left( \sum_{i,j} \exp(-U_{ij}) - 1 \right)$$

The conditions for optimality, i.e., when the gradient with respect to $\{U_{ij}\}$ and $\lambda$ vanishes, lead to:

$$\frac{\partial \mathcal{L}}{\partial U_{ij}} = 0$$

$$-d(x_i^p, x_j^q) + \beta (U_{ij} - 1) - \lambda + 2\alpha \mathcal{V}(x_i^p, x_k^p, x_j^q, x_l^q) -$$

$$2\alpha \sum_{k,l} \mathcal{V}(x_i^p, x_k^p, x_j^q, x_l^q) \exp(-U_{kl}) = 0$$

so $k(x_i^p, x_j^q)$ is equal to

$$\exp(-U_{ij}) =$$

$$\exp \left( -\frac{d(x_i^p, x_j^q)}{\beta} \right) \exp(-1) \times$$

$$\exp \left( 2\alpha \sum_{k,l} \mathcal{V}(x_i^p, x_k^p, x_j^q, x_l^q) k(x_k^p, x_l^q) \right) \times$$

$$\exp \left( -\frac{2\alpha}{\beta} \mathcal{V}(x_i^p, x_k^p, x_j^q, x_l^q) \right)$$

It is easy to see that $\exp \left( -\frac{2\alpha}{\beta} \mathcal{V}(x_i^p, x_k^p, x_j^q, x_l^q) \right)$ is constant (i.e., independent from $i, j$). Now $\frac{\partial \mathcal{L}}{\partial \lambda} = 0$, implies $\exp \left( -\frac{\lambda}{\beta} \right) = \exp(1) / \sum_{i,j} Z_{ij}$ with $Z_{ij} = \exp \left( -\frac{d(x_i^p, x_j^q)}{\beta} + 2\alpha \sum_{k,l} \mathcal{V}(x_i^p, x_k^p, x_j^q, x_l^q) k(x_k^p, x_l^q) \right)$

By plugging the above two equations into (12), the global form of the solution $\{k_t(x_i^p, x_j^q)\}$ which minimizes the constrained minimization problem (3) is:

$$\frac{1}{Z_i} \times \exp \left( -\frac{d(x_i^p, x_j^q)}{\beta} \right) \times \exp \left( 2\alpha \sum_{k,l} \mathcal{V}(x_i^p, x_k^p, x_j^q, x_l^q) k_{i-1}(x_k^p, x_l^q) \right)$$

where $Z_i = \sum_{j} Z_{ij}^{(t)}$. The solution of (3) corresponds to a fixed-point which is found iteratively $\mathcal{I}$

Convergence

Let us assume $0 \leq g \leq 1$, and remind $\mu^{(t)} \in \mathbb{R}^{n \times m}$ be the vector of components $\mu_{ij}^{(t)} = k_t(x_i^p, x_j^q)$. Introduce the mapping $f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{n \times m}$ defined by its component

$$f_{i,j}(v) = \exp \left( -1 - \frac{d(x_i^p, x_j^q)}{\beta} + 2\alpha \sum_{k,l} g(x_i^p, x_k^p) g(x_j^q, x_l^q) v_{k,l} \right)$$

$$\mu^{(t)} = f(\mu^{(t)})$$

The sequence $\mu^{(t)}$ converges to a fixed-point $\mu^{(t)}$ which satisfies $\mu^{(t)} = f(\mu^{(t)})$. The convergence is now proved.
By construction of the kernel \( k_t \), we have \( \mu(\cdot) = f(\mu(\cdot - 1)) \). Let \( A \) and \( B \) satisfy

\[
\sup_{1 \leq i \leq n, 1 \leq j \leq m} \sum_{i,j} g(x_i, x_j) \leq A \quad (15)
\]

\[
\sum_{i,j} \exp \left( -1 - \frac{d(x_i, x_j)^2}{\beta} \right) \leq B \quad (16)
\]

Consider \( L = \frac{2\alpha}{\beta} \exp \left( \frac{2\alpha}{\beta} \right) \) and let \( B = \{ v \in \mathbb{R}^{n \times m}: \forall 1 \leq i \leq n, 1 \leq j \leq m, |v_{i,j}| \leq 1 \} \) be the \( \| \cdot \|_\infty \)-ball of radius 1. Finally, let \( \| \cdot \|_1 \) denote the 1-norm on \( \mathbb{R}^{n \times m} : \| u \|_1 = \sum_{1 \leq i \leq n, 1 \leq j \leq m} |u_{i,j}| \).

**Proposition 4** \( \| \mu(\cdot) \|_\infty \leq 1 \) and \( 2\alpha A \leq \beta \), then we have \( f(B) \subseteq B \), and on \( B \), \( f = L\)-Lipschitz for the norm \( \| \cdot \|_1 \).

In particular, if \( L < 1 \), then there exists a unique \( \bar{v} \in B \) such that \( f(\bar{v}) = \bar{v} \), and the sequence \( \mu(t) \) satisfies

\[
\| \mu(t) - \bar{v} \|_1 \leq L^t \| \mu(0) - \bar{v} \|_1 \quad \text{as } t \to \infty. \quad (17)
\]

**Proof.** The first assertion is proved by induction by checking that for \( \| v \|_\infty \leq 1 \), we have

\[
f_{i,j}(v) \leq \exp \left( -1 + \frac{2\alpha}{\beta} \sum_{k,\ell} g(x_i, x_j) \| g(x_i, x_j) \|_{v_{k,\ell}} \right) \quad (18)
\]

\[
\leq \exp \left( -1 + \frac{2\alpha}{\beta} A \right) \leq 1. \quad (19)
\]

For the second assertion, note that for any \( v \in B \), we have \( \left| \frac{\partial f_{i,j}}{\partial \bar{v}_{i,j}}(v) \right| \leq \frac{2\alpha}{\beta} \) for any \( v, v' \in B \), we have

\[
\| f(v) - f(v') \|_1 = \sum_{i,j} \left| f_{i,j}(v) - f_{i,j}(v') \right| = (**)
\]

\[
\leq \sum_{i,j} \exp \left( -1 - \frac{d(x_i, x_j)^2}{\beta} \right) \frac{2\alpha}{\beta} \exp \left( \frac{2\alpha}{\beta} A \right) \quad (20)
\]

\[
\times \left( \sum_{k,\ell} g(x_i, x_j) \| g(x_i, x_j) \|_{v_{k,\ell}} \right) - \sum_{k,\ell} g(x_i, x_j) \| g(x_i, x_j) \|_{v_{k,\ell}} \right) \quad (21)
\]

\[
\leq \sum_{i,j} \exp \left( -1 - \frac{d(x_i, x_j)^2}{\beta} \right) \frac{2\alpha}{\beta} \exp \left( \frac{2\alpha}{\beta} A \right) \| v - v' \|_2^2 \quad (22)
\]

\[
\leq L \| v - v' \|_1. \quad (24)
\]

which proves the second assertion. The last assertion directly comes from the fixed-point theorem \( \square \).

**References**


