Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Segmentation by transduction

Abstract : This paper addresses the problem of segmenting an image into regions consistent with user-supplied seeds (e.g., a sparse set of broad brush strokes). We view this task as a statistical transductive inference, in which some pixels are already associated with given zones and the remaining ones need to be classified. Our method relies on the Laplacian graph regularizer, a powerful manifold learning tool that is based on the estimation of variants of the Laplace-Beltrami operator and is tightly related to diffusion processes. Segmentation is modeled as the task of finding matting coefficients for unclassified pixels given known matting coefficients for seed pixels. The proposed algorithm essentially relies on a high margin assumption in the space of pixel characteristics. It is simple, fast, and accurate, as demonstrated by qualitative results on natural images and a quantitative comparison with state-of-the-art methods on the Microsoft GrabCut segmentation database.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger
Contributeur : Pascal Monasse Connectez-vous pour contacter le contributeur
Soumis le : mardi 18 juin 2013 - 14:43:28
Dernière modification le : samedi 15 janvier 2022 - 03:58:43
Archivage à long terme le : : jeudi 19 septembre 2013 - 04:08:12


Fichiers produits par l'(les) auteur(s)



Olivier Duchenne, Jean-Yves Audibert, Renaud Keriven, Jean Ponce, Florent Ségonne. Segmentation by transduction. CVPR 2008 - IEEE Conference on Computer Vision and Pattern Recognition, Jun 2008, Anchorage, United States. pp.1-8, ⟨10.1109/CVPR.2008.4587419⟩. ⟨hal-00834989⟩



Les métriques sont temporairement indisponibles