A. Asuncion and D. Newman, UCI machine learning repository, 2007.

J. Y. Audibert, R. Munos, and C. Szepesvári, Tuning Bandit Algorithms in Stochastic Environments, ALT, vol.25, issue.2-3, pp.150-165, 2007.
DOI : 10.1093/biomet/25.3-4.285

URL : https://hal.archives-ouvertes.fr/inria-00203487

J. Audibert, R. Munos, and C. Szepesvári, Variance estimates and exploration function in multi-armed bandit Certis -Ecole des Ponts, 2007.

J. K. Bradley and R. Schapire, Filterboost: Regression and classification on large datasets, pp.20-185, 2008.

P. Dagum, R. Karp, M. Luby, and S. Ross, An Optimal Algorithm for Monte Carlo Estimation, SIAM Journal on Computing, vol.29, issue.5, pp.1484-1496, 2000.
DOI : 10.1137/S0097539797315306

C. Domingo and O. Watanabe, MadaBoost: A modification of AdaBoost, pp.180-189, 2000.

C. Domingo and O. Watanabe, Scaling Up a Boosting-Based Learner via Adaptive Sampling, Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.317-328, 2000.
DOI : 10.1007/3-540-45571-X_37

P. Domingos and G. Hulten, A general method for scaling up machine learning algorithms and its application to clustering, ICML, pp.106-113, 2001.

E. Even-dar, S. Mannor, and Y. Mansour, PAC Bounds for Multi-armed Bandit and Markov Decision Processes, pp.2-255, 2002.
DOI : 10.1007/3-540-45435-7_18

W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables, Journal of the American Statistical Association, vol.1, issue.301, pp.13-30, 1963.
DOI : 10.1214/aoms/1177730491

O. Maron and A. Moore, Hoeffding races: Accelerating model selection search for classification and function approximation, pp.59-66, 1993.

O. Maron and A. W. Moore, The Racing Algorithm: Model Selection for Lazy Learners, Artificial Intelligence Review, vol.11, pp.193-225, 1997.
DOI : 10.1007/978-94-017-2053-3_8

L. E. Ortiz and L. P. Kaelbling, Sampling methods for action selection in influence diagrams, AAAI/IAAI, pp.378-385, 2000.