Pre-Image as Karcher Mean using Diffusion Maps: Application to shape and image denoising - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2009

Pre-Image as Karcher Mean using Diffusion Maps: Application to shape and image denoising

(1, 2, 3) , (1, 2, 3) , (1, 2, 3)
1
2
3

Résumé

In the context of shape and image modeling by manifold learning, we focus on the problem of denoising. A set of shapes or images being known through given samples, we capture its structure thanks to the Diffusion Maps method. Denoising a new element classically boils down to the key-problem of pre-image determination, i.e.recovering a point, given its embedding. We propose to model the underlying manifold as the set of Karcher means of close sample points. This non-linear interpolation is particularly well-adapted to the case of shapes and images. We define the pre-image as such an interpolation having the targeted embedding. Results on synthetic 2D shapes and on real 2D images and 3D shapes are presented and demonstrate the superiority of our pre-image method compared to several state-of-the-art techniques in shape and image denoising based on statistical learning techniques.
Fichier principal
Vignette du fichier
ssvm09.pdf (1.07 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00834952 , version 1 (18-06-2013)

Identifiants

  • HAL Id : hal-00834952 , version 1

Citer

Nicolas Thorstensen, Florent Ségonne, Renaud Keriven. Pre-Image as Karcher Mean using Diffusion Maps: Application to shape and image denoising. Scale Space and Variational Methods in Computer Vision, Jun 2009, Voss, Norway. pp.721-732. ⟨hal-00834952⟩
159 Consultations
305 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More