F. Abergel and J. L. Bona, A mathematical theory for viscous, free-surface flows over a perturbed plane, Archive for Rational Mechanics and Analysis, vol.179, issue.1, pp.71-93, 1992.
DOI : 10.1007/BF00375692

Y. Achdou, O. Pironneau, and F. Valentin, Effective Boundary Conditions for Laminar Flows over Periodic Rough Boundaries, Journal of Computational Physics, vol.147, issue.1, pp.187-218, 1998.
DOI : 10.1006/jcph.1998.6088

G. Allain, Small-time existence for the Navier-Stokes equations with a free surface and surface tension, Free boundary problems: application and theory, Res. Notes in Math, vol.12188, pp.355-364, 1984.

C. Ancey, Plasticity and geophysical flows: A review, Viscoplastic fluids: From theory to application, pp.4-35, 2007.
DOI : 10.1016/j.jnnfm.2006.05.005

C. Ancey and S. Cochard, The dam-break problem for Herschel???Bulkley viscoplastic fluids down steep flumes, Journal of Non-Newtonian Fluid Mechanics, vol.158, issue.1-3, pp.18-35, 2009.
DOI : 10.1016/j.jnnfm.2008.08.008

H. A. Barnes, J. F. Hutton, and K. F. Walters, An introduction to rheology, 1989.

A. Basson, D. Gérard, and . Varet, Wall laws for fluid flows at a boundary with random roughness, Communications on Pure and Applied Mathematics, vol.98, issue.7, pp.941-987, 2008.
DOI : 10.1002/cpa.20237

URL : https://hal.archives-ouvertes.fr/hal-00083222

P. Bates, M. Stewart, G. Siggers, and C. Smith, Hervouet and R.Sellin Internal and external validation of a two-dimensional finite element code for river flood simulations Proceedings of the Institution of Civil Engineers: Water Maritime and Energy, pp.130-127, 1998.

G. Bayada, L. Chupin, and B. Grec, Viscoelastic fluids in a thin domain, Quarterly of Applied Mathematics, vol.65, issue.4, pp.185-211, 2009.
DOI : 10.1090/S0033-569X-07-01062-X

URL : https://hal.archives-ouvertes.fr/hal-00016699

G. Bayada, L. Chupin, and S. Martin, Viscoelastic fluids in a thin domain, Quarterly of Applied Mathematics, vol.65, issue.4, pp.625-652, 2007.
DOI : 10.1090/S0033-569X-07-01062-X

URL : https://hal.archives-ouvertes.fr/hal-00016699

G. Bayada and M. Chambat, The transition between the Stokes equations and the Reynolds equation: A mathematical proof, Applied Mathematics & Optimization, vol.135, issue.4, pp.73-93, 1986.
DOI : 10.1007/BF01442229

J. , T. Beale, and T. Nishida, Large-time behavior of viscous surface waves, Recent topics in nonlinear PDE, II (Sendai, North- Holland Math. Stud. Lect. Notes Numer. Appl. Anal, vol.12888, issue.8, pp.1-14, 1984.

D. J. Benney, Long Waves on Liquid Films, Journal of Mathematics and Physics, vol.5, issue.1-4, pp.50-155, 1966.
DOI : 10.1002/sapm1966451150

P. Bonneton and D. Lannes, Derivation of asymptotic two-dimensional time-dependent equations or surface water wave propagation, Physics of Fluids, issue.21, p.16601, 2009.

F. Bouchut and S. Boyaval, A NEW MODEL FOR SHALLOW VISCOELASTIC FLUIDS, Mathematical Models and Methods in Applied Sciences, vol.23, issue.08, pp.1479-1526, 2013.
DOI : 10.1142/S0218202513500140

URL : https://hal.archives-ouvertes.fr/hal-00628651

F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography, Communications in Mathematical Sciences, vol.2, issue.3, pp.359-389, 2004.
DOI : 10.4310/CMS.2004.v2.n3.a2

S. Boyaval, C. L. Bris, Y. Tonylelì-evre, C. Maday, N. Nguyen et al., Reduced Basis techniques for stochastic problems, Archives of Computational Methods in Engineering, pp.17-435, 2010.

S. Boyaval, C. Tonylelì, and . Mangoubi, Free-energy-dissipative schemes for the Oldroyd-B model, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.3, pp.523-561, 2009.
DOI : 10.1051/m2an/2009008

URL : https://hal.archives-ouvertes.fr/inria-00204620

D. Bresch, E. D. Fernàndez-nieto, I. R. Ionescu, and P. Vigneaux, Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches, Advances in Mathematical Fluid Mechanics, pp.57-89, 2010.
DOI : 10.1007/978-3-0346-0152-8_4

URL : https://hal.archives-ouvertes.fr/hal-00327369

D. Bresch and P. Noble, Mathematical Justification of a Shallow Water Model, Methods and Applications of Analysis, vol.14, issue.2, pp.87-118, 2007.
DOI : 10.4310/MAA.2007.v14.n2.a1

URL : https://hal.archives-ouvertes.fr/hal-00385922

A. Caboussat, S. Boyaval, and A. , On the modeling and simulation of non-hydrostatic dam break flows, Computing and Visualization in Science, vol.128, issue.5, pp.401-417, 2013.
DOI : 10.1007/s00791-013-0190-7

URL : https://hal.archives-ouvertes.fr/hal-00808087

A. Castro and D. Lannes, Fully nonlinear long-wave models in the presence of??vorticity, Journal of Fluid Mechanics, vol.77, pp.642-675, 2014.
DOI : 10.1029/2002JC001308

H. Chanson, The Hydraulics of Open Channel Flow: An Introduction, 2004.

L. Chupin, The FENE viscoelastic model and thin film flows, C. R. Math. Acad. Sci. Paris, vol.347, pp.17-18, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00270113

M. Cruchaga, L. Battaglia, M. Storti, and J. D. , Elía Numerical Modeling and Experimental Validation of Free Surface Flow Problems, Archives of Computational Methods in Engineering, vol.14, pp.1-31, 2014.

R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films, Reviews of Modern Physics, vol.81, issue.3, pp.1131-1198, 2009.
DOI : 10.1103/RevModPhys.81.1131

E. D. Fernández-nieto, P. Noble, and J. Vila, Shallow Water equations for Non-Newtonian fluids, Journal of Non-Newtonian Fluid Mechanics, vol.165, issue.13-14, pp.13-14, 2010.
DOI : 10.1016/j.jnnfm.2010.03.008

D. Gérard and -. Varet, The Navier Wall Law at a Boundary with Random Roughness, Communications in Mathematical Physics, vol.61, issue.9, pp.81-110, 2009.
DOI : 10.1007/s00220-008-0597-z

J. Gerbeau and B. Perthame, Derivation of viscous Saint- Venant system for laminar shallow water ; numerical validation, Discrete and continuous dynamical system, Series B, vol.1, issue.1, pp.89-102, 2001.

J. Hervouet, Hydrodynamics of free surface flows. Modelling with the finite element method, 2007.

P. Jop, Y. Forterre, and O. Pouliquen, A constitutive law for dense granular flows, Nature, vol.94, issue.7094, pp.727-730, 2006.
DOI : 10.1038/nature04801

URL : https://hal.archives-ouvertes.fr/hal-01432178

P. Noble, J. Vila, M. Boutounet, and L. Chupin, Shallow water equations for newtonian fluids over arbitrary topographies, Comm Math Sci, vol.6, issue.1, pp.29-55, 2008.

F. Marche, Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects, European Journal of Mechanics - B/Fluids, vol.26, issue.1, pp.49-63, 2007.
DOI : 10.1016/j.euromechflu.2006.04.007

V. Maronnier, M. Picasso, and J. Rappaz, Numerical simulation of three-dimensional free surface flows, International Journal for Numerical Methods in Fluids, vol.244, issue.7, pp.697-716, 2003.
DOI : 10.1002/fld.532

J. D. Martin, W. J. Moyce, and I. Part, Part IV. An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.244, issue.882, pp.244-312, 1952.
DOI : 10.1098/rsta.1952.0006

URL : https://hal.archives-ouvertes.fr/hal-00518739

N. Masmoudi, Global existence of weak solutions to macroscopic models of polymeric flows, Journal de Math??matiques Pures et Appliqu??es, vol.96, issue.5, pp.502-520, 2011.
DOI : 10.1016/j.matpur.2011.04.008

S. Kalliadasis, C. Bielarz, and G. M. Homsy, Steady free-surface thin film flows over topography, Physics of Fluids, vol.12, issue.8, pp.1889-1898, 2000.
DOI : 10.1063/1.870438

. Hervé-le-meur, Well-Posedness of Surface Wave Equations Above a Viscoelastic Fluid, Journal of Mathematical Fluid Mechanics, vol.32, issue.4, pp.481-514, 2011.
DOI : 10.1007/s00021-010-0029-7

H. B. Mohamed and B. D. Reddy, Some properties of models for generalized Oldroyd-B fluids, International Journal of Engineering Science, vol.48, issue.11, pp.1470-1480, 2010.
DOI : 10.1016/j.ijengsci.2010.09.014

G. Narbona-reina and D. Bresch, On a shallow water model for nonnewtonian fluids, Numerical Mathematics and Advanced Applications, pp.693-701, 2009.

A. Oron, S. H. Davis, and S. G. Bankoff, Long-scale evolution of thin liquid films, Reviews of Modern Physics, vol.69, issue.3, pp.931-980, 1997.
DOI : 10.1103/RevModPhys.69.931

M. Renardy, Mathematical analysis of viscoelastic flows, CBMS-NSF Conference Series in Applied Mathematics, 2000.

M. Renardy, The mathematics of myth: Yield stress behavior as a limit of non-monotone constitutive theories, Journal of Non-Newtonian Fluid Mechanics, vol.165, issue.9-10, pp.519-526, 2010.
DOI : 10.1016/j.jnnfm.2010.02.010

C. Ruyer-quil and P. Manneville, Improved modeling of flows down inclined planes, The European Physical Journal B, vol.15, issue.2, pp.357-369, 2000.
DOI : 10.1007/s100510051137

URL : https://hal.archives-ouvertes.fr/hal-01025361

A. J. De-saint-venant, Théorie du mouvement non-permanent des eaux, avec application aux crues desrivì eres etàetà l'introduction des marées dans leur lit, C. R. Acad. Sc. Paris, pp.73-147, 1871.

P. Saramito, A new elastoviscoplastic model based on the Herschel-Bulkley viscoplasticity, J. Non Newtonian Fluid Mech, vol.158, pp.1-3, 2009.

Y. Shibata and S. Shimizu, On a free boundary problem for the Navier-Stokes equations, Differential Integral Equations, vol.20, issue.3, pp.241-276, 2007.

J. J. Stoker, Water Waves: The Mathematical Theory with Applications, 1957.
DOI : 10.1002/9781118033159

P. Viollet, J. Chabard, P. Esposito, and D. Laurence, Mcanique des fluides applique: coulements incompressibles dans les circuits, canaux et rivires, autour des structures et dans l'environnement, 1998.

P. Wapperom and M. A. Hulsen, Thermodynamics of viscoelastic fluids: The temperature equation, Journal of Rheology, vol.42, issue.5, pp.999-1019, 1998.
DOI : 10.1122/1.550922