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8050), CNRS, UPEMLV, UPEC, F-77454, Marne-la-Vallée, France
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Abstract

We propose a unified framework to derive thin-layer reduced models for some
shallow free-surface flows driven by gravity. It applies to incompressible homo-
geneous fluids whose momentum evolves according to Navier-Stokes equations,
with stress satisfying a rheology of viscous type (i.e. the standard Newtonian
law with a constant viscosity, but also non-Newtonian laws generalized to purely
viscous fluids and to viscoelastic fluids as well). For a given rheology, we derive
various thin-layer reduced models for flows on a rugous topography slowly vary-
ing around an inclined plane. This is achieved thanks to a coherent simplifica-
tion procedure, which is formal but based on a mathematically clear consistency
requirement between scaling assumptions and the approximation errors in the
differential equations. The various thin-layer reduced models are obtained de-
pending on flow regime assumptions (either fast/inertial or slow/viscous). As far
as we know, it is the first time that the various thin-layer reduced models investi-
gated here are derived within the same mathematical framework. Furthermore,
we obtain new reduced models in the case of viscoelastic non-Newtonian fluids,
which extends [Bouchut & Boyaval, M3AS (23) 8, 2013].

Keywords: thin-layer reduced models ; shallow free-surface gravity flows ;
Newtonian & non-Newtonian complex fluids ; viscoelastic fluids

1. Introduction

The flow models built with Navier-Stokes equations for viscous fluids have
been simplified in various ways for a long time. This has resulted in a large
number of reduced models, in particular, numerous thin-layer models for shallow
free-surface flows often obtained by a formal asymptotic analysis [51, 35, 40, 33].

Initially, reduced models were looked after because they were more amenable
to analytical computations than full models. For instance, the Stoker and Rit-
ter solutions to the inviscid Saint-Venant (i.e. shallow-water) equations have
allowed one to model dam breaks in a simple way, with analytical formulas.
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Nowadays, computer simulations often yield good approximations to full mod-
els. But good simulations of complex full models are expensive (time-consuming
at least), and typically less easily interpreted from the physical viewpoint. In
the case physical parameters of the model have to be explored, reduced versions
of the model may thus still be preferred to full models, for instance to discrim-
inate against various possible rheologies by comparison with experiments, see
e.g. [4, 5]. Moreover, in the case where many values of the physical parameters
have to be explored, reduced models (computationally cheaper than full models)
often remain the single numerical option (even for simple toy-models, compu-
tational reductions can prove crucial, see e.g. the case of stochastic parameters
in [21]). Reduced models thus remain very useful. But it is also desirable to
compare them with full models, or at least one another (in the case of varying
physical parameters). Now, rigorous error bounds between various (full or re-
duced) models are available in simple cases only, where the models remain of the
same kind (see e.g. [21]). The case of free-surface shallow flow models for fluids
driven by gravity is particularly striking, since various thin-layer reduced mod-
els have been proposed (see the numerous references later in this work), which
are of different mathematical type, depending on various assumptions about
the flow regime considered during their derivation (i.e. depending on solution
properties that are not obviously connected to data, and assumed instead).

The case of free-surface flow models for perfect fluids driven by gravity (non-
necessarily-shallow flows of inviscid fluids) has been treated recently: a unifying
approach to irrotational water-wave models could be constructed recently [17]
and extended to new reduced models with vorticity [26]. For shallow free-surface
flows (of non-necessarily perfect fluids), a generic procedure has also been used
recently to derive thin-layer models with various rheologies [51, 33], but it seems
to hold only for the flow regimes that we later term “slow”, and it has not been
used for all the cases treated in the present work (viscoelastic fluids for instance).

Our primary goal here is to establish a mathematical framework where var-
ious thin-layer reduced models obtained in various flow regimes (slow or fast),
given a fixed possibly viscous rheology, can be connected one another. Moreover,
we treat various rheologies (Newtonian and non-Newtonian) of viscous (also vis-
coelastic) fluids in the various regimes. We believe that we have thereby unified,
for the first time, the derivation of many various thin-layer reduced models for
shallow free-surface gravity flows, for Newtonian and non-Newtonian (viscous
or viscoelastic) fluids in slow and fast regimes.

Our mathematical simplification procedure is formal. It cannot certify rigor-
ously that a solution to the reduced model is a good approximation of a solution
to the full model. But it is based on an intuitive coherence property with a clear
mathematical formulation: the consistency between scaling assumptions and ap-
proximation errors in the equations. Moreover, given one rheology, we invoke
successive assumptions about the flow regime until the simplification procedure
delivers a closed reduced model that is coherent with the original full model. In
a given flow regime, for one given rheology, our procedure is thus univoque.

The simplification procedure is inspired by [35, 40] where the viscous shal-
low water equations are derived from the Navier-Stokes equations for Newtonian
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(purely viscous) fluids (see Section 3). It aims at building a consistent approx-
imation to a family of solutions to the initial full model, when the family of
solutions defines an adequate asymptotic regime for shallow free-surface flows
of incompressible viscous fluids driven by gravity on a rugous topography. Con-
sistency is required asymptotically with respect to a nondimensional parameter
ε > 0 parameterizing the solutions.

The asymptotic regime is defined such that only long free-surface waves are
captured when ε → 0 (i.e. only piecewise constants). The asymptotic regime
in turn constrains the topographies that one can consider at the bottom of
an incompressible flow of a homogeneous fluid. Precisely, in the present work,
we consider only topographies defined by slow variations around a flat plane
inclined by a constant angle θ with respect to the gravity field, thus asymptot-
ically long waves too. Extensions with asymptotically long variations of θ seem
possible [19] but are not considered here, for the sake of simplicity.

Invoking the Navier-Stokes momentum balance equations (as opposed to Eu-
ler equations), with a viscous dissipative term in the bulk along with friction
boundary conditions of Navier-type on the rugous bottom of the flow, is crucial
to the reduction procedure developped here (compare with [18, 20]). This mod-
elling choice motivates the assumption (H4) : ∂zuH = O(1) on the shear rate, a
key step to derive coherent reduced models (see e.g. (33) below). It is of course
the responsibility of modellers to check if it makes sense for application to a real
shallow flow (see Remark 1). In any case, the asymptotics ε→ 0 is an idealiza-
tion. In practice, one should ask if solutions of the reduced model are close to
solutions of the initial model, i.e. if they can be corrected for ε > 0 small and
give physically-interesting answers: this justifies our coherence requirement.

Finally, one obtains here a synthetic view of various existing simplifications
of the Navier-Stokes equations, for various rheologies and various flow regimes.
Moreover, new reduced models for fluids with complex rheologies are derived.

• For viscous Newtonian fluids (modelled by the standard Navier-Stokes
equations), we obtain either viscous shallow water equations in fast (in-
ertial) flow regimes (as e.g. in [35, 40]) or lubrication equations in slow
(viscous) flow regimes (as e.g. in [48, 51, 31]), see Section 4.

• For viscous non-Newtonian fluids (nonlinear power-law models), we ob-
tain either a nonlinear version of the shallow water equations in fast flow
regimes that is apparently new, or nonlinear lubrication equations in slow
flow regimes (see [33] and references therein), see Section 5.

• For viscoelastic non-Newtonian fluids, we obtain either shallow water
equations with additional stress terms which extends the recent work [18]
in fast flow regimes, or new lubrication equations in slow flow regimes
(different than those in [28, 29]), see Section 6.

A few remarks are also in order.

• The case of perfect fluids (no internal stresses) is singular. We recover
it here as the inviscid limit of viscous models, provided friction is small
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enough at the rugous bottom boundary, and it yields the same reduced
model whatever the explicit formulation of the viscous terms. One ob-
tains the thin-layer model of Saint-Venant [52] widely used in hydraulics,
also known as the nonlinear shallow-water equations. A dissipative term
associated with the Navier friction boundary condition remains. It could
have been derived more straightforwardly without viscosity, like in [20] for
viscoelastic fluids with zero retardation time, but then also less naturally
(conditions tangent to the boundary are not required for perfect fluids).

• The case of viscoplastic Non-Newtonian fluids (i.e. Bingham-type fluids)
occurs as a singular limit of the nonlinear power-law models. This case is
very interesting from the modelling viewpoint (some fluids are believed to
possess a yield-stress, which suits well for modelling fluid-solid transitions
like e.g. in avalanches). But it is also difficult from the mathematical
viewpoint (the model is undetermined below the yield-stress) as well as
from the physical viewpoint (the yield-stress concept is still debated [50]).

• In the case of viscoelastic fluids, we improve here the model derived in [18].
Note that the constitutive equations that we use here are simple and alike
in [18]. (They are linear equations in the conformation tensor state vari-
able, physically-consistent from the frame-invariance and from the molecu-
lar theories viewpoint.) However, here, we additionally take into account:
friction at the bottom, an inclination between the constant gravity field
and the main direction of the flow, surface tension, two-dimensional ef-
fects and a purely Newtonian additional viscosity (equivalently, a non-zero
retardation time, from the viscoelastic rheology viewpoint).

For a physically-inclined review of thin-layer models in many possible flow
regimes, we recommend [31], and the older one [48] with a focus on stability.

2. Mathematical setting of the problem

We endow the space R3 with a Galilean reference frame using cartesian co-
ordinates (ex, ey, ez). We denote by ax (respectively ay, az) the component in
direction ex (resp. ey, ez) of a vector (that is a rank-1 tensor) a, by axx, axz, . . .
the components of higher-rank tensors, by aH the vector of “horizontal” com-
ponents (ax, ay), by (aH)⊥ = (−ay, ax) an orthogonal vector, by ∇Ha the
horizontal gradient (∂xa, ∂ya) of a smooth function a : (x, y)→ a(x, y), and by
Dta the material time-derivative ∂ta + (u · ∇)a. We use the Frobenius norm
|a| = tr(aTa)1/2 for tensors.

We consider gravity flows of incompressible homogeneous fluids, which are
governed by Navier-Stokes equations (momentum balance and mass continuity){

Dtu = div(S) + f in D(t) ,

divu = 0 in D(t) ,
(1)
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on a space scale where the external force is uniform with magnitude given by
the gravity constant |f | = g, with the velocity field u as unknown variable, as
well as Cauchy stress tensor S = −pI + T (where T is the deviatoric part of S
when tr(T ) = 0, and I is the identity tensor).

We consider flows where the fluid is contained for all times t ≥ 0 within

D(t) = {x = (x, y, z) , (x, y) ∈ Ω0 , 0 < z − b(x, y) < h(t, x, y)} , (2)

between a free surface z = b(x, y) + h(t, x, y) and a topography z = b(x, y).
More specifically, we are interested in shallow flows. The two manifolds are

thus assumed close to one-another in the “vertical” direction ez whatever the
“horizontal” position (x, y) ∈ Ω0, in comparison with a characateristic horizon-
tal lengthscale L. A priori, they never touch (though one usually next extends
the model to cases with vacuum). To formulate this assumption, we write

h ∼ ε

using a nondimensional small parameter ε > 0. It means that in the following,
we consider a family of solutions to (1–2) parametrized by ε such that h/(εL) is
bounded above and below uniformly in (x, y) ∈ Ω0, t ≥ 0 as ε→ 0. In the sequel,
assumption a = O(ε) for a variable a simply means that the nondimensional
quantity a/(εA) (where A is the natural characteristic size of a as a function of
the space scale L and of a time scale T , see below) is bounded above, and may
in fact decay faster than ε to zero as ε → 0. We shall also use componentwise
notation, e.g. a1, a2 = O(εα1 , εα2) for a1 = O(εα1) and a2 = O(εα2).

The goal of this work is to derive a closed system of equations that is satisfied
approximately by a limit of the family defined above as ε → 0. Hopefully,
these equations define an approximate desciption of the flow that is a simpler
mathematical model than (1–2) and that is useful in some physically-meaningful
flow regimes at least (i.e. that is coherent under compatible assumptions).

We show next how to univoquely define such a “reduced” system of equa-
tions with a depth-averaging procedure inspired by [35]. We require that the
new equations are obtained as an asymptotic limit of the initial full system
of equations (1–2) using scaling assumptions. We also require that equations
of the reduced system are consistently satisfied by solutions of the initial full
system using the same scaling assumptions. (The error in the initial system
approximated by solutions to the reduced one should scale similarly in ε as the
approximation error of the reduced system by solutions to the full initial one.)

Quite importantly, we invoke the scaling assumption ∇H(b + h) = O(ε)
almost everywhere when h ∼ ε → 0, which means that the reduced models
derived in this work captures only long-wave oscillations of the free surface.

Before turning to our reduction procedure under simplifying assumptions, let
us note that the system of equations (1–2) is not closed yet at this stage. One still
need to specify the rheology of the fluid (that is, invoke other equations linking
S with u) as well as boundary conditions. Now, we recall that it is exactly the
goal of this work to derive approximations of (1–2) for various rheologies and
flow regimes, using the same procedure, in a single framework. We thus specify
later the rheology. We have in mind rheological models for:
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• viscous Newtonian fluids (like water), such that the deviatoric stress tensor
is a linear function of the rate-of-strain tensor D(u) = 1

2 (∇u + ∇uT ),
hence T = 2ηsD(u), with ηs a constant kinematic viscosity,

• viscous non-Newtonian fluids, what most complex fluids are in a small
range of shear rates at least, such that the mechanical behaviour is still
described with a purely viscous deviatoric stress tensor, but using a nonlin-
ear power-law T = 2ηs|D(u)|n−1D(u) as viscosity (termed pseudoplastic
or shear-thinning if 0 < n < 1, dilatant or shear-thickening if n > 1),

• viscoelastic non-Newtonian fluids (like polymer solutions), such that T =
2ηsD(u)+τ invokes a non-Newtonian extra-stress τ not necessarily devi-
atoric and defined through supplementary (integro-)differential equations.

Note that there is a huge amount of non-Newtonian models in the literature [6].

• Interestingly, the nonlinear power-law models for viscous non-Newtonian
fluids coincide with the standard Navier-Stokes equations for viscous New-
tonian fluids when n = 1 and with a Bingham model for viscoplastic fluids

in the singular limit n
>−→ 0. Although stress is undetermined in Bingham

model when |D(u)| = 0⇔ |T | < 2ηs, Bingham model can be understood
as the limit of a regularized model [32] and remains the least disputed
basic model for the still much debated viscoplastic non-Newtonian fluids.

• Viscoelastic fluid models have been used successfully for e.g. polymer
solutions, see [15, 16]. We shall content here with simple prototypical
models among numerous possibilities (see Section 6).

We believe that the various prototypical rheologies mentionned above are
representative enough in order to define a unified framework for the derivation
of shallow flow models.

We also believe that the following boundary conditions (BCs) shall allow us
to investigate enough flow regimes (in long-wave asymptotics). Let us denote by
n : (x, y) ∈ Ω0 → n(x, y) the unit vector of the direction normal to the bottom

n =

(
−∇Hb

1

)
/
√

1 + |∇Hb|2 (3)

(inward the fluid) and by (Nt,N) a normal at free surface (outward the fluid)

Nt = −∂t(b+ h)/
√

1 + |∇H(b+ h)|2 N =

(
−∇H(b+ h)

1

)
/
√

1 + |∇H(b+ h)|2 .

(4)
An orthonormal frame is defined locally everywhere on the bottom using as
basis in tangent planes

t1 =

(
(∇Hb)⊥

0

)
/|∇Hb| t2 =

(
−∇Hb
−|∇Hb|2

)
/(|∇Hb|

√
1 + |∇Hb|2) (5)
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when |∇Hb| 6= 0, otherwise t1 = (0,−1, 0)T , t2 = (−1, 0, 0)T . We require, at
the bottom of the fluid, no penetration in the normal direction

u · n = 0 , for z = b(x, y), (x, y) ∈ Ω0 , (6)

and a Navier friction dynamic condition with coefficient k in the tangent plane

Sn ∧ n = ku ∧ n , for z = b(x, y), (x, y) ∈ Ω0 ; (7)

at the free surface, the usual kinematic condition Nt +N · u = 0, i.e. for t ≥ 0

−∂t(b+h)−ux∂x(b+h)−uy∂y(b+h)+uz = 0 , for z = (b+h)(t, x, y), (x, y) ∈ Ω0 ,
(8)

and surface tension with coefficient γ as dynamic condition

SN = γκN , for z = (b+ h)(t, x, y), (x, y) ∈ Ω0, (9)

where κ(t, x, y) = −divN(t, x, y) is the (local) mean curvature at z = b(x, y) +
h(t, x, y), (x, y) ∈ Ω0; and finally periodic boundary conditions (for example) at
the lateral boundary {x = (x, y, z) , (x, y) ∈ ∂Ω0, 0 ≤ z − b(x, y) ≤ h(t, x, y))}.

Note that the question of existence (and uniqueness) of solutions to the
Boundary Value Problem (BVP) above is difficult. It is precisely answered only
in a few specific situations, for instance see [1, 3, 13, 54] for Newtonian viscous
fluids and [45] for non-Newtonian fluids. In this work, we assume that specifying
the BCs as above (plus initial conditions) allows one to precisely determine one
solution (at least) to the bulk equations, and to scale it as a function of ε→ 0.

We are now ready to derive simplified equations that are verified by (uni-
voque) approximations of the solutions to the BVP above, in the limit ε → 0,
given a fixed space-time range. To that aim, it is technically useful to rewrite
the system of equations using nondimensional variables that are functions of the
nondimensional scaled coordinates (t̃, x̃, ỹ, z̃) = (t/T, x/L, y/L, z/L). Though,
for the sake of simplicity in notations, we next abusively still write (t, x, y, z).
And u, p and T still denote the nondimensional variables after rescaling the di-
mensional ones by L/T , (L/T )2 and (L/T )2 respectively. We obtain nondimen-
sional bulk equations where the nondimensional bulk force f has been rescaled
by L/T 2, therefore |f |−1 = g−1 is a squared Froude number in

Dtu = −∇p+
∑

i=x,y,z

(∂xTix + ∂yTiy + ∂zTiz)ei − f ,

divu = 0 ,

(10)

while k and γ scaled by L/T and L3/T 2 respectively in the boundary conditions

(uH · ∇H)b = uz , for z = b(x, y), (11a)

Tn− ((Tn) · n)n− k (u− (u · n)n) = 0 , for z = b(x, y), (11b)

∂th+ (uH · ∇H)(b+ h) = uz , for z = b(x, y) + h(t, x, y), (11c)

−pN + TN + γ div(N)N = 0 , for z = b(x, y) + h(t, x, y), (11d)
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are a Navier friction coefficient and a Weber number without dimension, which
respectively measure the dissipativity of the rough bottom topography, and the
capillary effects due to the surface tension, with respect to the fluid inertia.

In the next sections, we follow e.g. [35, 40] and formally manipulate the
equations (10–11a–11b–11c–11d) using successive assumptions about the solu-
tions. We first consider generic Navier-Stokes equations in Section 3, then many
specific rheologies in various limit regimes: Newtonian fluids in Section 4, power-
law fluids in Section 5 and Oldroyd-B fluids in Section 6. In each case, after
specifying scaling assumptions with respect to a parameter ε → 0, a univoque
closed set of reduced equations is obtained by an asymptotic procedure, such
that solutions are required in turn to also satisfy asymptotically the full system
of equations and therefore indeed approximate solutions to (10–11a–11b–11c–
11d) in a formal way.

Finally, to conclude this mathematical introduction to our work, let us stress
that we next always assume that the Navier-Stokes system (10–11a–11b–11c–
11d) is a good model (say in comparison with experimental data), with a given
rheology and fixed group numbers f , k, γ. But remember that the experimental
validation of (10–11a–11b–11c–11d) still raises questions by itself, see e.g. [30],
including for the kind of applications that we have in mind here: i.e. gravity-
driven flows such that g = |f | is a leading term (never constrained by scaling
assumptions during our thin-layer asymptotic reduction procedure, in contrast
with e.g. [10, 9, 11] where g → 0). Moreover, assuming this fact, our derivation
could only (formally) justify the use of reduced models for those applications
at a fixed 0 < ε� 1 on a space-time range L× T to real-life shallow flows with
mean depth εL, provided the magnitude of the fixed group numbers f , k, γ scale
adequately with ε (the ε computed from experimental values of T, L,f , k, γ and
mean depths should all be � 1), but not more. Now, such applications are not
always the most commonly observed or useful. In particular, we discuss a bit
more thoroughly physical applications with a Newtonian rheology in Remark 1,
and it seems that the reduced model obtained in a fast flow regime (i.e. the
Saint-Venant equations) has often been used (with success !) beyond our scaling
assumptions. (Typically in turbulent regimes where the Navier-Stokes system
with a given rheology and a fixed k at an effective boundary z = b is unclear.)
In fact, our work is interesting to justify the mathematical formulation of a
reduced model, on invoking some flow regime. But it is next still desirable to
check how far our reduced models can actually be interesting for application to
real-life, for instance numerically. This is out of the scope of the present work,
like a discussion of possible physical applications to specific real-life situations.

3. Generic reduction of free-surface gravity flows to thin-layer models

As usual for shallow free-surface gravity flows, our model reduction to thin
layers in fact consists in filtering out all but the long free-surface waves through
a formal asymptotic procedure [58, 55]. To consider incompressible fluids, we
shall thus assume that the topographies asymptotically converge to a long wave
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too:
(H1) : ∇Hb = O(ε) , (12)

i.e. topographies oscillating at O(ε) around a piecewise flat plane, here inclined
by a constant angle Θ ∈ [0, π/2) with respect to a uniform gravity field

f = (fx ≡ +g sin Θ, fy ≡ 0, fz ≡ −g cos Θ) .

(Recall Navier-Stokes equations are Galilean invariant, and rotation is a Galilean
change of frame, so Navier-Stokes equations are unchanged whatever Θ.) This
already covers interesting application cases: recall extensions to more general
topographies are possible but nontrivial, see e.g. [19].

Recall also equations have already been nondimensionalized to model shal-
low gravity flows given space and time scales L and T , such that it is natural
to assume horizontal velocities uH = O(1) bounded at least. Moreover, our
asymptotic analysis shall produce model reductions on assuming that horizontal
variations remain slow as ε→ 0: hence divH uH = O(1) for uH in particular.

1. We consider first the mass continuity equation divu = 0 with BC (11a)

uz = uH |z=b · ∇Hb−
∫ z

b

divH uH ,

so (H1) and uH = O(1) = divH uH together asymptotically imply ve-
locity stratification uz = O(ε), and long free-surface waves by (11c),
hence ∇Hh = O(ε). Note that, reciprocally, asymptotically long free-
surface waves and (H1) imply the velocity stratification: long free-surface
waves and velocity stratification are equivalent characterizations of the
flow regimes considered herein, under (H1) and divH uH = O(1). More-
over, the mass continuity equation and BCs (11a,11c) are satisfied up to
errors of order O(εa,a+1,a+1) with a ≥ 1, respectively, when h, uz,uH are
replaced by approximations of order at least O(εa+1,a+1,a), respectively,
and divH uH , ∂th are then approximated up to O(εa,a+1) like uH and h.

2. Using uz = O(ε), the momentum equation in (10) along ez then reads

∂zp = fz + ∂zTzz + divH THz +O(ε) (13)

as well as for approximations of ∂zp, ∂zTzz,divH THz up to errorsO(ε1,1,1).
Next, using ∇Hh = O(ε) = ∇Hb, one infers divN(t, x, y) = −∆H(b+h)+
O(ε3) so that BC (11d) along ez implies (recall γ ∼ 1 is a constant)

p|z=b+h = −γ∆H(b+ h) + Tzz − THz · ∇H(b+ h) +O(ε3) , (14)

as well as for approximations of h, p, Tzz,THz up to errors O(ε3,3,3,2) (at
z = b + h at least) and of ∆Hh,∇Hh up to O(ε3,3) like h. So, replacing
O(ε3) by O(ε2) in (14) such that (14) still holds for approximations of
h, p, Tzz,THz up to errors O(ε2,2,2,1) compatible with (13), it holds

p = fz(z − (b+ h))− γ∆H(b+ h) + Tzz − divH

∫ b+h

z

THz +O(ε2) (15)
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as well as for approximations of h, p, Tzz,THz up to O(ε2,2,2,1), in our flow
regime (where (H1), divH uH = O(1) imply (uz,uH) = O(ε1,0)).

3. Naturally assuming ∆H(b + h) = divH(∇Hb + ∇Hh) = O(ε) (the oscil-
lations b and h around flat planes have small amplitude with respect to
the horizontal length-scale L which remain slow) and (THH , Tzz,THz) =
O(ε0,0,0), BC (11d) along (ex, ey) implies

THz|z=b+h = (THH − TzzI)∇H(b+ h) +O(ε2) (16)

using (14) with O(ε3) possibly replaced by O(ε2), which implies

THz|z=b+h = O(ε) . (17)

And using (5), BC (11b) at z = b rewrites, recalling ∇Hb = O(ε),

THz · (∇Hb)⊥ − (∇Hb)⊥ · THH∇Hb = kuH · (∇Hb)⊥(1 +O(ε2)) ,

(1−O(ε2))THz · ∇Hb−∇Hb · THH∇Hb+ |∇Hb|2Tzz
= k(uH · ∇Hb+ uz|∇Hb|2)(1 +O(ε2)) ,

so that if ∇Hb 6= 0, one obtains with (11a)

THz =
THz · ∇Hb
|∇Hb|2

∇Hb+
THz · (∇Hb)⊥

|∇Hb|2
(∇Hb)⊥ ,

and finally

THz|z=b = (THH − TzzI)∇Hb+ kuH +O(ε2) , (18)

which still holds if ∇Hb = 0 since THz|z=b = kuH follows from (11b).
Note that approximations (16),(18) of BCs (11d),(11b) are also satisfied
by approximations of THH − TzzI,THz up to errors O(ε1,2) provided
kuH |z=b is approximated up to an error O(ε2). But since on the other
hand (15) is useful for approximations of p−Tzz,THz up to O(ε2,1) errors,
notice that at this stage, a reduced model invoking approximations of
p− Tzz,THH − TzzI,THz up to O(ε2,1,2) should be looked for.

4. To proceed and construct such a closed reduced model, it remains to
consider the momentum equations along (ex, ey), thus

∂zTHz ≡ DtuH +∇H(p− Tzz)− divH(THH − TzzI)− fH = O(1) (19)

where all terms are naturally assumed bounded. Using (19) with BC (16)
implies that shear stresses THz = O(ε) are uniformly small, in particular
THz|z=b = O(ε), which is a scaling compatible with (18) provided it holds

(H2) : kuH |z=b = O(ε) . (20)

In the sequel, for various rheologies, we assume scalings (i.e. flow regimes)
that ensure (H2) : kuH |z=b = O(ε) and allow one to construct coherent re-
duced models (see below), compatible with the asymptotic analysis above.
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To that aim, note that (19) holds for approximations of THz, uH , p, THH
up to errors O(ε2,1,1,1). Moreover, thanks to THz|z=b = O(ε), one can
now replace O(ε2) by O(ε3) in (16) and (18). This will prove crucial.

So far we have established relations satisfied by smooth solutions to the
BVP (10–11a–11b–11c–11d) as h ∼ ε→ 0 given a topography b. And we would
like to use those relations to build analytically a reduced model with variables

(h0,u0
H , u

0
z, p

0 − T 0
zz,T

0
HH − T 0

zzI,T
0
Hz)

= (h,uH , uz, p− Tzz,THH − TzzI,THz) +O(ε2,1,2,2,1,2) (21)

approximating a solution to the initial BVP, given b0 = b+O(ε). Truncating

DtuH − divH(THH − TzzI)− ∂zTHz − fH = O(ε) ,

∂z(p− Tzz)− fz = O(ε) ,

divH uH + ∂zuz = 0 ,

(uH · ∇H)b− uz|z=b = O(ε) ,

kuH + (THH − TzzI)∇Hb− THz|z=b = O(ε2) ,

∂th+ (uH · ∇H)(b+ h)− uz|z=b+h = 0 ,

γ∆H(b+ h) + (p− Tzz)|z=b+h = O(ε2) ,

(THH − TzzI)∇H(b+ h)− THz|z=b+h = O(ε2) ,

(22)

that is (10–11a–11b–11c–11d) at first-order in ε, yields the candidate

∂t(h
0u0

H) + divH(h0u0
H ⊗ u0

H)

= divH

∫ b0+h0

b0
(T 0

HH − T 0
zzI)− ku0

H |z=b0 + h0fH ,

∂th
0 + divH(h0u0

H) = 0 ,

p0 − T 0
zz = fz(b

0 + h0 − z)− γ∆H(b0 + h0) ,

u0
z = (u0

H · ∇H)b0 + divH u
0
H(z − b0) ,

(23)

as a reduced model, accurate at first-order under assumptions (H1–H2). Of
course, the system (23) is not closed yet without complementing it by equations
for the rheology of the fluid. We next show that, after closing (10–11a–11b–
11c–11d) in various ways, with various possible equations for the rheology of
the fluid, one can obtain in a systematic fashion closed reduced models, on com-
plementing (23) with equations for the rheology (simplified along the lines given
above). This unifies the derivation of various thin-layer reduced models for var-
ious possible rheologies through a univoque procedure under clear assumptions.

Moreover, we would like closed reduced models that are (formally) asymp-
totically coherent, i.e. that admit for b = b0 +O(ε) a correction

(h0,u0
H , u

0
z, p

0 − T 0
zz,T

0
HH − T 0

zzI,T
0
Hz) +O(ε2,1,2,2,1,2)

= (h,uH , uz, p− Tzz,THH − Tzz,THz) (24)
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solution to the initial BVP under the same assumptions as those used to define
the reduced model. To that aim, in the sequel, we invoke other (compatible)
assumptions in addition to (H1–H2).

One crucial additional assumption will be (H4) : ∂zuH = O(1), as already
mentionned in Introduction. Because of (H4), one can consider a first-order
approximation u0

H = uH +O(ε) with a flat profile ∂zu
0
H = 0, i.e.

u0
H(t, x, y) = uH(t, x, y, z) +O(ε) (25)

such that the flow asymptotically moves by “vertical slices”. In particular, the
depth-average of uH satisfies (25), and it also holds for any h0 = h+O(ε2)∫ b+h

b

uH = h0u0
H+O(ε2) and

∫ b+h

b

(uH⊗uH) = h0(u0
H⊗u0

H)+O(ε2) . (26)

We discuss physical implications of (H4) at the end of the next section.
Then, in view of (22) and (26), candidates (23) can be asymptotically derived

from depth-averaged versions of the initial model (10–11a–11b–11c–11d) [35].
Let us integrate along z ∈ (b, b+ h) the “horizontal” momentum equations (19)

(THz − (THH − TzzI)∇H(b+ h))|z=b+h

− (THz − (THH − TzzI)∇Hb)|z=b +

∫ b+h

b

fH

=

∫ b+h

b

DtuH +

∫ b+h

b

∇H(p− Tzz)− divH

∫ b+h

b

(THH − TzzI) (27)

where Leibniz rule along with (11a–11c) allows one to rewrite the acceleration∫ b+h

b

DtuH = ∂t

∫ b+h

b

uH + divH

∫ b+h

b

(uH ⊗ uH) .

Recalling (15), fz(z− (b+h))− γ∆H(b+h) approximates p−Tzz = O(ε) up to
O(ε2) ; (27) simplifies at first order using (16–18) (no shear stress THz anymore)

∂t

∫ b+h

b

uH + divH

∫ b+h

b

(uH ⊗ uH)− divH

∫ b+h

b

(THH − TzzI)

= −kuH |z=b + hfH +O(ε2) . (28)

Using (16–18) with O(ε3) instead of1 O(ε2) note also for future reference

∂t

∫ b+h

b

uH + divH

∫ b+h

b

(uH ⊗ uH)− divH

∫ b+h

b

(THH − TzzI)

= −kuH |z=b + hfH + hfz∇H(b+ h) + hγ∇H∆H(b+ h) +O(ε3) . (29)

1Recall this crucial fact is due to requiring THz = O(ε) under (H2), thus THz |z=b = O(ε).
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As for the integrated continuity equation, it reads

∂th+ divH

∫ b+h

b

uH = 0 . (30)

Now, a reduced model like (23) for an approximation (24) is coherent with
(30) and (28) as soon as it allows one to define approximations of each term
in (30) and (28) up to O(ε2). In particular, recalling (26), it remains to ap-

proximate
∫ b+h
b

(THH − TzzI) in (28) coherently with (22), depending on the
rheology. Moreover, approximations of kuH |z=b in (28) allow one to reconstruct
approximations of THz coherently with (22), which were not obviously retrieved
from (23), whereas they are necessary to show that the reduced model is fully
coherent with the initial model. The idea was developped in [35] for Newtonian
shallow flows with the standard Navier-Stokes equations, and it will be exactly
the purpose of the next sections to exhibit similar coherent reconstructions of
THz for various rheologies (though not unique, probably).

Before proceeding, note that the depth-averaged approach above obviously
invokes lower-dimensional variables that depend on the horizontal coordinates
x, y but not on z the vertical one, which justifies the label “reduced model”.

4. Application to Newtonian fluids

Internal stresses in Newtonian fluids are defined, after nondimensionaliza-
tion, with a Reynolds number Re > 0, by

T =

(
THH THz
T THz Tzz

)
=

1

Re

(
2DH(uH) ∂zuH +∇Huz

(∂zuH +∇Huz)T 2∂zuz

)
. (31)

Without more assumption than (H1)− (H2), one obtains, using uz = O(ε)

T =
1

Re

(
2DH(uH) ∂zuH +O(ε)

(∂zuH +O(ε))T −2 divH uH

)
.

Then, to derive a closed reduced model invoking coherent approximations of the
stresses (such that THz = O(ε) in particular), one needs further assumptions.
Depending on the treatment of kuH |z=b = O(ε), we next show that one can in
fact obtain different reduced models in the limit ε→ 0.

4.1. The fast flow regime

Let us specify (H2) as
(H2a) : k ∼ ε (32)

and assume, for the scaling of T in (31) to be compatible with that in Section 3,

(H3) : Re ∼ ε−1 , and (H4) : ∂zuH = O(1) . (33)

Then one obtains THH , Tzz = O(ε1,1), and THH−TzzI, p−Tzz = O(ε1,1) using
(H3). Moreover, thanks to (H4), one can look for a first-order approximation

13



u0
H = uH+O(ε) with a flat profile that is coherently defined with depth-average.

Under (H1−H2a−H3−H4) an approximation (h0,u0
H) = (h,uH) + O(ε2,1)

coherent with (30–28) up to O(ε2) can be determined as a solution to the system

∂th
0 + divH(h0u0

H) = 0 , (34)

∂t(h
0u0

H) + divH(h0u0
H ⊗ u0

H) + ku0
H − h0fH = 0 , (35)

in particular; but it is not clearly coherent with the whole initial model (22).
The solutions to (34–35) allow one to construct a first-order approximation

(h0,u0
H , u

0
z, p

0,T 0
HH , T

0
zz) = (h,uH , uz, p,THH , Tzz) +O(ε2,1,2,2,2,2) that is ob-

viously coherent with the continuity equation in (10), with BCs (11a–11c), and
with (11d) projected along ez when (H1−H2a−H3−H4) hold – recall (14) –
using the reconstructions T 0

HH = 2
ReDH(u0

H), T 0
zz = − 2

Re divH(u0
H) and

u0
z = u0

H ·∇Hb+(b−z) divH u
0
H , p0 = fz(z−(b+h0))−γ∆H(b+h0)+T 0

zz . (36)

But how to reconstruct approximations T 0
Hz = THz +O(ε2) such that (34–35)

yields a fully coherent first-order approximation of the momentum balance in
(10) and of the BCs (11b–11d) that have been used to derive (34–35) asymptot-
ically under (H1−H2a−H3−H4) ? For instance choosing 1

Re∇Hu
0
z = O(ε2)

for T 0
Hz does not imply T 0

Hz|z=b = ku0
H +O(ε2) a priori.

To that aim, we follow [35] and construct a first-order approximation ũ0
H =

u0
H + u1

H with a correction u1
H = O(ε) such that it holds for ũ0

H = uH +O(ε)∫ b+h

b

uH = h0ũ0
H +O(ε3) and

∫ b+h

b

(uH ⊗uH) = h0(ũ0
H ⊗ ũ0

H) +O(ε3) (37)

given h = h0 + O(ε2). The first-order approximation ũ0
H remains coherent

with (30–28) provided u0
H still satisfies (34–35) up to O(ε2) so that it holds

∂tu
0
H + (u0

H · ∇H)u0
H + ku0

H/h
0 = fH +O(ε) . (38)

Then ũ0
H will also satisfy the horizontal projection of the momentum equa-

tion (10) up to O(ε) provided ∂zT
0
Hz = −ku0

H/h
0 +O(ε) holds for some approx-

imation T 0
Hz. Now, the ansatz ũ0

H = u0
H +u1

H for a coherent first-order approx-
imation of uH in (19) – where u1

H = O(ε) – requires ∂zTHz = 1
Re∂

2
zzu

1
H +O(ε),

so that, recalling (38) for u0
H solution to (34–35), we shall require

∂zT
0
Hz ≡

1

Re
∂2
zzu

1
H = − k

h0
u0
H +O(ε) , (39)

thus in fact, with (H3) i.e. T = O(ε) implying THz|z=b+h = O(ε2) in (16),

T 0
Hz ≡

1

Re
∂zu

1
H = ku0

H

b0 + h0 − z
h0

+O(ε2) . (40)

To ensure that one can build a coherent reduced model with such a corrected
first-order approximation ũ0

H = u0
H + u1

H , we follow [35] and finally require

u1
H =

Rek

2h0

(
(b0 + 3h0/2− z)(z − b0 − h0/2) + |h0|2/12

)
u0
H . (41)
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Then, on account of u1
H = O(ε), all the scalings derived above for u0

H without
correction remain true for ũ0

H . Additionally, a reduced model for such a ũ0
H is

now fully coherent with all the equations of the initial model in (22). It remains
to compute u0

H such that it coherently accounts for the correction. Now, recall
(37), so that the second-order approximation of the depth-averaged equation

obtained after truncating (29) should be used coherently with
∫ b+h
b

u1
H = O(ε3)

and ũ0
H |z=b = u0

H(1− hRek/3) as a closed system of equations for (h0,u0
H),

∂th
0 + divH(h0u0

H) = 0 , (42)

∂t(h
0u0

H) + divH(h0u0
H ⊗ u0

H)−
(
h0fH + fzh

0∇H(b+ h0)
)

+ ku0
H(1− h0Rek

3
)

= γh0∇H∆H(b+ h0) +
2

Re
divH

(
h0
(
DH(u0

H) + divH u
0
HI
))
, (43)

to define a coherent reduced model when (H1−H2a−H3−H4) hold.
Let us stress that the new reduced model (42–43) defines only a first-order

approximation of the initial model, coherent with all equations in (22) at first-
order (up to O(ε) in the bulk and O(ε2) at the boundaries), although it approx-
imates the depth-averaged momentum equation (29) at second-order.

It is noteworthy that unlike (34–35) the system (42–43) has exactly the struc-
ture of the Saint-Venant equations [52] which have been used for a long time in
numerous physical applications invoking shallow free-surface flows. The system
(42–43) has indeed retained most interesting features of the initial system (ex-
cept vertical acceleration), which is likely to be useful for physical applications
with stratified velocities and a pressure close to the hydrostatic equilibrium such
as encountered in geophysics. It also justifies the energy as a mathematical en-
tropy usually associated with the hyperbolic system (42–43) in the inviscid limit
Re−1 → 0. (The inviscid limit has been used more often in applications, for
instance in hydraulics where water is often considered as a perfect fluid [58, 55],
but it cannot justify by itself the choice of a mathematical entropy, while the
latter is crucial to the computation of shocks ; see also [35].)

Note however that our model reduction procedure does not justify all the
physical applications of the reduced model (42–43), which is beyond the scope
of this work (see also Remark 1). To that aim, one still needs investigating
other asymptotic justifications, and possibly in turn improve the reduced model
for real-life applications. For the sake of illustration, let us simply mention that
the inviscid system (42–43) without friction can also be obtained as a first-order
reduced model by an asymptotic analysis of the irrotational Euler equations in
the shallow water regime [17, 26]. But clearly, (42–43) does not only lack a
description of surface waves dispersion, as it is well recognized for applications
to water waves in the ocean [26], it also lacks a correct account for the flow
vorticity curlu = (∂zuH , ω = ∇H ∧ uH) +O(ε). For instance, coherence with

∂tω + (uH · ∇H)ω = ω∂zuz +O(ε)⇔ ∂tω + divH(ωuH) = O(ε)

the vertical vorticity equation, on noting ∂zω = ∇H ∧∂zuH = O(1) under (H4),
is satisfied by the first-order approximation ω0 := ∇H ∧ ũ0

H of ω, because the
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O(ε) friction term can be neglected. But it is not clear that ∂zũ
0
H coherently

approximates the horizontal components of the vorticity unless one assumes
something about ∂2

zzũH . Future works may want to better take into account the
vorticity (asymptotically) similarly to [26] for viscous cases. This may in turn
help at better accounting for the stronger energy dissipation actually needed in
practice to match some physical applications (see Remark 1).

Note last that scaling assumptions in this section do not restrict the velocity
range, as opposed to the next section, hence the label fast for the present flow
regime. We could also have termed it inertial because of the leading term in the
momentum equation that balances gravity, as opposed to viscous in the next
section (in our slow flows, gravity is balanced by dominant viscous effects).

Remark 1 (Hydraulic applications of the Newtonian reduced model).
For applications, recall first that we have initially assumed the initial Navier-
Stokes model (10–11a–11b–11c–11d) good for physics (i.e. the flow model can
actually be fitted to real-life data on adjusting the non-dimensional numbers k, γ
and the rheology). This is a limitation: it has rarely been checked thoroughly,
and is still under investigation as concerns gravity-driven free-surface flows [30].
Note that successful applications of the reduced model (42–43) to real-life situ-
ations would also straightforwardly reveal that the initial model is good. . . but
only in regimes compatible with the scaling assumptions used for coherence !

For application to water flows in contact with air, at fixed pressure and tem-
perature in a laboratory, it seems natural to use the Navier-Stokes free-surface
model (10–11a–11b–11c–11d) with (i) a fixed Froude number g so that one gets
the relationship L = (G/g)T 2 in a uniform gravity field G = 10[ms−2], and
(ii) a Newtonian rheology where the viscosity ηs takes values of magnitude
10−6[m2s−1] (coinciding with measures in laminar flows and with the defini-
tion from molecular models close to thermodynamical equilibrium). It is also
natural to require (iii) vanishing surface tension when (H3) : Re−1 = O(ε)
holds, insofar as the nondimensional Weber number reads γ = (γwa/G)/L2 =
(γwa/G)(

√
G/ηsRe)4/3, γwa = 10−5[m3s−2] being the tension on a water inter-

face with air. Then, the model (10–11a–11b–11c–11d) has actually been used to
reproduce numerically fast waves in water (i.e. a lock-exchange with air in a
rectangular channel) such as in the celebrated experiment of Martin and Moyce
[42], e.g. with g = 10 and Re ≥ 105 [41], though admittedly for large k and
large aspect ratio. (Friction due to the boundary conditions is not small in the
experiment of Martin and Moyce, as well as the aspect ratio of the flow depth
with respect to the length scale L ≈ 1[m].) Moreover, numerical simulations of
the same Navier-Stokes equations in a similar setting where k and the aspect
ratio actually go to zero have next confirmed the validity of the reduced model
(42–43) in the fast flow regime. In particular, assuming k = O(ε2) (stronger
than (7)) or simply the pure-slip limit case k = 0, the stronger motion-by-slice
∂zuH = O(ε) holds while the solution u0

H to (42–43) with a vanishing friction
straightforwardly defines a first-order coherent approximations. And it is well-
known that such a solution is well-approximated by the vanishing-viscosity limit
Re−1 → 0 of the system (42–43), which has also often been used as a reduced
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model for long waves [58, 55] instead of the viscous shallow water equations. In
particular, the Ritter (analytical) solution to the inviscid model (42–43) com-
pares well [25] with numerical simulations of the Navier-Stokes equations in the
long-wave asymptotic regime. This shows physical interest for the reduced model.

However, the asymptotic comparisons above, in regimes with little energy dis-
sipation, do not justify the interest of the reduced model for current application
to real-life long-wave settings, such as dam-breaks and fast floods in rivers.

There has been numerous applications of the viscous Saint-Venant equations
(42–43) to flows in rivers [36], at Froude numbers g ≈ 1 where one gets the
relationship L = (G/g)T 2 in a uniform gravity field G = 10[ms−2] and neglects
the surface tension effects. Then, one has typically used a newtonian rheology
with viscosity ηs ≈ 10−4[m2s−1] and friction values of magnitude kd ≈ 1[ms−1

[8]. This is compatible with small nondimensional numbers Re−1, k = O(ε1,1)
– and therefore with our scaling assumptions (H1−H2a−H3−H4) – provided
the initial Navier-Stokes model has been nondimensionalized with space-scale
L = (kd/k)2(g/G) = (ηsRe/G)2/3, then for small water depths h ∼ εL of
magnitude 10−2[m] only. As a consequence, our asymptotic procedure cannot
justify the success of numerical computations with the reduced model (42–43)
for river situations where the Navier-Stokes model a more detailed one.

In view of the large values used for ηs in practice for rivers (in comparison
with the molecular value) and the fact that k is a calibration parameter, the
problem with our reduced model (42–43) is that too little energy seems actually
dissipated by the flow model in comparison with actual river flows.

One explanation for the interest of Saint-Venant models like (42–43) in hy-
draulics is that they can also be derived by a reduction procedure initially starting
with another detailed model than (10–11a–11b–11c–11d), typically one allowing
for more energy dissipation like a model with turbulence effects [56].

It is also possible that the standard Saint-Venant model (42–43) is not that
adequate for river hydraulics. Indeed, Saint-Venant depth-averaged models only
take into account motion by slices, and neglect the boundary condition at the
bottom. Now, since a clear definition of a fictitious boundary z = b where
effective friction boundary conditions of Navier type apply remains a challenge
(see also Remark 2), one could alternatively try to enforce a no-slip boundary
condition (k → ∞) at z = b, similarly to what occurs at the roughness scale
on a river bed. To that aim, one needs another reduction procedure, leading to
another two-equations reduced model like Saint-Venant. We are only aware of
the one used in e.g. [24], which yields a model coinciding at first-order with
the lubrication model that we obtain in the next section, and which is therefore
coherent with slow flows in a viscous regime (in fact, the first-order (50) has
usually been applied to thin films, with capillary effects [48], at smaller scales
than rivers). Unfortunately, the latter alternative is not satisfactory for river
flows either. In particular, it is coherent with value 6/5 = 1.2 for the Boussinesq
coefficient, which is higher than what is usually observed experimentally [27].
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4.2. The slow flow regime

Instead of assuming (H2a) to achieve (H2), let us now assume k ∼ 1 and

(H2b) : uH |z=b = O(ε) . (44)

Moreover, to satisfy τHz = O(ε) (recall Section 3), we require (H3) : Re ∼ ε−1

and (H4) : ∂zuH = O(1). Then, on using (H2b) and (H4), it holds uH = O(ε),
which is stronger than (H2b). It also holds uz = O(ε2) by (11a) and the
continuity equation. So the viscous terms balance forces in momentum equations

1

Re
∂2
zzuH = fH +O(ε) (45)

and with the BC (17) ∂zuH |z=b+h = O(ε), we obtain in that flow regime

1

Re
∂zuH = fH(z − (b+ h)) +O(ε2). (46)

A coherent approximation should also satisfy the boundary condition (18)

1

Re
∂zuH |z=b = kuH +O(ε3) . (47)

So one can use, for approximation of uH , its truncation at first-order

uH = fH
(
Re
(
(z − (b+ h))2/2− h2/2

)
− h/k

)
+O(ε2) , (48)

and finally obtain an autonomous equation for h0 = h+O(ε2) using∫ b+h

b

fH
(
Re
(
(z − (b+ h))2/2− h2/2

)
− h/k

)
= −fH

(
Re
h3

3
+
h2

k

)
(49)

as an approximation of
∫ b+h
b

uH up to order O(ε3). The solution to

∂th
0 − divH

(
fH

(
Re
|h0|3

3
+
|h0|2

k

))
= 0 (50)

allows one to define a coherent approximation of large-time steady flow solutions
to the initial BVP, such that ∂th

0 = ∂th + O(ε3) and ∂tuH = O(ε), as long as
(H1−H2b−H3−H4) hold, using a first-order approximation u0

H reconstructed
from h0 with (48) and u0

z, p
0 reconstructed like in the previous section.

Note that (50) is exactly (2.28) in [48], where one also comments on the
fact that this reduced model is strongly reminiscent of Reynolds lubrication
equation [12] except that here one has a free-surface condition, so the pressure
is known to be hydrostatic, while the boundary z = h is unknown. This is the
first time that a lubrication equation is derived in the same framework as the
shallow water equations of the previous section, to our knowledge.

Lubrication equations obtained in a viscous slow-flow regime have a number
of applications, similarly to the shallow water equations obtained in the inertial
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regime, though in different situations, see e.g. [48]. A regime where viscous
forces dominate the inertial terms to balance gravity better suits slow flows on
long times in small domains, where boundary effects are important and k can
be chosen as large as necessary to approximate the no-slip boundary condition
obtained in the k → ∞ limit, as opposed to an inertial regime that better
suits fast flows on short times in large domains, where boundary effects can
be modelled by an effective friction condition on a fictitious boundary. But of
course this description is only phenomenological and not quantitatively useful.
Real flows are the result of particular initial and boundary conditions, and the
question how to adequately choose a priori one of the two kinds of reduced
models (or none !) may be difficult.

For application to thin films in industrial processes, one has often been
interested in enriched versions of (50) with larger surface tension effects [44].
And more generally, to include small-times effects in the lubrication models
of surfaces waves, one has tried to pursue the asymptotic procedure after the
first-order approximation (48). The resulting models typically involve higher-
order derivatives of h (which is a difficulty for numerical simulations) and the
coherence of these approximations is not obvious anymore. Remarkably though,
one can rigorously prove that the depth-averaged solutions to Navier-Stokes
equations in a specific “slow flow” regime (a no-slip case k → ∞ with large
capillary effects γ →∞, see [24]) asymptotically satisfy a two-equations system
like the Saint-Venant equations (containing high-order derivatives, and the k →
∞ limit of (49) at first order). We refer to [24, 39, 33] for details.

Finally, one may also want to take profit of the fact that two reduced models
have been identified, that are two coherent asymptotics of the same Navier-
Stokes equations, and use each of them in two distinct flow subdomains. But
to that aim, one still needs to precise coherent interface conditions in between
the subdomains, and this remains a challenge (see Remark 2).

Remark 2 (Matching the two regimes with interface conditions).
For application to real free-surface flows, one may want to define a two-layer

model by superimposing a slow viscous lower-layer and a fast inertial upper-
layer, so as to better take into account i) the no-slip boundary condition at a
true rough bottom and ii) the notion of effective friction at a fictitious boundary
(the interface). To that aim, the problem is how to define an interface z = b+Y
(0 ≤ Y ≤ h) between the two layers.

For instance, assuming there is no mass-exchange between the two incom-
pressible fluid layers, the interface would define a fictitious free-surface for the
lower-layer (the continuity equation would still yield an autonomous evolution
equation for Y where the viscous regime holds), and furthermore a fictitious to-
pography for upper-layer. But to match the two flow regimes defined above, a
first obvious difficulty is: such a construction would necessarily require the hor-
izontal velocities uH to be discontinuous at the interface (at least in the limit
ε → 0, which implies that ∂zuH hence also THz is unbounded close to the in-
terface). Moreover, there seems to be no straightforward procedure to define an
interface Y and a coefficient k: one needs to introduce additional assumptions
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to that aim.
One strategy may be to find an intermediate transition layer with depth η ∈

(0, h − Y ), η = o(ε), a velocity field U solution to the momentum equations in
z ∈ (b + Y, b + Y + η), and a friction coefficient k ∼ ε (possibly also a tension
γ) such that when ε→ 0:

• the limit of U |z=b+Y is a good approximation (at O(ε2)) of the limit of
u|z=(b+Y )− which is given by the velocity solution to the viscous regime in
z ∈ (b, b+ Y ),

• the limit of U |z=b+Y+η is a good approximation (at O(ε)) of the limit of
∂zu,u|z=(b+Y+η)+ , which is given by the solution to the inertial regime in
z ∈ (b+ Y, b+ h) with a friction coefficient k,

• ∂zU/(kReU)|z=b+Y+η has a limit so that Navier friction law holds at z =
b+ Y + η,

• normal stresses are continuous at z = b+ Y (and one may want to define
a tension coefficient γ at z = (b+ Y )+ to formulate this).

It is reminiscent of the boundary-layer theory for turbulent flows, but has not
been achieved in the context of free-surface flows yet to our knowledge.

5. Application to purely-viscous non-Newtonian fluids

Purely viscous non-Newtonian fluids can be described by a power-law model

T =
|D(u)|n−1

Re

(
2DH(uH) ∂zuH +∇Huz

(∂zuH +∇Huz)T 2∂zuz

)
=
|D(u)|n−1

Re

(
2DH(uH) ∂zuH +O(ε)

(∂zuH +O(ε))T −2 divH uH

)
=

(
THH THz
T THz Tzz

)
(51)

where internal stresses depend nonlinearly on strain rate through a viscosity

|D(u)|n−1 = (|DH(uH)|2 + |∂zuH +∇Huz|2/2 + |∂zuz|2)(n−1)/2

= (|DH(uH)|2 + |∂zuH +O(ε)|2/2 + |divH uH |2)(n−1)/2. (52)

The simple constant case n = 1 has been treated in the previous section. The
cases 0 < n < 1 and n > 1 are different due to different monotonocity properties
of the stresses with respect to the deformation gradient D(u). The limit n→ 0
is singular: it yields a particular occurence of the Bingham model for viscoplastic
fluids with a yield stress |D(u)| 6= 0⇔ |T | > 2

Re .
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5.1. The fast flow regime

Let us look for a coherent approximation of the solutions to the initial BVP
when (H1 − H2a − H3 − H4) hold, so that the simplifications of Section 3 also
hold. Only the internal stresses are different in the present purely-viscous non-
Newtonian case compared with the Newtonian case. And one can follow the
same procedure until the construction of a correction. The question is: can we
proceed, starting from the nonlinear version of (40), viz.

1

Re
(|DH(u0

H)|2 +
|∂zu1

H |2

2
+ |divH u

0
H |2)(n−1)/2∂zu

1
H = ku0

H

b+ h− z
h

+O(ε2) ,

(53)
and define a correction u1

H = O(ε) using the same trick as in the Newtonian

case, that is require
∫ b+h
b

u1
H = O(ε3) ? To that aim, on requiring u1

H = O(ε2)
somewhere in the layer z ∈ (b, b + h) (e.g. at bottom to not modify Navier

friction condition at first order), it suffices to check that
∫ b+h
b

∂zu
1
H = O(ε2).

For n ≥ 1 (shear-thickening fluids), define φa : x → (x2/2 + a)(n−1)/2x a
function one-to-one and onto from R≥0 to R≥0 so we rewrite (componentwise)

∂zu
1
H = φ−1

a (|Reku0
H(b+ h− z)/h|)sg(Reku0

H(b+ h− z)/h)

as a function of z parametrized by u0
H through a = |DH(u0

H)|2 + |divH u
0
H |2.

Notice that it holds 0 ≤ φ−1
a (|Reku0

H(b+h− z)/h|) ≤ |Reku0
H(b+h− z)/h| for

z ∈ (b, b+h), and on recalling that
∫ b+h
b
|Reku0

H(b+h− z)/h| dz = O(ε2) from
the Netwonian case, it follows that a correction u1

H can be constructed here. A
coherent first-order approximation ũ0

H is next defined from (42–43) where

(i) h0 in viscous terms of (43) is replaced by2
∫ b+h0

b
|Reku0

H(b+h0−z)/h0|
φ−1
a (|Reku0

H(b+h0−z)/h0|)dz

(ii) the friction term invokes the new value3 of uH |z=b approximated at O(ε2).

This straightforwardly defines a coherent approximation insofar as the only
equation which is different from the (coherent) Newtonian case is the equili-
bration of second-order viscous dissipation terms with friction at the bottom
boundary, and a coherent correction has been constructed on purpose.

Note also that this reduced model obtained for n ≥ 1 seems new to us.
Though, it is not very practical (some terms are implicit) and may not be very
useful for applications (shear-thickening fluids are not very common).

For 0 ≤ n < 1 (shear-thinning fluids), we cannot conclude with the strategy
above. On invoking monotonicity again, let us then compare with n→ 0.

For n = 0, the point is to solve, for ∂zu
1
H , where |DH(u0

H)| 6= 0:

∂zu
1
H√

|DH(u0
H)|2 + |∂zu1

H |2/2 + |divH u0
H |2

=
Reku0

H

h
(b+ h− z) +O(ε) . (54)

2This is a function of u0
H and h0 that one may obtain numerically after integration∫ b+h0

b · dz by quadrature of the terms inside divH .
3This is only known to be bounded above by h0 maxz∈[b,b+h0] ∂zu

1
H ≤ Reku0

Hh0.
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But on the one hand, it should hold |DH(u0
H)| = 0⇔ |DH(uH)| = 0 whenever

u0
H does not vanish with ε, otherwise (54) contradicts coherence. And on the

other hand, (54) has real-valued solutions ∂zu
1
H that are compatible with the

scaling implied by (H1 − H4) if, and only if, 0 < u0
H <

√
2/(kRe) is satisfied

(componentwise). Of course, the correction is then computed exactly, it reads

u1
H =

√
|DH(u0

H)|2 + |divH u0
H |2

h

Rek|u0
H |

(
2

√
1−

(
Rek|u0

H |√
2h

(b+ h− z)
)2

+

√
1−

(
Rek|u0

H |√
2

)2

+

√
2

Rek|u0
H |

arcsin

(
Rek|u0

H |√
2

))
u0
H

|u0
H |

. (55)

Let us recall that the case n = 0 models Bingham fluids, and is often for-
mulated as a variational inequality (see e.g. [32]). Now, the reduced model for
n = 0 can also be obtained as a variational inequality. Testing the initial prob-
lem with adequate functions vH of (x, y) ∈ Ω, one gets the following reduced
problem similar to that in [23] after depth-averageing for z ∈ (b, b+ h)

∂th
0 + divH(h0u0

H) = 0 , (56)∫
Ω

(
∂t(h

0u0
H) + divH(h0u0

H ⊗ u0
H) + k(u0

H + u1
H |b)

)
· (vH − u0

H) (57)

+

∫
Ω

2

Re

∣∣DH(vH)−DH(u0
H)
∣∣ ≥∫

Ω

(
2

Re
divH

(
β

DH(u0
H) + divH u

0
HI√

|DH(u0
H)|2 + |divH u0

H |2

))
· (vH − u0

H)

+

∫
Ω

(
γh0∇H∆H(b+ h0) + h0fH + fzh

0∇H(b+ h0)
)
· (vH − u0

H)

where, using the explicit profile (55), one can compute the friction term and the

modified viscous coefficient β =
∫ b+h0

b

(
1 + α(z)2

)− 1
2 dz on invoking

α2 =
h0

Rek|u0
H |2

∣∣∣∣∣2
√

1−
(

Rek|u0
H |√

2h0
(b+ h0 − z)

)2

+

√
1−

(
Rek|u0

H |√
2

)2

+

√
2

Rek|u0
H |

arcsin

(
Rek|u0

H |√
2

) ∣∣∣∣∣
2

.

But remember that the reduced model above (for the limit case n→ 0) breaks
down when u0

H >
√

2/(kRe) while, at the same time, it has no meaning when
|DH(u0

H)| = 0⇔ |T | < 2
Re , which seems contradictory.

For 0 ≤ n < 1, one might finally be able to construct a correction that

satisfies
∫ b+h
b

u1
H = O(ε3) and define a coherent approximation of the full model,

at least provided u0
H <

√
2/(kRe) holds where limn→0 |DH(u0

H)| 6= 0. One then
obtains the same reduced model as that derived for n ≥ 1 , since one can still
compute a correction in the same way; the limit n → 1 of that model still
coincides with the corrected viscous shallow water equations. But the flow
regime required for consistency seems quite narrow.
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Remark 3 (About viscoplastic non-Newtonian fluids).
The modelling of viscoplastic non-Newtonian fluids with a yield stress like in

Bingham model above is still much debated, see e.g. [50]. In any case, Bingham
law is a cornerstone of the viscoplastic modelling since it allows to mathemat-
ically investigate the concept of yield-stress and it is worth discussing. That is
why we would also like to mention that the most usual form of Bingham law is
not as above, but includes an additional viscous dissipative term, and is often
thought as a particular case of the more general Herschel-Bulkley law

T =

(
2

Re
|D(u)|m + Bi

)
D(u)

|D(u)|
if D(u) 6= 0, then |T | ≥ Bi, or D(u) = 0⇔ |T | < Bi ,

where this time we have denoted Bi a yield-stress independent of 2
Re , the usual

nondimensional constant for the ratio between the viscous dissipation and iner-
tia. The standard Bingham law coincides with the case m = 1, while above we
investigated the case m = 0 with n = 0.

For any m, the conclusion above needs to be modified as follows, provided
one assumes Bi ∼ ε in order to perform our thin-layer reduction procedure. As
above, one cannot go further than derive a reduced-model for the subdomains of
the two-dimensional domain Ω where |DH(u0

H)| 6= 0 holds. And the problem
still consists in computing a correction from a profile solution to(

2

Re
|D(u)|m + Bi

)
∂zu

1
H√

|DH(u0
H)|2 + |∂zu1

H |2/2 + |divH u0
H |2

=
ku0

H

h
(b+h−z)+O(ε2) ,

(58)
an equation in |∂zu1

H | unlikely to possess explicit solutions whatever m > 0.
Another viscoplastic paradigm has attracted much attention recently [37]: a

Drucker-Prager yield criterion can replace the Von Mises one above, namely

T =

(
2

Re
|D(u)|m + pBi

)
D(u)

|D(u)|
if D(u) 6= 0, then |T | ≥ pBi, or D(u) = 0⇔ |T | < pBi .

(59)
Note that it is not necessary to assume Bi = O(ε) then since p = O(ε). In
particular, when Re→∞, the correction to the velocity profile should satisfy

pBi
∂zu

1
H√

|DH(u0
H)|2 + |∂zu1

H |2/2 + |divH u0
H |2

=
ku0

H

h
(b+ h− z) +O(ε2) , (60)

where p = fz(z−(b+h))−γ∆H(b+h)+Tzz+O(ε2) from (15). On noting (59),

p

(
1 + Bi

divH(u0
H)√

|DH(u0
H)|2 + |∂zu1

H |2/2 + |divH u0
H |2

)
= fz(z−(b+h))−γ∆H(b+h)+O(ε2)

plugged into (60) yields an algebraic equation for ∂zu
1
H at any z ∈ (b, b+ h)

Bi∂zu
1
H (fz(z − (b+ h))− γ∆H(b+ h))

Bi divH(u0
H) +

√
|DH(u0

H)|2 + |∂zu1
H |2/2 + |divH u0

H |2
=
ku0

H

h
(b+h−z)+O(ε2) .

(61)
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In the case γ = 0 (no surface tension), the formula becomes much easier(
1

2
−
(
hBifz
ku0

H

)2
)
|∂zu1

H |2 − 2Bi divH(u0
H)

(
hBifz
ku0

H

)
|∂zu1

H |

+ |DH(u0
H)|2 + (1− Bi2)|divH u

0
H |2 +O(ε2) = 0 (62)

and one can compute explicitly the correction. So the solution to (62) allows one
to define an admissible velocity correction, and thus also a coherent approxima-
tion of the full model through the reduced model, as soon as the sole requirement
|DH(u0

H)| 6= 0⇔ |DH(uH)| 6= 0 is satisfied here (a condition that unfortunately
remains difficult to predict or analyze here ; in particular, we are not aware of
a simpler reformulation of this model as a variational inequality).

5.2. The slow flow regime

Assuming (H1 − H2b − H3 − H4) we follow the same procedure as in the
Newtonian case. First we obtain a nonlinear version of (46)

1

Re
(|∂zuH |2/2)(n−1)/2∂zuH = fH (z − (b+ h)) +O(ε2) (63)

and with the friction boundary condition at z = b, this next yields

uH =
(

Re2
n−1
2 fH

) 1
n

(
(z − (b+ h))

n+1
n − hn+1

n

n+1
n

)
− fH

h

k
+O(ε1+ 2

n ) . (64)

We can finally get an autonomous equation for h0 = h+O(ε2) from the conti-

nuity equation ∂th+ divH
∫ b+h
b

uH = 0 and the approximation∫ b+h

b

uH =
(

Re2
n−1
2 fH

) 1
n

(
2n+ 1

n+ 1
h

2n+1
n

)
− fH

h2

k
+O(ε2+ 2

n ) . (65)

This coincides with the viscous limit recently derived in [33], though with an-
other mathetically-inclined viewpoint and a slightly different scaling (the term
h2/k is absent in particular, as a result of the no-slip limit k →∞). It holds for
all power-law fluids n > 0, but note that the quality of approximation increases
with n in the shear-thinning case while it decreases in the shear-thickening case.

6. Application to viscoelastic non-Newtonian fluids

There are numerous models for viscoelastic non-Newtonian fluids, with var-
ious definitions of the extra-stress τ in T = 2ηsD(u) + τ . We concentrate here
on one prototypical model among differential constitutive equations for τ , the
Upper-Convected Maxwell (UCM) equations [15],

Dtτ = (∇u)τ + τ (∇u)T +
1

λ
(2ηpD(u)− τ ) in D(t), (66)
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where λ is interpreted as a characteristic relaxation time for elastic dilute
molecules and ηp as a viscosity. There are many extensions to the UCM equa-
tions, which one also often writes using the total (kinematic) viscosity η = ηs+ηp
and the retardation time λ(1− θ) ≤ λ where θ = ηp/η ∈ (0, 1)

Dtu = −∇p+ div(2η(1− θ)D(u)) + div τ + f

divu = 0 in D(t) .

λ(Dtτ − (∇u)τ − τ (∇u)T ) = 2ηθD(u)− τ
(67)

A simple one for instance combines the power-law and the UCM models T =
2ηs|D(u)|n−1D(u) + τ , see [46]. One can also use nonlinear versions of the
relaxation term in the right-hand side of (66), see [49]. Interestingly, a model
that also builds on such nonlinear possible extensions of the UCM model [53]
has been proposed recently for elastoviscoplastic materials (which, we recall, are
still much debated). In any case (66) contains the kinematic essence of most
differential constitutive equations (material frame indifference for tensors) and
we postpone the discussion of other models to Remark 4 (and future works).

We nondimensionalize (67) introducing the Deborah number De = λ/T , and

T =

(
THH THz
T THz Tzz

)
=

1− θ
Re

(
2DH(uH) ∂zuH +∇Huz

(∂zuH +∇Huz)T 2∂zuz

)
+

(
τHH τHz
τTHz τzz

)
so the extra-stress τ satisfies the nondimensional UCM equations

De
(
Dtτ − (∇u)τ − τ (∇u)T

)
=

2θ

Re
D(u)− τ . (68)

Note that the cases De = O(ε) are a priori not the most physically interesting
because they lead us back to a purely-viscous Newtonian extra-stress when
ε→ 0, while, on the contrary, De→∞ is a well-known, difficult and interesting
limit toward elastic solid behaviours. In the following, we use the reformulation
of (68) with the also well-known conformation tensor variable σ = I + DeRe

θ τ ,
which is solution to an evolution equation using the single scalar parameter De

De
(
Dtσ − (∇u)σ − σ(∇u)T

)
= I − σ . (69)

The Weissenberg number Wi = DeRe/θ appears in Navier-Stokes (10) through

T =
1− θ
Re

(
2DH(uH) ∂zuH +O(ε)

(∂zuH +O(ε))T −2 divH uH

)
+

θ

ReDe

(
σHH − IH σHz
σTHz σzz − 1

)
,

(70)
where, recalling Section 3, we used the continuity equation, h ∼ ε and (H1) in

∇u =

(
∇HuH ∂zuH

(∇Huz)T ∂zuz

)
=

(
∇HuH ∂zuH
O(ε) −divH uH

)
.

We recall that for physical reasons4, the conformation tensor should always be
positive-definite, and indeed remains so as long as it is initially and solutions
to (69) are smooth enough (see e.g. [22]).

4For the model to be consistent with the usual thermodynamics principles: see e.g. [57].
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From now on, recalling Section 3, it is natural to assume σHH and σzz are
not only bounded but also have same scaling. Then, on noting that (69) reads

De
(
DtσHH − (∇HuH)σHH − σHH(∇HuH)T − σHz ⊗ ∂zuH − ∂zuH ⊗ σHz

)
= σHH−I

(71a)
De (DtσHz − (∇HuH)σHz − σHH(∇Huz)− σHz∂zuz − ∂zuHσzz) = σHz

(71b)
De (Dtσzz − 2σHz · ∇Huz − 2σzz∂zuz) = σzz − 1 , (71c)

it stems from (71a) and (71b) that (H4) : ∂zuH = O(1) is also as natural (for
boundedness) in viscoelastic non-Newtonian fluids as in purely viscous (Newto-
nian and non-Newtonian) fluids. Under (H4), one then obtains with De ∼ 1

De
(
DtσHH − (∇Hu0

H)σHH − σHH(∇Hu0
H)T − σHz ⊗ ∂zu1

H − ∂zu1
H ⊗ σHz

)
= σHH−I+O(ε)

(72a)
De
(
DtσHz − (∇Hu0

H)σHz + σHz divH u
0
H − ∂zu1

Hσzz
)

= σHz +O(ε) (72b)

De
(
Dtσzz + 2σzz divH u

0
H

)
= σzz − 1 +O(ε) (72c)

from (71a–71b–71c), for any first-order approximation u0
H = uH +O(ε) with a

flat profile, possibly corrected by some u1
H = O(ε).

6.1. The fast flow regime

Like in the previous cases, we obtain an inertial limit when one specifies (H2)
as (H2a) : k ∼ ε. On the contrary, to coherently use THz = O(ε) for BCs (17)
and (18) in Section 3 with

THz =
1

Re

(
(1− θ)∂zu1

H + θ
1

De
σHz

)
, (73)

we should now further assume, in addition to (H4),

(i) either (H3) : Re ∼ ε−1 like in the Newtonian case,

(ii) or (H5a) : 1− θ ∼ ε, plus either (H6a) : σHz = O(ε) or (H6c) : De ∼ ε−1,

(iii) or (H5b) : ∂zuH = O(ε) (which is stronger than (H4)) plus either (H6a),
or (H6b) : θ ∼ ε, or (H6c).

Note that in absence of other assumptions, De ∼ 1 and θ ∼ 1 shall be simply
taken as constants.

6.1.1. Small internal stresses

Under assumptions (H1−H2a−H4−H3), like in the Newtonian case, first-
order approximations (h0,u0

H) solution to (34–35) are not necessarily coherent
with BCs (17) and (18) and the point is how to approximately compute THz.
Introducing a correction u1

H satisfying

1

Re

(
(1− θ)∂zu1

H + θ
1

De
σHz

)
= ku0

H

b+ h− z
h

+O(ε2) , (74)
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one would then like to coherently replace (34–35) by a reduced model invoking
the depth-averaged horizontal momentum equation just like in the Newtonian
case, plus simplified UCM equations to close the system. Now, let us rewrite (74)

∂zu
1
H =

1

1− θ

(
Reku0

H

b+ h− z
h

− θ 1

De
σHz

)
+O(ε) . (75)

Then a coherent reduced model is obtained as usual after closing the second-
order truncation of the horizontal momentum equation, using the same trick∫ b+h
b

u1
H = O(ε3) as in the Newtonian case. Assuming, for the sake of simplicity,

(H7a) : ∂zσHH , ∂zσzz = O(1) (H7b) : ∂zσHz = O(1)

a profile can be computed explicitly from (75) such that
∫ b+h
b

u1
H = O(ε3) holds

u1
H =

1

1− θ

(
Rek

2h
u0
H

(
h2

3
− (b+ h− z)2

)
− θ

2

1

De
σ0
Hz (z − (h+ 2b))

)
, (76)

and the reduced model coherent with (H1−H2a−H4−H3−H7) finally reads
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0 + divH(h0u0

H) = 0 (77a)
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))
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θ
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)
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(
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)

+ γh0∇H∆H(b+ h0) (77b)
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H)σ0
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(
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1
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)
⊗ σ0
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)
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∂t(h
0σ0

Hz) + divH(h0u0
H ⊗ σ0

Hz) = h0
(
∇Hu0

Hσ
0
Hz − divH u

0
Hσ

0
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)
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1− θ

(
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)
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σ0
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∂t(h
0σ0
zz) + divH(h0u0

Hσ
0
zz) = 2h0σ0

zz divH u
0
H + h0 1

De
(σ0
zz − 1) . (77e)

This seems to be a new model. In particular, it was not identified in our
previous work [18] that focused on the case θ = 1. (In [18], one could not easily
derive an expression for ∂zuH : without linking shear strain with stress like (74),
a coherent approximation of (72b) like (77d) is not obviously computed.)
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Note that one retrieves the standard viscous shallow water (our reduced
model for the standard Navier-Stokes equations) in the limit θ → 0 (prior or
subsequent to ε → 0 ; i.e. the two formal limits commute here), plus UCM
equations that then become simply enslaved transport equations for a material
tensor (without feedback in the momentum equation). The limit θ → 1 is
unclear here, but we next assume θ = 1 +O(ε) (then with Re ∼ 1), and will be
able to derive the limit when σHz/De = O(ε).

6.1.2. Small viscous internal stresses: High-Weissenberg limit

Under assumptions (H1−H2a−H5a−H6a), a non-vanishing approximation
of σHz can be coherently constructed from (71b) only if (H5b) holds. Indeed,
σzz = O(ε) is not possible by (71c) and this is not coherent with (74) and
the horizontal momentum equation unless u0

H → 0. So let us only consider
(H1−H2a−H5a−H6c), plus (H7) for the sake of simplicity. This leads to

∂th
0 + divH(h0u0

H) = 0 (78a)
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(78c)

∂t(h
0σ0

Hz) + divH(h0u0
H ⊗ σ0

Hz) = h0(∇Hu0
H)σ0

Hz − h0σ0
Hz divH u
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+ h0 1
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∂t(h
0σ0
zz) + divH(h0u0

Hσ
0
zz) = 2h0σ0

zz divH u
0
H (78e)

whose solutions are coherent with the initial BVP when (H1 − H2a − H5a −
H6c−H7ab) holds.

The model (6.13) formally coincides with the limit 1/De→ 0, θ → 1 of the
previous section (provided k/(1−θ) and 1/De(1−θ) remain bounded), where the
elastic relaxation time is infinitely long as well as the retardation time associated
with the purely viscous term. It is some kind of “High-Weissenberg limit”, where
the UCM model suffers from deficiencies (see e.g. [22], and Remark 4 for repair
suggestions). Observe that our reduced model has essentially lost the terms
corresponding to the physical relaxation to thermodynamical equilibrium !
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6.1.3. Small viscous internal shear stresses

Under assumptions (H1−H2a−H5b), the motion-by-slice is stronger than the
usual one. This a priori restricts the regimes of validity for the reduced model
(even if solutions exist beyond the validity regime, they would not necessarily
define coherent approximations of the initial BVP). It implies

uH(t, x, y, z) = u0
H(t, x, y) +O(ε2) (79)

so that the correction u1
H to u0

H is of higher-order than usual ones and does
not show up in the horizontal momentum equation if, on the other hand, the
extra-stress terms can be computed coherently.

Now, under (H1−H2a−H5b−H6a−H7ab) – (H7) for the sake of simplicity
– one obtains the following reduced model, coherent with the initial BVP
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∂t(h
0σ0
zz) + divH(h0u0

Hσ
0
zz) = 2h0σ0

zz divH u
0
H + h0 1

De
(σ0
zz − 1) . (80e)

where, contrary to (77a–77b–77c–77d–77e) or its “High-Weissenberg limit” (78a–
78b–78c–78d–78e), the shear component σHz of the viscoelastic stress decouples
from the autonomous system of equations (80a–80b–80c–80e) and is simply com-
puted as a post-processed solution to (80d) enslaved through u0

H . (In (80d),
we have used (74) for the vertical derivative of the horizontal velocity, and the
approximate vertical velocity u0

z = uz +O(ε2) reconstructed from u0
H , the con-

tinuity equation and the impermeability condition at the bottom excatly like
in the Newtonian case, so (80d) is coherent with a first-order approximation
σ0
Hz = σHz +O(ε2).)
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The latter reduced model is a two-dimensional extension of the one-dimensional
model derived in [18] when θ = 1, k = 0 specifically. We recover the case of
pure-slip condition k = 0 at bottom boundary for θ ∈ [0, 1) straightforwardly by
taking the limit k → 0 in the system above. The inviscid limit case θ → 1 can
be treated assuming (H5a) : 1− θ ∼ ε along with k = O(ε2), like for Newtonian
fluids, see also the discussion in [20].

When one assumes (H6b − H7ab) in addition to (H1 − H2a − H5b), one
straightforwardly obtains the same autonomous system of equations as in the
reduced model with (H6a), that is (80a–80b–80c–80e). A coherent first-order
approximation without even assuming any scaling for σ is then define ! (The
coefficient θ is then only responsible for the small scale of the whole tensor.)
Moreover, the shear approximation σ0

Hz = σHz+O(ε) need not be smaller than
elongational components of the stress tensor. It is found as a solution to

De
(
Dtσ

0
Hz − (∇Hu0

H)σ0
Hz + σ0

Hz divH u
0
H

)
= σ0

Hz . (81)

Last, (H1−H2a−H5b−H6c−H7ab) yields a reduced model coherent with
a “High-Weissenberg-limit” approximation of the initial BVP, that is
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∂t(h
0σ0

Hz) + divH(h0u0
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0σ0
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Hσ
0
zz) = 2h0σ0

zz divH u
0
H . (82e)

It is remarkable that no correction to the flat profile is necessary under
assumption (H5b) (even if a profile can be reconstructed afterwards from (76)),
whereas the presence of purely (Newtonian) viscous forces is in turn hardly seen
but in dissipation terms when one enforces (H5b) instead of (H5a). Furthermore,
requiring the velocity to have a flat profile (79) is thus a priori a very strong
limit for the applicability of our reduced models to real flows. This may however
be particularly interesting for the cases where the normal stress differences are
large, since the stress (70) then reads

T =
1− θ
Re

(
2DH(uH) O(ε)
O(ε) −2 divH uH

)
+

θ

ReDe

(
σHH − IH σHz
σTHz σzz − 1

)
, (83)

where either (H6b) : θ ∼ ε, eor (H8) : σHH = I+O(ε) , σzz = 1+O(ε) , σHz =
O(ε2) (a stronger assumption necessary when starting with (H6a) : σHz ∼ ε) or
(H6c) : De ∼ ε−1 holds but the viscous stretch need not be scaled even though
viscoelastic components are always small.
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To conclude this section, note that even though some reduced models have
been identified in the High-Weissenberg limit regime (H6c) : De ∼ ε−1 where the
model is questionable, we have obtained otherwise two main reduced models –
the closed systems of equations (77a–77b–77c–77d–77e) and (82a–82b–82c–82e)
– whose solutions define coherent approximations of the initial BVP in physi-
cally sensible regimes. It would be interesting to numerically simulate the first
one, which has not been done yet to our knowledge, and compare it to the two-
dimenionsal extension of the model in [18]. Note in particular that shear effects
are then not necessarily small in comparison with elongational/compression ef-
fects, which we suspected to be a problem for the applicability of the second
reduced model to real (often sheared !) flows, as noted in [18].

6.2. The slow flow regime

Assuming (H1−H2b−H4), we proceed for the viscous limit of viscoelastic
fluids as usual. We specify (H2) as (H2b) : uH |z=b = O(ε) and next require
THz = O(ε) as above in the inertial case, in addition to (H4) : ∂zuH = O(1).
Recall also that the flow is necessary slow here (uH = O(ε)) and one obtains
from the momentum balance

1

Re

(
(1− θ)∂zuH + θ

1

De
σHz

)
= fH(z − (b+ h)) +O(ε2) (84)

after using THz|z=b+h = O(ε2) and
∫ b+h
z

divH(THH − Tzz) = O(ε2).
Assuming (H3) : Re ∼ ε−1 plus (H7) for the sake of simplicity in addition

to (H1 − H2b − H4) (and of course De ∼ 1, θ ∼ 1 as long as nothing different
is precised for these nondimensional numbers) leads to a reduced model that is
an autonomous system of equations for (h0,σ0

Hz, σ
0
zz)

∂th
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1
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De
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= 0 (85a)
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where the discharge in the continuity equation is computed from (84) and

uH =
1

1− θ

(
Re

2
fH (z − (b+ h))

2 − θ 1

De
σ0
Hz(z − b)

)
+O(ε2) , (86)

and the longitudinal stress components are obtained by the post-processing
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(87)
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Assuming (H5a) : 1− θ ∼ ε and (H6a) : σHz = O(ε) again requires ∂zuH =
O(ε) and cannot be coherent, so we consider (H5a) with (H6c) : De ∼ ε−1 only,
which leads to σzz = 1 + O(ε) constant (equal to physical equilibrium) and a
reduced model consisting of the limits of (85a) and (85b) as 1/De → 0. (with
(87) for post-processing σ0

HH only).
Last, assuming (H5b) : ∂zuH = O(ε) and (H6b) : θ = O(ε) leads to the

same reduced model as the first one above (and is coherent under the more
restricitive regime where O(ε2) is replaced by O(ε3) in (86)), while (H5b) and
(H6c) gives the same as the second one above.

All these systems seem new to us: other viscous limits of non-Newtonian
viscoelastic fluid models have already been derived, but on assuming different
scalings, see e.g. [10, 9, 11] (De ∼ ε).

Remark 4 (Nonlinear differential constitutive equations and HWNP).
The most used variations of the UCM model are nonlinear modifications of these
differential constitutive equations, for instance the FENE-P model where the

extra-stress reads τ = θ
DeRe

(
σ

1−trσ/b − I
)

. The new parameter b > 0 is such

that 0 ≤ trσ ≤ b (this is preserved by smooth time evolutions of the flow). The
conformation tensor σ is solution to the nonlinear equation

De
(
Dtσ − (∇u)σ − σ(∇u)T

)
= I − σ

1− trσ/b
. (88)

One nice feature is that the constraint 0 ≤ trσ ≤ b is believed to alleviate defi-
ciencies of the UCM model (High-Weissenberg-Number Problems or HWNP in
short) in the “High-Weissenberg limit” (at least, well-posedness has sometimes
been shown for smooth flows, see e.g. [43]). Now, reduced models are then still
easily derived as long as one does not use (H6a) : σHz = O(ε). It suffices to
multiply the last term on the right by 1

1−trσ/b , which is indeed never small,

• in (77b), (77c) and (77e) under (H1−H2a−H4−H3−H7),

• in (82b), (82c) and (82e) under (H1−H2a−H4−H5b−H6b−H7).

On the contrary, since 1
1−trσ/b can become arbitrary large when trσ → b, this

is not only incompatible with (H6a) : σHz = O(ε), but also requires additional
assumptions in the case (H6c) : De ∼ ε−1 (thus not treated here).

Another way to avoid HWNP is to assume De ∼ ε like in e.g. [10, 9, 11] !
Then, one cannot expect strong viscoelastic influences on the flow, of course.
Though, this scaling may be enough for some applications, and we would like to
mention that it has recently raised interesting new persepctives: a new approach
to formal model reduction combining micro and macro scales [47] that is indeed
consistent with a Newtonian behaviour in the limit De→ 0.

7. Conclusion

We have defined a mathematical framework that allows to derive coherent
long-wave thin-layer approximations to the free-surface Navier-Stokes flows of
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fluids with many various possible rheologies. For each rheology, different reduced
models have been derived depending on assumptions about the internal stresses
and about the flow, which is assumed driven by gravity on a rugous slowly
varying topography. The different models are mainly of two kinds: fast or slow.

Most reduced models derived herein were already known, and the shallow
water equations in particular have already proved useful in the numerical sim-
ulation of specific situations (dam-breaks for instance). But on the one hand,
they do not seem to have been derived in a single unifying framework yet. More-
over, on the other hand, the models for viscoelastic fluids seem to have been
much less explored, and some of those derived herein seem new to us. Of course,
the question how well the latter actually model real flows is still to be answered.
This could be investigated numerically. To that aim, one could follow the same
path as in our previous work [18] where we considered the viscoelastic 1D fast
flows without friction nor surface tension. See also our recent extension to a 1D
case with friction and inclined gravity effects [20].

We hope that the unified framework derived herein will help characterize
features essential to long-wave thin-layer flow modelling, and help evaluate the
quality of various rheological models applied to geophysical free-surface flows.
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[52] A.J.C. de Saint-Venant, Théorie du mouvement non-permanent des eaux,
avec application aux crues des rivières et à l’introduction des marées dans
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