PHOTOINDUCTIVE DEGRADATION OF TWO ESTROGENS BY NATURAL DISSOLVED ORGANIC MATTER UNDER SIMULATED SUNLIGHT
Emilie Caupos, Jean-Philippe Croue, Patrick Mazellier

To cite this version:
Emilie Caupos, Jean-Philippe Croue, Patrick Mazellier. PHOTOINDUCTIVE DEGRADATION OF TWO ESTROGENS BY NATURAL DISSOLVED ORGANIC MATTER UNDER SIMULATED SUNLIGHT. EMEC 10, 2009, Limoges, France. hal-00822552

HAL Id: hal-00822552
https://hal-enpc.archives-ouvertes.fr/hal-00822552
Submitted on 14 May 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PHOTOINDUCTIVE DEGRADATION OF TWO ESTROGENS BY NATURAL DISSOLVED ORGANIC MATTER UNDER SIMULATED SUNLIGHT

Emilie Caupos, Patrick Mazellier, Jean-Philippe Croué

Laboratoire de Chimie et Microbiologie de l’Eau (LCME) UMR 6008
40 avenue du Recteur Pineau
86022 Poitiers

EMEC 10 Limoges 12/04/09
Estrone (E1) 17β-estradiol (E2)

➢ Presence in the environment

- natural estrogens (steroidal hormones) present in aquatic media (through animals excretion)

- released into surface and ground waters through wastewater effluents

- detected in soils adjacent to agricultural fields fertilized with animals waste

- E1 and E2 = two main estrogens detected in fresh and marine waters ~ in ng/L, Hohenblum 2004, Zuo 2006)
Introduction

- **Effects on aquatic organisms**
 - impact on reproductive system and development of reproductive organs (Jobling 2002, Rodgers-Gray 2000)

- **Human impacts**
 - increased incidents of breast, testicular and prostate cancer

 - no conclusive relationships established between endocrine disruptor exposure and human health

- **Photodegradation**: half-lives under simulated solar system
 - E1 : 4,7 h (Lin et Reinhard 2005)
 - E2 : 13,6 h (Leech 2008)
Introduction

Natural Dissolved Organic Matter (DOM)

- Presence in the environment
 - complex matrix
 - natural decomposition of ecosystems: terrestrial and aquatic origins
 - composition and concentration depending on the nature and origin of the media (Thurman 1985)

- Photodegradation
 - degradation (break of aromatic structures Carvalho 2008)
 - light absorption and production of reactive species \(^1\text{O}_2, \text{OH}^\circ, \text{RO}^\circ, \text{solvated electrons, ...} \) (Aguer 1999)
Materials and Methods

Photolysis

- Photodegradation under **simulated sunlight** (Suntest Atlas CPS+)

Analysis

- HPLC-UV
- Spectrophotometer, Fluorimeter, TOCmeter

Suntest 8h, 250 W/m², 900 kJ/h:
- ~ 800 nM E1 or E2
- 20 mg/L DOM
- pH = 7
Optical properties of DOM

- 3 extracts used in photolysis experiments: fulvic acids of Pinail (France), Suwannee and South Platte (US rivers) at 20 mg DOM/L or 10 mg C/L

Order of UV-Visible absorbance:
- Pinail > Suwannee >> South Platte
Materials and Methods

Optical properties of DOM

- 3 extracts used in photolysis experiments: fulvic acids of Pinail (France), Suwannee and South Platte (US rivers) at 20 mg DOM/L or 10 mg C/L

Fluorescence/Absorbance Order

South Platte > Pinail > Suwannee

The most efficient

EMEC 10 Limoges 12/04/09
Indirect photolysis

Nature of DOM Influence → E₁

Photoinductive efficiency

- South P. 76% > Pinail 66% > Suwannee 56%

Relationship between DOM nature – photoinductive efficiency

Suntest 8h, 250 W/m², 800 nM E₁, pH7

- [%Error (duplicates) : 2-5 %](#)
Indirect photolysis

Nature of DOM Influence → E2

Photoinductive efficiency

South P. 69% >>
Pinail 41% >
Suwannee 39%

Relationship between DOM nature – photoinductive efficiency

The more fluorescent the more photoinductive efficient

Sunset 8h, 250 W/m², 700 nM E2, pH7

%Error (duplicates) : 3-6 %

EMEC 10 Limoges 12/04/09
Indirect photolysis

Reactive species

- Addition of inhibitors: NaN$_3$ and 2-propanol

Photodegradation decrease with the addition of inhibitors

For every DOM:
Degradation without inhibitor > with NaN$_3$ > with 2-propanol
Indirect photolysis

Reactive species

- Addition of inhibitors: NaN$_3$ and 2-propanol

Reactive species in the inductive photodegradation

- 1O$_2$: participation in the photodegradation about 2 – 10 %
- OH$: participation in the photodegradation about 7 – 17 %
Indirect photolysis

Photoprodut (P1)

- Formation kinetics

![Graph showing formation kinetics of photoprodut (P1) with different water sources.](image-url)
Indirect photolysis

Photoproduction (P1)

- Formation kinetics

P1 formation decreases in the presence of DOM

Degradation of P1 by S. P. after 6 h

P1 degraded by DOM or Optical filter effect of DOM
Indirect photolysis

Kinetics

- Pseudo-first order kinetic rate constants obtained for E1 and E2 during inductive photodegradation by DOM solutions

<table>
<thead>
<tr>
<th></th>
<th>k_{O2} (h$^{-1}$)</th>
<th>$k_{O2+NaN3}$ (h$^{-1}$)</th>
<th>k_{O2+Pro} (h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_2$OmQ</td>
<td>0.09</td>
<td>R2=0.998</td>
<td></td>
</tr>
<tr>
<td>Pinail</td>
<td>0.13</td>
<td>R2=0.977</td>
<td>0.11</td>
</tr>
<tr>
<td>Suwannee</td>
<td>0.10</td>
<td>R2=0.997</td>
<td>0.09</td>
</tr>
<tr>
<td>South Platte</td>
<td>0.18</td>
<td>R2=0.981</td>
<td>*</td>
</tr>
<tr>
<td>E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_2$OmQ</td>
<td>0.02</td>
<td>R2=0.958</td>
<td></td>
</tr>
<tr>
<td>Pinail</td>
<td>0.07</td>
<td>R2=0.985</td>
<td>0.05</td>
</tr>
<tr>
<td>Suwannee</td>
<td>0.06</td>
<td>R2=0.993</td>
<td>0.04</td>
</tr>
<tr>
<td>South Platte</td>
<td>0.14</td>
<td>R2=0.973</td>
<td>*</td>
</tr>
</tbody>
</table>

* Not done
Conclusion

- Photodegradation of E1 and E2 is possible under natural sunlight

- Observation of DOM photosensibility

- Participation of singlet oxygen and hydroxyl radicals in the reaction

- Formation of a by-product
Future works

- Identification of the by-product (LC-MS)

- Development on the relationship between nature of DOM and its photoinductive properties (RMN ^{13}C, oxidation of DOM to the hydrophilic fraction)

- Study of by-product toxicity (osters)
Thank you