Photoinductive degradation of two pesticides by natural dissolved organic matter under simulated sunlight
Emilie Caupos, Patrick Mazellier, Jean-Philippe Croue

To cite this version:
Emilie Caupos, Patrick Mazellier, Jean-Philippe Croue. Photoinductive degradation of two pesticides by natural dissolved organic matter under simulated sunlight. TransCon2010, Sep 2010, Switzerland. hal-00822551

HAL Id: hal-00822551
https://hal-enpc.archives-ouvertes.fr/hal-00822551
Submitted on 14 May 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Photoinductive degradation of 17β-estradiol and isoproturon by natural dissolved organic matter under simulated sunlight

Emilie CAUPOSa*, Marie DEBORDEa, Patrick MAZELLIERa,b, Jean-Philippe CROUEa,c

a Laboratoire de Chimie et Microbiologie de l’Eau, Poitiers, France
b Laboratoire de Physico et Toxico Chimie de l’Environnement, LPTC, Bordeaux, France
c Kaust, Saudi Arabia
* contact : emilie.caupos@univ-poitiers.fr

- Pollutants degradation is always faster in the presence of DOM than in purified water.
- Enhancement effect strongly depends on the nature of DOM extracts.
- An order of DOM efficiency is observed :
 - South Platte (69%, E2; 72%, IPU) >> Pinail (41%, E2) > Suwannee (39%, E2; 37%, IPU)

\begin{align*}
\text{Without Inhibitor} \quad \% \text{ E2 degraded after 8 h} & \quad \% \text{ IPU degraded after 8 h} \\
\text{Suwannee} & \quad 10\% \quad 4\% \\
\text{Pinail} & \quad 17\% \quad 14\% \\
\text{Without Na₃} & \quad 6\% \quad 0\% \\
\text{With 2-propanol} & \quad 12\% \quad 19\%
\end{align*}

\begin{align*}
\text{Without Inhibitor} \quad \% \text{ E2 degraded after 8 h} & \quad \% \text{ IPU degraded after 8 h} \\
\text{Suwannee} & \quad 12\% \quad 6\% \\
\text{Pinail} & \quad 19\% \quad 0\% \\
\text{Without Na₃} & \quad 19\% \quad 19\% \\
\text{With 2-propanol} & \quad 0\% \quad 0\%
\end{align*}

\begin{align*}
\text{Pathway of E2} & \quad \text{Pathway of IPU} \\
1: \text{hydroxylation of aromatic cycle or cycle closed to aromatic one} (E21-E24) & \quad 1: \text{demethylation of dimetylurea group (I5)} \\
2: \text{E2 quinone methide derivative (E27)} & \quad 2: \text{hydroxylation of aromatic cycle (I1 and I4)} \\
3: \text{hydroxylation of aromatic cycle and oxidation of phenolic groups (E25 and E26)} & \quad 3: \text{simultaneous demethylation and hydroxylation of isopropyl group (I2 and I3)}
\end{align*}

Conclusions
- DOM presents an ability to photoinduce the degradation of micropollutants; its efficiency depending on the micropollutant and on its own properties (nature of the extract).
- During photoinductive degradation, reactive species such as singlet oxygen and hydroxyl radicals are produced by DOM and react with the pollutants. However, the participation of these 2 molecules has only been observed. Excited triplet states may contribute to a large extent in the reaction.
- Photoproducts have been observed. They come from hydroxylation, oxidation and demethylation/dealkylation mechanisms of the parent compound.