Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A Variational Analysis of the Thermal-Equilibrium State of Charged Quantum Fluids

Abstract : The thermal equilibrium state of a charged, isentropic quantum fluid in a bounded domain Omega is entirely described by the particle density n minimizing the total energy E(n) = integral(Omega)\del root n\(2) + integral(Omega)H(n) + 1/2 integral(Omega)nV[n] + integral(Omega)V(e)n where Phi = V[n] + V-e solves Poisson's equation -Delta Phi = n - C subject to mixed Dirichlet-Neumann boundary conditions. It is shown that for given N > 0 (i. e. for prescribed total number of particles) this energy functional admits a unique minimizer in {n is an element of L(1) (Omega); n greater than or equal to 0, integral(Omega) n = N, root n is an element of H-1 (Omega)} Furthermore it is proven that n is an element of C-loc(1,lambda)(Omega)boolean AND L(infinity)(Omega) for all lambda is an element of (0, 1) and n > 0 in Omega.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-enpc.archives-ouvertes.fr/hal-00779889
Contributeur : Ist Enpc <>
Soumis le : mardi 22 janvier 2013 - 16:50:04
Dernière modification le : samedi 7 avril 2018 - 01:18:31

Identifiants

Collections

Citation

F. Pacard, A. Unterreiter. A Variational Analysis of the Thermal-Equilibrium State of Charged Quantum Fluids. Communications in Partial Differential Equations, Taylor & Francis, 1995, 20 (41430), pp.885-900. ⟨10.1080/03605309508821118⟩. ⟨hal-00779889⟩

Partager

Métriques

Consultations de la notice

232