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Analytical inverse solution for coupled thermoelasticlgem for the
evaluation of contact stress during steel strip rolling

Daniel Weisz-Patrault Alain Ehrlache?, Nicolas Legranti

8Ecole Ponts ParisTech, UR Navierg68 Ave Blaise Pascal, 77455 Marne La Vallee, France
bArcelorMittal Global Researc: Development, Maiziére Process Voie Romaine, BP 3032028%Kaiziéres-lés-Metz Cedex

Abstract

Knowledge of the contact stress between roll and strip ist@airfactor in modern, high-speed rolling mills.
Previously two inverse analytical methods have been dpeelto determine the elastic contact stress on the one
hand and the heat flux or the temperature in the whole roll @spicially at the surface) on the other hand,
by measuring the stress tensor inside the roll body with fidp#cs and by measuring the temperature with a
thermocouple fully embedded at only one point inside the Fbwever measurements done by fibre optics take
into account the elastic stress and the thermal stress. Howee contact stress was determined under isothermal
assumption, which is strongly incorrect for hot rolling ditions. In this paper, the coupled thermoelastic problem
is solved analytically using the theorem of superpositiod the expression of the temperature field exhibited
previously. A significant improvement of the accuracy of iteerse method for reconstructing the contact stress
is observed by taking into account thermal stress. HotrmglBimulation is given to demonstrate this result.
The computation time is studied to rapidly optimise the stdal parameters during the rolling process, and
considering that both inverse methods have been run, thewiation of thermal stress does not cost significant
additional CPU times.

Keywords:
Steel rolling, Thermoelastic, Friction sensor, Compuotatime, Inverse analysis, Temperature sensor

Table 1: Nomenclature

Roll

Radius of the roll
Radius of temperature measurements (thermocouplée
Radius of stress measurements (fibre optics)
Radial position of Eulerian point
Angular position of Eulerian point
Time
Initial temperature of the roll
Radial direction
Circumferential direction
Rotation speed
Thermal ditusivity of the roll
Thermal dilatation of the roll
aF Thermal dilatation of the fibre optics
A,u  Lamé’s codficients of the roll
Solution in the roll
T Eulerian temperature
T, nth codficient involved in the expansion af (complex)
Yn nth codficient involved in the expansion df (real)
u Displacement field
Ur Radial displacement
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Ug Circumferential displacement
o Stress of the global problem
o’ Reconstructed stress (global problem)
o? Applied stress (global problem)
ah Stress of the auxiliary problem A
oB Stress of the auxiliary problem B
o Stress of the auxiliary problem C
oth Thermal stresso!" = o + B)
TA Tensile vector of the auxiliary problem A
T8 Tensile vector of the auxiliary problem B
TC Tensile vector of the global problem and problem
N1 Order of truncation (integer)
N2 Order of truncation (integer)
N Number o points of the reconstruction (integer)
in Codficient (complex)
Jn nth Bessel function of the first kind
Xn Successive positive zeros &f
Pn(r)  Function involved in the expansion of
pn(r)  Function involved in the expansion of
Qn(r) Function involved in the expansion of
an(r)  Function involved in the expansion of
Ln Codficient (complex)
In Codficient (real)
L Vector ofL,,
| Vector ofl,
In(r)  Codficient (real)
Sn(r)  Function involved in the expansion of*
s(r)  Function involved in the expansion oft
z Complex variable = rexp(i6)
®(z2) Holomorphic function
¥Y(2  Holomorphic function
f(2 Holomorphic function
92 Holomorphic function
on Codficient of the expansion ab(2)
Un Codficient of the expansion oF(2)
fa Codficient of the expansion df(2)
On Codficient of the expansion @f(2)
¢ Vector of ¢,
v Vector ofyn,
A Matrices related to* (..=rr, ré or 66)
a Vectors related to* (..=rr, ré or 66)
B; Matrices related to-® (j=1,2 or 3)
g;j(r)  Auxiliary functions (j=1,2,3 or 4)
€ Error estimate
Strip
T; Initial temperature of the strip
Fr Rolling force
fj Initial thickness of the strip
tf Final thickness of the strip
R Reduction ratio of the strip




L¢ Contact length
HTC Heat Transfer Cd#cient in the contact strjpoll
oo Initial yield stress of the strip

1. Introduction

1.1. Objectives of the paper

In steel rolling processes, two rolls are used as tools toaedhe thickness of a workpiece. Modern rolling
mills combine higher rolling speeds, larger reductionsgbasteel grades and thinner rolled strips. Thus, to ensure
better product quality, especially in terms of thicknesgniss and defect-free surface, knowledge of friction and
lubrication in the roll gap becomes critical. The contadiNgen the strip and the roll is a location of unknown
shear stress and normal pressure and lubrication conglit®ome models that characterise the interface taking
into account lubrication have been proposed in recent ysakéontmitonnet et al. [1] but still need experimental
validation. On the other hand, with industrial rolling pess being currently dictated by empiricism, knowledge
of the contact stress would be desirable to allow an optitinisaf parameters such as speed and lubrication, with
a closed-loop control.

In order to estimate the contact stress between the rolllamdttip Legrand et al. [2] recently computed an
inverse method (with isothermal assumption) developed bieNofer and Stelson [3], which interprets stresses
measured at two locations inside the roll (at twieatient radii). Legrand et al. [2] studied the skin thicknebgre
thermal stress is not negligible and attempted to perfomirtherse method by measuring the stress tensor deeper
than this skin thickness. The inversion failed, and the @asthoncluded that the inversion was impossible for hot
rolling conditions. However, this paper is an attempt torowene this dfficulty. Instead of measuring deeper than
the skin thickness to avoid large thermal stress, a them@mstielproblem can be solved to take into account thermal
stress and therefore to allow measurements very close frersurface of the roll.

In a previous contribution Weisz-Patrault et al. [4] propdbs&n improved inverse analytical method which
interprets measured stresses (fibre optics fully embeddeaffer the contact stress between the roll and the strip.
Measurements are done at only one location inside the rdittae method is demonstrated to be more accurate.
The solution is analytical and a very short computation §iraee obtained (0.07 s for each cycle). To make the
reading easier, the basic mathematical principles of theéisa are reminded in Section 4. However the problem
was assumed to be isothermal. Therefore a corrective aoligi needed to take into account the significant
thermal stress occurring during hot rolling. It is demoatgtd in the paper (Section 9) that it is necessary to take
into account this thermal stress, otherwise the error comzes the inverse method.

Weisz-Patrault et al. [5] also proposed an inverse anallytiethod which interprets measured temperatures
(thermocouple fully embedded) to infer heat flux or tempamafield in the whole roll (and especially at the
surface of the roll without knowing any thermal boundary ditipns). The method being analytical very short
computation times are also obtained (0.05 s for each cyolg}tee basic mathematical principles of the solution
are reminded in Section 5.

In this paper, thermal stresses are derived from this teatperfield by using analytical developments. Mathe-
matical modeling and analytical solutions are exposed ati&es 6 and 7. Moreover this paper aims at combining
both inverse solutions (contact stress and temperatud} firebrder to obtain the contact stress between the roll
and the strip by taking into account large gradients of taaipiee and therefore large thermal stress.

The Figure 1 presents a schematic view of the measuremeatsyhe thermocouple is located at the radius
R: and the fibre optics at the radiis. The rotation of the roll allows measurements on the whaldes.
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Figure 1: Geometry

1.2. Perspectives

Although the main focus of this paper is the contact stresgdzn the roll and the strip (determined by inverse
analysis and corrected with the present thermoelasticgmgb the present method can be used for other aims.
For hot rolling conditions, knowledge of thermal stres®asables the evaluation of thermal fatigue, which is
one of the major factor of wear on rolls. In this way Corrallef@] proposed a mixed analytigalumerical model
which predicts the life time of the work roll on the base of aalgsis of thermal stress. However, the coupling of
the radial and tangential displacement is neglected asaséle rotations. The solution proposed by Corral et al.
[6] is compared with the solution developed in this papemtovsthe influence of these simplifications. Li et al.
[7] proposed more recently a three-dimensional model bitd-Element Method (FEM) to evaluate the thermal
stress of the roll.

1.3. Fibre optics and thermocouple

The fibre optics are glued to the roll body in a thin hole. Therioelastic stress of the roll body passes through
the glue to the fibre optics. The tiess of the glue implies that a transfer function is necgdsanterpret the
measurement of the fibre optics. In this paper this transfiectfon is not studied. Moreover, the variation of
temperature of the fibre optics themselves implies an additimeasured thermal strain. This additional thermal
strain has nothing to do with the additional thermal stregstd the roll body, and should be removed separately.
This can be done by considering an axial body (the fibre) lddxyea variation of temperatueel = T — T,. The
thermal strain is therefore= ar AT, whereT is the actual temperature at the position of the filggthe initial
temperature andg the thermal dilatation of the fibre. In the following it is assed that the inputs have been
cleaned from this additional thermal strain.

The insertion of the thermocouple in the roll body has beedistl experimentally by Weisz-Patrault et al.
[8] who focused on the feasibility of inserting a thermocleup industrial work rolls, technological equipment,
wireless acquisition system, quality of measurementsiafhukince of the reduction ratio of the strip. Legrand et al.
[9] proposed another experimental study which focuses mgpecially on the influence of the scale thickness and
evaluation of the contact resistance between the striprancbtl.

2. Validation of the method

2.1. Rolling conditions for validation

The validation of the exactness of the analytical solutiwhi¢h computes thermal stress) on the one hand
and the necessity of taking this thermal stress into accfarrthe evaluation of contact stress by the inverse
analysis proposed by Weisz-Patrault et al. [4] on the othedhs demonstrated as follows. Hot rolling process
is simulated by a 3D thermo-mechanical siifi stack coupled model proposed by Hacquin [10]. This nhode
called Lam3Tec3 is a software developed by Cemef, Transvalor, ArceiitaMResearch and Alcan, and it solves
the strip elastic-viscoplastic strain by 3D FEM, and thé stack elastic deformation by semi-analytical models.



Then the temperature field in the whole roll is computed by ADMising Heat Transfer Cécients (HTC). The
rolling conditions are listed in Table 2. Among several augh this model has been used by Legrand et al. [2],
Weisz-Patrault et al. [4] and Abdelkhalek et al. [11] who gavore details on the formulation.

Many papers model rolling processes by FEM. For examplgdad Tieu [12] proposed a 3D rigid plagtitsco-
plastic FEM. More recently Montmitonnet [13] proposed a mled numerical model for hot and cold rolling
process. A comprehensive hot rolling process has also beeeled recently by Wang et al. [14]. Abdelkhalek
et al. [11] used LamJec3 and added the computation of the post-bite bucklinp@fstrip, in order to predict
accurately flatness defects. Moreover Shahani et al. [b3lsited a hot rolling process of aluminum by FEM
and used an artificial neural network in order to predict thkdviour of the strip during the rolling process (the
artificial neural network being trained by the simulationdm3Tec3 [10] has been chosen because the simulation
was already done (directly taken from Legrand et al. [2]) previously used for demonstrating the accuracy of
the inverse method of Weisz-Patrault et al. [4]. Therefbeesame simulation is used to demonstrate the exact-
ness of the present thermal stress computation and thesityagfcorrecting the inputs of the inverse method of
Weisz-Patrault et al. [4].

Among other outputs, LaniBec3 [10] produces the contact stress (see Figure 7), tleetethperature field
inside the rollis computed (see Figure 3). The aim of the pap®t at simulating rolling process but at developing
inverse analysis dedicated to measurement interpretéfttoese simulated contact stress and temperature field are
only used as possible conditions for a work roll during hdlimg process for the only purpose of validating the
presented method. Therefore the formulation of the modei3/&ec3 [10] is not reminded in this paper.

2.2. Validation of the analytical solution

The temperature field produced by the simulation of hotngljprocess is used to compute the thermal stress
with the analytical method developed in Sections 6 and 7.ddeer a simple linear and plain strain FE compu-
tation of the thermal stress has also been done with the &ree@ast3m [16] and a comparison (see Figure 5) is
done to show the exactness of the present analytical solof&ry good agreement is obtained. It should be noted
that this temperature field can be practically evaluateddiygithe analytical inverse analysis of Weisz-Patrault
et al. [5] which interprets measurements of a thermocouplesgided inside the roll body. In this paper the tem-
perature field is numerical but by considering the tempeeatithe radiuf., the analytical form (14) is deduced
(as it would have been done with real measurements).

2.3. Influence of thermal stress on contact stress recocisbmn

Moreover the contact stress produced by LAre83 [10] is used to compute the purely elastic stress iribigle
roll. The purely elastic stress tensor at the radRgsorresponds with corrected inputs (free from thermal sjres
The thermal stress at the radiegcomputed with the present method can also by added to théy/mlastic stress
to constitute thermo-elastic inputs (which replace measants done with fibre optics). The evaluation of contact
stress by using the inverse analysis proposed by Weisaiagt al. [4] is done both with purely elastic inputs and
thermo-elastic inputs and a comparison with the appliedamtistress (produced by Layfi@c3 [10]) is proposed
to show the necessity of taking the thermal stress into atdouan accurate evaluation of contact stress.

3. Principle of superposition

The present method considers only the work roll. The stripismodeled because this paper aims at develop-
ing inverse methods and not at simulating the rolling preceith coupled FEM. The contact stress (mechanical
boundary conditions) and temperature field are inferreghftioe inverse methods which interpret measurements
of stress tensor and temperature at regdiandR;.

The Figure 2 explains the decomposition of the problem. Thdiary problem A is direct. The temperature
field is considered as a thermal load. It is in the form of (IM)dduced by Weisz-Patrault et al. [5] and briefly
reminded in Section 5. The solution is only a particular 8ohy no specified boundary conditions are settled.
Consequently the calculated tensile vector at the outéns#y (calledT” = o4 (Ry, 6)er + o-fe(Rd,a)eg) should
be compensated by an other elastic problem wilfi as boundary conditions. This is the purpose of the auxiliary
problem B which is also direct (boundary conditions knowiifje superposition of both auxiliary problems A and
B gives the thermal stress in the whole roll (considering tiedisplacement is blocked at the surface of the roll).
Thereforer™ = o + o8, whereth means thermal. All the notations are listed in Table 1
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(Direct problem)

Isothermal Isothermal
(Direct problem) \  (Inverse problem)
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particular solution

General problem Auxiliary problem A Auxiliary problem B Auxiliary problem C
Section 6 Section 7 Section 4
Weisz-Patrault et al. [4]

T(l’; 0, f) : Section 5
Weisz-Patrault et al. [5]

Figure 2: Superposition

4. Auxiliary problem C

This inverse problem has already been solved by Weisz4faétaal. [4]. However the basic principles of the
solution are reminded in this section in order to make thdirepeasier. The fibre optics give the measurement
of the stress tensor at the radiBgs called o} (6), o7;(f) and oy (6) wherem means measured. Practically this
stress tensor is measured with thermal stress, therefbrec® + o™ wheree means purely elastic arid means
thermal. This paper aims at determininj which is done in Sections 6 and 7. The inputs of this inversthae
arec®, which is determined simply by® = ™ — ot

The elastic stress® of the auxiliary problem C verifies the equations of elastiédr an isotropic material
under the isothermal assumption given by Muskhelishvit]{1

{ oG (r.60) + o5(r.0) = 2(f() + T(2) )
—o 5 (r,0) + o5,(r, 0) + 2ic5,(r, ) = 2exp(26) (9(2) + 2 (2))

wherez = r exp(6) and f(2) andg(2) are unknown holomorphic functions defined on the roll. Matiatically,
these functions can be expanded into a power series. Therefo

=3 fk(é)k 6 - ggk(é)k @

k=0
By combining (1) and (2) and considering thet(Ry, 6) = 0°(6) it is obtained that:

+00
& (0) + o5(6) = 2 ) fexp(ke) + i exp(-ike)

. ®
~05(6) + 05(6) + 205,(6) = 2 ) (cexpl(k + 26) + kgc expke)
k=0

By using (4), cofficientsf, andgy are calculated by integrating the purely elastic part ofstinesses measured at
the inner radius (with fast fourier transform) using (5):

2ir k=-1
R @



1 21
fo= o fo o2 (6) + o2,(6) o
Yk € N*
2 o€ (6) + oS, (6
szif o (0) 0-09()(19 5)
ar Jo exp(ko)
Yk e N
1 (7 -0 (6) + 05,(0) + 2i08,(6)
%= 7x fo expl(k+ 2)9) 60 = (k+ 2)ficz

By combining (1) and (2), the stresses in the roll gap as atiomof f, andgy are obtained:

+00 k
o Ru ) + 7R 0) =2 () (1cexpth) + Trexp(-ka)
k=0 +00 k (6)
05 (Re.6) + 05 (Ra. ) + 2i0S(Ra0) =2 > (%) (Geexpl(k + 2)) + kf exp(ke))
k=0

By eliminatingo S (Ry, 6) in (6) the contact tensile vectdt© = oS (Ry, 6)e: + o5, (Ra, 6)ey is easily found.

5. Analytical temperature field

This inverse problem has already been solved by Weisz4faétaal. [5]. However the basic principles of the
solution are reminded in this section in order to make thdingpeasier. The temperature is measured at the radius
R. and is calledr ™(6). The linear heat equation for a rotating body is:

(7)

0°T 10T 10T 1 (0T  oT
a2 "ror "2 _Dlat T Yoe

whereD is the thermal dtusivity (assumed to be constant).
Two families of analytical solutions of (7) are used. Theuioh (8) is steady and solution (9) is transient:

vJn [ A /—i(%nr] exp(ing) (8)
yJo ( \/DITr] exp(—%) 9)

The solution is written as a linear combination of these f@siof solutions (8) and (9). The solution is divided
into two parts:T; which is the steady solution (updated at each cycle)Tanahich is the transient solution. The
measured temperature is expanded into a Fourier series:

N1
TM®) = Z Thexp(in) (10)

n=-—N;

where the Fourier cdicients (11) can be computed from measurementsfitith
1 27
Th= —f T™(0)exp(-ing) do (11)
2rt Jo

Therefore if¢, = +/—iwn/D thenT; defined by (12) is a solution in the form of (8) and matches teasnrements
atr = R..

I (42))
Ti(r,6) = Th—2"2 exp(ing 12
1(r.6) ZN "3 Ry &P (12)
It is demonstrated by Weisz-Patrault et al. [5] thatjfare the successive positive zeros of the Bessel function of
the order zero, then the function given by (13) is a solutibfYpin the form of (9) which vanishes at= R; and




is a very good approximation in order to verify the initialnclition (att = 0 the temperature in the whole roll is
the room temperature):

N
1.0 = 3. o o |exp( - 13)
n=1

where the coicientsy, are evaluated by using the detailed method presented by \Weisault et al. [5]. The
complete solution is therefore:

Jn (gﬂ

T(r,6,t) = Z Tn exp(m@) + Z ynJo( exp(—xﬁg) (14)

ool

6. Auxiliary problem A

The auxiliary problem A defined in Figure 2 is a direct qudatis problem of elasticity with a right hand
term corresponding to the temperature field, which is knawthé whole roll in the form of (14). The mechanical
boundary conditions are not specified because only a phatisalution is sought. The calculated tensile vector
at the outer radiu3” will be compensated by an isothermal elastic problem witd' as boundary conditions
(auxiliary problem B).

6.1. Displacements
For an isotropic medium the Navier's equation with a rightdhéerm is used:

udiv gradu + (2 + p)grad divu = (31 + 2u)gradT (15)

By writing u in polar coordinates the following fierential equations system is obtained:

8ur 1du  u 1 8%y, Uy 1 duy oT

(““( ?W‘r—z)“ﬂ—z gz T DT g~ A+ 3 G = o1+ 205
(16)

Uy 10Uy Uy 2Up 1 0% 10u 1T

(ﬁ*?ﬁ‘re) “ Zﬂ’zaez+(“f‘)?araa+(“3ﬂ)rz gy~ AT 2075

The temperature field is known and can be written in the forifi. 45, therefore the polar displacementandu,
are soughtin the form:

Ny N
ur(r, 6) = Z (Pn(r)exp(ine) + P_n(r)exp(—ine)) + Z pn(r)exp(—xﬁ%)
n=1 n=1 (17)
S — . & Dt
Ug(r, 6) = Z (Qn(r)exp(mH) + Qn(r)exp(—|n9)) + Z qn(r)exp(—xﬁ%)
n=1 n=1
For convenience the following quantities are introduced:
31+ 2u inTh
e a( 1+ 2u )(Jn({:ch))
(3& +2u) (voRe (18)
Ih=a —
A+ 2u Xn



It should be noted that the quantitid,(r), Qn(r), pn(r), an(r), Ln, I} are updated at each cycle, but subscripts of
cycles are omitted to make the reading easier. The systemzohﬁblned with (17) and (18) gives:

u+a0@%0 ) Tgv‘u¥ig) %0 A0

+ (1 + win — (1 + 3win

= (4 + 2u)LnJn(4nr)

2Qn( ) Py (r) ( ) Jn(énr)

énf

+ (1 +p)in

( )+ B0 0

) (4 + 2N =in(A+ 2u)L,

(19)

0: 8080 4 8

0)%m 0

r2 =0

A particular solution of (19) is given by (proof appended ippendix A):
L
Pn(r) = __;Jé(gnr)
e

b Jn(4nr)
ICEa (20)

vn>1 { Pn(r) = =InJdp (Xné)
On(r) =0

Therefore the displacement field has been solved by plugg@dgn (17).

Qn(r) = —in

6.2. Stress

By using an isotropic behavior of the medium the followingteyn is obtained:
1
ah —(/l+2y)% (i +—%)— a(31+2u) (T(r,6,t) — Ta)
A (13ur Uy U

_ TP _ e 21
Tro =H\Y 00 T or  x (21)
10ug

oty = A5+ 20+ 150) - (314 20 (T(.0.9 - T

Therefore by using (21) and (17) the stress tensor is exgaless

Ny

oA, 6) = Z (S (nexp(ind) + Si(r)exp(— |n9) + S; + Z sh(r)exp( R@) (22)

n=1 n=1



where (.) can be replaced by, r6 or 9 and:
{ Sp (1) = @31 + 2u)(Ta - To)

Sy(r)=0
Se(r) = (32 + 2u)(Ta — To)

S,r{ (r) = 2uln (Jé(gnr) R Jn(4nr)

n A\ Gl gir?
vn>1 S::]é’(r) — 2/J|n|_n (_ Jn(gnr) n Jn(2§nzr))
Z%L J’(fnr) 4 (23)
06 _ _4Hbn n nl 3 n B
s =22 (377 - (e -3 we)

)= 2y (|
vn>1 ¢ g(r)=0

o (<25 ()

7. Auxiliary problem B
The Figure 2 shows that the plane elastic problem B is isotherTherefore the complex equations system
given by Muskhelishvili [17] is used:

{ aB(r.6) + oB(r.0) = 2(0(2) + 0()) (24)

—aB(r,0) + oB(r,0) + 2icB(r,0) = 2exp(2i6) (¥(2) + 20’ (2)

wherez = rexp(i6) (with (r,0) the position where the stress is calculated) &g and¥(2) are two unknown
holomorphic functions. Mathematically, these functioas be expanded into a power series. Therefore:

Ny Ny
@ =) 6 [ ¥@ =) nd (25)
n=0 n=0

The opposite tensile vector calculated for the auxiliaghtem A (given in Section 6) is applied.
TB = -T* = —0/(Ry, 0)er — oy(Ras 0)ey (26)

By rewriting (24) at the boundary (i.e., far= Ryexp(id)) and by subtracting both equations:

~ 5 (Ry, ) +iohy(Ry, 6) = D(2) - é‘P(z) - 20'(2) + (2 (27)

d

By combining (27) and (25), the stresses in the roll gap asetiion of ¢ andyy are obtained:

Ny Nz
~h (R, 0) + i0hy(Re, 0) = > (#n(1 - MRS - vnoR52) exp(ine) + > Grexp(=in) + o+ b0 (28)
n=2 n=1

By injecting (22) into (28):

N2
b0+ 0= S (R - 3, o Roewo( - 5

_SH(R) + SR s D 9)

n = RS -
_ NS (Ry) —i(2 — n)SH(Ry)

n—2
Rd

n-2 (Vn > 2)

10



The equation (24) can be rewritten:

N1
TR (1,60) + 0y(1r,6) = 2 > r*(gk exp(ke) + diexp(-ike)
k=0 (30)

Ny
~aB(r,0) + o5,(r,60) + 2icE(r,0) = ZZ (g expl(k + 2)) + ke exp(ko))
k=0

It is fairly easy to deriverE (r,6), o-rBe(r, 0) ando-(?e(r, ) by taking the sum and theftitrence of both equations of
(30).
Finally, the thermal stress is defined by:
o= oA+ 0B (31)

where (.) can be replaced by, ré or 66.

8. Validation of the solution

8.1. Temperature field

The temperature field in the whole roll is extracted from timeutation of the hot rolling process presented
in Section 2. By considering the temperature at the raBiuthe Fourier cofficients (11) are computed and
the temperature field is expressed in the form of (14) andvisrgin Figure 3 at radiR; andRy. It should be
noted that the temperature field is consistent with typemigerature fields that occur during hot rolling processes
as observed by Corral et al. [6] or more recently AbbaspodrSaboonchi [18]. The Fourier cfigientsT,
computed from the temperatures at the raduby using (11) are listed in Table B.4 and the fiméentsy, are
listed in Table B.5 (appended in Appendix B). The rollinggraeters are listed in Table 2.

Table 2: Parameters

(a) Roll (b) Strip (c) Solution
Ry (mm) 177.51 Material Steel N; 200
R, (mm) 177.01 t (mm) 56.2 N, 60
R, (mm) 174.51 ts (mm) 31.2
Ta (K 293.15 R (%) 44.48
D (mn¥/s) 135 Fr (N/mm) 8867
a (K 12x10°° oo (MPa) 150
A (MPa) 121153.85 | T; (K) 1275.15
u  (MPa)  80769.231 | HTC (W/m?K) 70000
w (rads) 18.76 L¢ (mm) 70
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Figure 3: Temperature for hot rolling conditions at the r&giandRc.

8.2. Comparison with FEM

The thermal stress of the present analytical method ismddddy adding the solutions of the auxiliary problem

A in Section.6 and the auxiliary problem B in Section.7, #ierec" = o* + o® (the superscripth meaning
thermal). This thermal stress is validated by comparingrikéhod presented in this paper and a numerical model
by FEM performed with the freeware Cast3m developed by CEA [The temperature field presented in Section
8.1 is used for the computation. Considering the extremeysgradients near the surface of the roll, the mesh is
refined in this area. The mesh is generated by rotating (2081niments) a line defined by 10 nodes from the center
t0 167.51 mm and 100 nodes from 167.51 mm to 177.51 mm. Trlanglements are chosen. The figure 4 shows
the final mesh. The computation with Cast3m is linear andgirain. The temperature is specified at each node
of the mesh, and the equilibrium is ensured by blocking thrgreénode. The comparison is presented in Figure
5, and a good agreement is observed. The exactness of tlyticalahermal stress presented in Sections 6 and 7

is verified.
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Figure 4: Mesh for comparison with FEM (Cast3m)
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Figure 5: Comparison of thermal stress with FEM (Cast3m)

8.3. Comparison with other analytical models

Corral et al. [6] used an analytical solution of the Navi&ttguation (15), by simplifying the problem by ne-
glecting the rotation terms and decoupling the radial dispinent and the tangential displacement. The analytical
formula given by the authors is used with the temperature @ebcribed in Section 8.1. The Figure 6 shows that
the thermal stress}j}, at the outer radiuBy is underestimated by Corral et al. [6]. The present analltiolution
is therefore an improvement which can be used as inputs ef atbdels (thermal fatigue for instance).

-200 |

-400 |

-600 |

-800 |

-000 | Radius : R,

| |— Present method
-1200 |

|| Coral et al. (2004)

-1400 T T T T T T T T T T T T T T T
1 2 3 4 5 6

Figure 6: Comparison of thermal stress with other analltiwadel

9. Reconstructed stress comparison

As explained in Section 2 a numerical simulation of hot nglprocess is done with Lanic3 [10]. The
industrial hot rolling conditions chosen for the simulatiare taken from Legrand et al. [2] and are listed in Table
2. The impact of the thermal stress on the reconstructiohetbntact stress by inverse analysis is evaluated in
this section. The purely elastic contact stress profileb@btter radiu®y for normal pressureof;) and shear
stress §r¢) are given in Figure 7.

The inputs of the inverse method proposed by Weisz-Pattalt [4] are the stresses at the rad®ysIn order
to quantify the impact of thermal stress and the necessitpisEction, two kinds of inputs are distinguished: the
thermoelastic stresses (which simulate the measuremditissooptics) and the purely elastic stresses, which can
be practically deduced from the measurements of the fibiesopy using the present method and removing the
thermal stress.
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Therefore the thermal stress calculated at the rajus added to the purely elastic stress also calculated at
the inner radiu®y,. These stress distributions are given in Figure 8. The htvepsry is clearly the mostféected
by the thermal dilatation of the roll. It can be noted thatdiféerence between the thermoelastic hoop stress and
the purely elastic hoop stress is relatively constant. Ehthe consequence of theffdision of the temperature
into the roll. Ry is at 3 mm from the surface, at this depth the thermal hoopstraries slightly compared to the
variations observed at the radiRg (surface of the roll). Moreover the area around the roll gaipdp small, the
variations of thermal stresses are quite small as showrgur€&i9.

o O-V}i (MPa) 0rf (MEa) 40

a0 ,
Normal pressure 10

-60
Shear stresses e

-807

-100 7

F-30
-120
F-40

-140
F-50

-60

Figure 7: Purely elastic contact stresses at raRius

—
10 (MPa) Roll Gap

] Shear stresses
g 0r9 (MPa)

"| Hoop stresses

Opp (MPa) Normal pressure

4 Oy (MPa)
150 7 ferees Thermo elastic stress

7 (not corrected)

7 |—— Purely elastic stress | ™ ¢

1 (corrected) 9 (rad)
-200 T T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6

Figure 8: Stress tensor calculated=gt
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-1400 —————— \‘"“ T — ——

1 2 3 4 5 6

Figure 9: Thermal hoop stress at raldij andRy

The inverse calculation proposed by Weisz-Patrault etthis[performed both for purely elastic inputs (cor-
rected data) and thermoelastic inputs (not corrected daé}the results (contact stress in the roll gap) are pre-
sented in Figures 10 and 11. In order to quantify the errovéen the applied stress and the reconstructed stress
an error estimate is introduced in (32).0ff ando? denote respectively the reconstructed stress and thesdppli

stress:

2T rioy _ algy)2
| b O -0 do 32)

1 o2(6)2 do

The Table 3 lists the quantified errors of reconstructiore ifimprovement of the reconstruction with corrected
data with the present thermoelastic method is very sigmificBhe correction of the inputs is therefore necessary
to perform accurately the inverse method proposed by Weédrault et al. [4].

Table 3: Hot rolling summary

Purely elastic inputs Thermoelastic inputg
(corrected) (not corrected)
rr ro rr ro
e (%) | 0.63 0.75 25.41 17.75

15



10 (MPa) | Reconstructed stress
207 corrected data (i.e., purely elastic)

R N Reconstructed stress
i not corrected data (i.e., thermoelastic)

- Applied stress

4 0 (rad)

T T T T T T T T T T
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Figure 10: Reconstructed normal pressaeat the outer radiuRy

1 079 (MPa)

—— Reconstructed stress
1 corrected data (i.e., purely elastic)

<<<<<<<<<<<<< Reconstructed stress
not corrected data (i.e., thermoelastic)

- Applied stress

0 (rad)

T T T T T T
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Figure 11: Reconstructed shear streggat the outer radiuRy

10. Computation time

The computation time is studied to rapidly optimise the stdal parameters during the rolling process. The
principle is to write the solution in matrix form. The magi&can be computedtdine (i.e., before the rolling
process) and be stocked in a library. LM be the number of angular positiofig (j varying from 1 toNy)
where the outputs are computed. The CPU times of the inveeieanls proposed by Weisz-Patrault et al. [4] and
Weisz-Patrault et al. [5] are optimised (CPU times disptblyg Scilab 5.3 are respectively 0.07 s and 0.05 s with
a quadcore 2.8 GHz). Therefore the following optimisat®only about the thermal stres§' = o* + & which
is written as follows ((..) replaces, ro or 66):

(6, t0) = 2Re(A".L) + S; + a-.| (33)
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where the matriced™), A" andA®) (sizeN, x N;) are:

= 2 (B _ 6

Mo\ Gr a8
r 2/.lin ‘]r,1(§nr) Jn(é,nr) .
Aj?n = Zn (_ o + ggrz )exp(lnéj) (34)
2u (I(&r) [ n .
Al = - (—gnr - (g,%rz - 1) Jn(gnr)) exp(maj)

where the vectora™, a? anda® (sizeN, + 1) are:

/TR N ¢ D
- 2a{i)onf5R
=0

re

a, (35)
=R R (R ool
=- Bl=]—+ Jo| = ||exp| X =t
a, R "\ R | %r 0 R P{—Xn RZ 0
where the vectok (sizeN;) is the vector of thé_,, and the vector (sizeN, + 1) is the vector of thé,.
o8 + 0B = 2Re(B1.¢) (36)
-oB + 0'989 + 2i0—E9 = Bo.y + B3.¢

where the matriceB;, B, andB; (sizeN, x N;) are:
Ro\" . /.
Bi.jn = 2(—) exp(maj)
E;; "
Bo.jn = Z(E) exp(i(n + 2)0)) (37)
n
Ba.jn = 2(%) nexp(inaj)

and wherep is the vector ofpx andy is the vector ofyy.

The matricesA(™, A A®) B, B, and Bz and the vector®l", a’ and a” are computed fi-line (i.e.,
before the rolling process) and stocked in a libraky.l, ¢ andy are computed on-line because the measured
temperatures and the measured stresses are needed. Haheseguantities are already computed because both
inverse methods proposed by Weisz-Patrault et al. [4] and2ARatrault et al. [5] are using them. Therefore the
correction of the input data (thermoelastic stress giviagely elastic stress) does not cost significant additional
CPU times (only the matrices products which is negligibl®)is is one of the main advantage of this analytical
solution.

11. Conclusions

A successful method has been presented to compute the thetmess during hot rolling on the basis of
temperature fields expanded into series. These tempeffélds are produced by an inverse analysis which
interprets temperature measurements (thermocoupleduilyedded in the roll). This problem is mainly used in
this contribution to correct the inputs of an other invensalgsis which interprets stress measurements (fibre optics
fully embedded in the roll) to compute the contact stresénroll gap. The purely elastic stress is inferred from
the measured (or simulated) thermoelastic stress by usepresented analytical method. It is demonstrated that
this correction is necessary, the error being significamtiuced (from 25.41 % to 0.63 % for normal pressures
and from 17.75 % to 0.75 % for shear stresses).

Both inverse methods proposed by Weisz-Patrault et al.jd]\Weisz-Patrault et al. [5] are designed for real
time computation. The main advantage of the present cioreist that it does not cost additional CPU times (or
negligible: matrices products).

Moreover, the computation of thermal stress is more acetinan older analytical methods, and therefore can
be used in the field of thermal fatigue of rolls both experitaiy (measurement interpretation) and theoretically
(simulations).
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Appendix A. Proof of the particular solution
The left term of (19) involves the following quantity:

0101 = (1 20) [Py + 5 - D) - e )

By using (20) and denoting = £yr:
2L, J,;((Zx)

01(r) = —(A + 2u)Ly ( I + J”(X) J'X(Zx)) "y

The well known diferential equation verified by Bessel function is:

Y+ ”() (1 ”Z)Jn(x)

Therefore by dferentiating (A.2):

2
> 1- —)J () - 22 In(X)

e ?

Hence: 3
n(X
01(r) = ~Lo(A+ 24) (( 1) 59 - Jn(x)) Ly 1
And finally:
n? n?
6u(r) = Lo ((A LI 2#)) F00 + 2La(d + 20) 5 (0
The left term of (19) involves the following quantity:

Qn( )

— (A +3win ngr)

2(r) = (4 + p)in
By using (20):

6a(t) = (1 + 1 Ln(J"‘X(X) "”X(X’) (1 + L, 20

And finally:
n2
92(r) = Ln(4 + )75 J5(X) — 2Ln(4 + 2#) Jn(X)
By combining (A.3) and (A.4):
91(r) + g2(r) = Ln(A + 2) Jn(X)
Therefore the first Eq. of (19) is verified.
The left term of (19) involves the following quantity:

Qﬁ_(r) Qn(l’)) 2Qn(r)
r

0s(r) = u(Y;{m R (1 + 200

By using (20):

Hence:

X X2

By using directly (A.2):

ga(r) = —inLy (/1 (—2‘]5)((2’() N (:‘(—2 - ;1() Jn(x)) (4 + 202

Jn(X))
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And:

()

() = inLo (250 + (14 +4) 0.0 (A6)
The left term of (19) involves the following quantity:
9a(r) = (A + p)in—2 ”( ) + (1 + 3w)in P"(r)
By using (20):
JH(X
() = -into [+ 2 + 1+ 3052
By using directly (A.2):
JI
ga(r) = —inL, ((a ‘ )( ';((X) + (g - —)Jn(x)) T+ (1+3u) ”(X))
And: » 5
. Jh(X n~ 1
au(1) = nt (252 - ()55 - ) 009) (A7)
X X3 X
By combining (A.6) et (A.7):
Jn(X
0o0) + 1) = (2 + 26 7 (A8)
Therefore the second Eq. of (19) is verified.
Appendix B. Temperature field
To = 3663 (B.1)
Table B.4:T,
n Th n Th n Th n Th
1 | -1.92D+01+i 2.05D+01 | 51 | 4.03D-03+i3.48D-02 | 101 | -1.84D-04+i2.35D-03 | 151 | -3.00D-0#i 3.41D-05
2 | 9.70D+00+i-1.44D+01 | 52 | -1.22D-03+i1.51D-02| 102 | 1.59D-04+i2.10D-03 | 152 | -3.00D-0%i 3.16D-05
3 | -2.76D+00+i 1.09D+01 | 53 | -2.68D-03+i 3.25D-02 | 103 | -1.49D-04+i 1.96D-03 | 153 | -4.16D-09i 2.69D-05
4 | 2.85D+00+i-5.46D+00 | 54 | 5.56D-03+i1.47D-02 | 104 | 1.09D-04+i 1.96D-03 | 154 | -5.00D-0%i 2.47D-05
5 | -2.85D+00+i 4.36D+00 | 55 | -7.51D-03+i2.89D-02 | 105 | -7.59D-05+i 1.66D-03 | 155 | 3.00D-0%i2.12D-05
6 | 2.57D+00+i-2.51D+00 | 56 | 8.52D-03+i1.63D-02 | 106 | 3.84D-05+i 1.79D-03 | 156 | -3.00D-0%i 1.89D-05
7 | -2.67D+00+i 2.63D+00 | 57 | -9.28D-03+i 2.31D-02| 107 | -2.43D-05+i1.42D-03 | 157 | 1.00D-0%i1.66D-05
8 | 2.07D+00+i-1.59D+00 | 58 | 8.90D-03+i1.83D-02 | 108 | -1.56D-05+i 1.59D-03 | 158 | -5.00D-0%i 1.42D-05
9 | -1.40D+00+i 1.58D+00 | 59 | -8.02D-03+i1.72D-02 | 109 | 5.53D-05+i1.27D-03 | 159 | 1.00D-0%i1.28D-05
10| 1.18D+00+i-4.43D-01 | 60 | 7.33D-03+i2.01D-02 | 110 | -6.74D-05+i 1.36D-03 | 160 | -2.00D-0#i 1.06D-05
11| -8.89D-0%i4.70D-01 | 61 | -5.47D-03+i 1.35D-02 | 111 | 9.36D-05+i1.14D-03 | 161 | -5.84D-08+i 9.70D-06
12 | 7.84D-01i2.31D-01 | 62 | 4.12D-03+i2.03D-02 | 112 | -9.22D-05+i1.16D-03| 162 | 2.61D-08+i 8.00D-06
13| -6.40D-0%i4.21D-03 | 63 | -2.54D-03+i 1.12D-02 | 113 | 7.73D-05+i 1.03D-03 | 163 | -1.00D-07%i 7.20D-06
14| 4.80D-0%i3.21D-01 | 64 | 9.74D-04i1.86D-02 | 114 | -6.81D-05+i9.83D-04 | 164 | 1.97D-08i5.90D-06
15| -1.91D-0%i-8.82D-02 | 65 | 2.79D-04+i1.06D-02 | 115 | 3.82D-05+i9.28D-04 | 165 | -9.91D-08+i 5.10D-06
16 | 5.59D-02i3.80D-01 | 66 | -1.19D-03+i1.61D-02| 116 | -3.58D-05+i8.21D-04| 166 | 1.00D-0%i4.30D-06
17 | 1.03D-0%i-1.90D-01 | 67 | 2.00D-03+i1.14D-02 | 117 | 2.71D-05+i 8.36D-04 | 167 | -7.95D-08i 3.70D-06
18| -1.71D-0%i4.18D-01 | 68 | -2.48D-03+i1.32D-02| 118 | -1.35D-05+i 7.05D-04 | 168 | 5.29D-08i 3.10D-06
19 | 1.87D-0%i-1.73D-01 | 69 | 2.47D-03+i1.21D-02 | 119 | 4.00D-06+i 7.15D-04 | 169 | -7.04D-08+i 2.60D-06
20| -2.16D-0%i2.96D-01 | 70 | -2.38D-03+i 1.04D-02 | 120 | 9.70D-06+i6.13D-04 | 170 | 3.67D-09+i 2.20D-06
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21| 2.49D-0%i-3.44D-02 | 71 | 2.03D-03+i1.24D-02 | 121 | -2.47D-05+i6.08D-04 | 171 | -1.90D-08+i 1.80D-06
22 | -2.63D-0%i1.53D-01 | 72 | -1.40D-03+i8.20D-03| 122 | 2.45D-05+i5.38D-04 | 172 | 5.27D-09i1.50D-06
23| 2.72D-0%i5.34D-02 | 73 | 1.03D-03+i1.23D-02 | 123 | -2.86D-05+i5.13D-04 | 173 | 8.01D-09i1.20D-06
24 | -2.55D-0%i8.43D-02 | 74 | -4.27D-04+i6.90D-03| 124 | 1.95D-05+i4.71D-04 | 174 | -4.97D-0%i 1.00D-06
25| 2.08D-0%i9.11D-02 | 75 | -3.67D-05+i1.13D-02 | 125 | -2.20D-05+i4.25D-04 | 175 | 4.88D-09i8.00D-07
26 | -1.66D-0%i3.07D-02 | 76 | 4.67D-04+i6.42D-03 | 126 | 1.49D-05+i4.17D-04 | 176 | -1.64D-08+i 7.00D-07
27 | 1.22D-0%i1.33D-01 | 77 | -8.59D-04+i9.91D-03| 127 | -1.06D-05+i 3.48D-04 | 177 | 4.29D-09i5.00D-07
28 | -8.95D-02-i-1.52D-02| 78 | 1.19D-03+i6.44D-03 | 128 | 7.60D-06+i 3.57D-04 | 178 | -1.50D-08+i 4.00D-07
29| 6.20D-02-i1.42D-01 | 79 | -1.29D-03+i8.38D-03| 129 | -4.30D-06+i 2.97D-04 | 179 | -2.92D-09+i 3.00D-07
30| -4.19D-02+i-9.93D-03| 80 | 1.21D-03+i6.46D-03 | 130 | 1.90D-06+i 3.03D-04 | 180 | -2.20D-09+i 2.00D-07
31| 1.19D-02-i1.10D-01 | 81 | -1.14D-03+i6.91D-03| 131 | 6.80D-06+i 2.50D-04 | 181 | 1.09D-09i2.00D-07
32| 6.29D-03+i2.21D-02 | 82 | 8.84D-04+i6.51D-03 | 132 | -5.50D-06+i 2.52D-04 | 182 | -4.57D-09+i 1.00D-07
33| -2.92D-02i7.31D-02 | 83 | -6.24D-04+i5.66D-03| 133 | 6.90D-06+i2.15D-04 | 183 | -1.11D-0%i 1.00D-07
34 | 3.53D-02-i4.31D-02 | 84 | 4.10D-04+i6.28D-03 | 134 | -8.20D-06+i 2.03D-04 | 184 | 2.60D-10+i 7.61D-08
35| -3.99D-02-i4.47D-02 | 85 | -2.08D-04+i4.84D-03| 135 | 5.40D-06+i1.81D-04 | 185 | -1.40D-1G+i 5.61D-08
36 | 3.32D-02-i6.25D-02 | 86 | -3.77D-05+i5.82D-03 | 136 | -4.90D-06+i 1.66D-04 | 186 | 6.48D-1%i3.84D-08
37 | -2.99D-02-i1.83D-02 | 87 | 2.35D-04+i4.39D-03 | 137 | 2.30D-06+i 1.54D-04 | 187 | -6.59D-10G+i 2.74D-08
38| 2.01D-02-i8.18D-02 | 88 | -4.16D-04+i5.09D-03| 138 | -1.50D-06+i 1.35D-04 | 188 | -4.24D-1%i1.81D-08
39| -1.82D-02-i-1.74D-05| 89 | 5.60D-04+i4.18D-03 | 139 | -4.00D-0%i1.32D-04| 189 | -8.39D-1%i1.19D-08
40 | 8.82D-03+i8.38D-02 | 90 | -6.12D-04+i4.36D-03| 140 | -6.00D-0%i1.11D-04| 190 | -3.47D-1%i7.63D-09
41 | -4.06D-03+i-1.77D-03| 91 | 5.89D-04+i3.99D-03 | 141 | -1.50D-06+i 1.07D-04 | 191 | -2.98D-1%i4.50D-09
42 | -4.54D-03+i7.31D-02 | 92 | -5.28D-04+i 3.68D-03 | 142 | 1.20D-06+i9.23D-05 | 192 | -1.24D-1%i2.64D-09
43 | 1.06D-02-i16.48D-03 | 93 | 4.30D-04+i3.81D-03 | 143 | -2.30D-06+i 8.69D-05| 193 | -7.06D-12+i 1.39D-09
44 | -1.61D-02-i5.99D-02 | 94 | -3.37D-04+i3.09D-03 | 144 | 3.00D-06+i 7.52D-05 | 194 | -5.10D-12+i 7.04D-10
45| 1.71D-02i1.43D-02 | 95 | 2.48D-04+i3.56D-03 | 145 | -2.40D-06+i6.91D-05| 195 | 1.80D-12-i3.12D-10
46 | -1.77D-02-i4.46D-02 | 96 | -1.53D-04+i2.66D-03| 146 | 2.60D-06+i6.15D-05 | 196 | -1.70D-12+i1.24D-10
47 | 1.60D-02-i2.34D-02 | 97 | 6.77D-05+i3.17D-03 | 147 | -1.70D-06+i5.40D-05| 197 | 8.93D-14+i3.91D-11
48 | -1.33D-02-i2.98D-02 | 98 | 1.11D-05+i2.43D-03 | 148 | 9.00D-0%i5.02D-05 | 198 | -3.59D-14+i9.09D-12
49 | 1.09D-02-i3.22D-02 | 99 | -1.07D-04+i2.75D-03 | 149 | -1.30D-06+i4.32D-05| 199 | 2.09D-14+i1.15D-12
50 | -8.12D-03+i1.99D-02 | 100 | 1.28D-04+i2.24D-03 | 150 | -9.70D-08+i 4.04D-05| 200 | -9.70D-16+i 3.49D-14
Table B.5:y,,

N | /(Ta=To) | N | ¥/(Ta=To) | N | ya/(Ta—To)

1 1.6017603 | 11 | 0.4198340 | 21| 0.2792925

2 -1.0640481 | 12 | -0.3994332| 22 | -0.2697257

3 0.8499229 | 13 | 0.3812070 | 23 | 0.2605739

4 -0.7272953 | 14| -0.3647408| 24 | -0.2517861

5 0.6451733 | 15| 0.3497198 | 25 | 0.2433180

6 -0.5850795| 16 | -0.3359009| 26 | -0.2351319

7 0.5385006 | 17 | 0.3230924 | 27 | 0.2271942

8 -0.5009022 | 18 | -0.3111410| 28 | -0.2194761

9 0.4696192 | 19 | 0.2999224 | 29 | 0.2119517

10| -0.4429698| 20 | -0.2893344 | 30 | -0.2045984

n Yn/(Ta=To) | N Y/(Ta=To) | N Yn/(Ta = To)

31| 0.1973955| 41| 0.1303318 | 51| 0.0651469

32| -0.1903252| 42 | -0.1238687| 52 | -0.0584356

33| 0.1833701 | 43| 0.1174123 | 53 | 0.0516561

34| -0.1765158| 44 | -0.1109563| 54 | -0.0448147

35| 0.1697488 | 45| 0.1044914 | 55| 0.0378854

36 | -0.1630565| 46 | -0.0980124| 56 | -0.0308898

37| 0.1564265 | 47 | 0.0915102 | 57 | 0.0237728
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38 | -0.1498492| 48 | -0.0849808| 58 | -0.0166182
39| 0.1433137| 49 | 0.0784137| 59 | 0.0091932
40 | -0.1368109| 50 | -0.0718065| 60 | -0.0026463
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