A. Alfonsi, B. Jourdain, and A. Kohatsu-higa, Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme, The Annals of Applied Probability, vol.24, issue.3, 2012.
DOI : 10.1214/13-AAP941

URL : https://hal.archives-ouvertes.fr/hal-00727430

D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bulletin of the American Mathematical Society, vol.73, issue.6, pp.890-896, 1967.
DOI : 10.1090/S0002-9904-1967-11830-5

A. D. Banner, R. Fernholz, and I. Karatzas, Atlas models of equity markets, The Annals of Applied Probability, vol.15, issue.4, pp.2296-2330, 2005.
DOI : 10.1214/105051605000000449

R. F. Bass and É. Pardoux, Uniqueness for diffusions with piecewise constant coefficients. Probab. Theory Related Fields, pp.557-572, 1987.

V. I. Bogachev, N. V. Krylov, and M. Rëkner, Elliptic and parabolic equations for measures, Uspekhi Mat. Nauk, pp.5-116, 2009.
DOI : 10.1070/RM2009v064n06ABEH004652

F. Bolley, A. Guillin, and F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.44, issue.5, pp.867-884, 2010.
DOI : 10.1051/m2an/2010045

URL : https://hal.archives-ouvertes.fr/hal-00392397

F. Bolley, I. Gentil, and A. Guillin, Uniform convergence to equilibrium for granular media Archive for Rational Mechanics and Analysis, pp.429-445, 2013.

J. A. Carrillo, M. D. Francesco, and C. Lattanzio, Contractivity and asymptotics in Wasserstein metrics for viscous nonlinear scalar conservation laws, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat, vol.10, issue.82, pp.277-292, 2007.

J. A. Carrillo and G. Toscani, WASSERSTEIN METRIC AND LARGE???TIME ASYMPTOTICS OF NONLINEAR DIFFUSION EQUATIONS, New Trends in Mathematical Physics, pp.234-244, 2004.
DOI : 10.1142/9789812702319_0022

A. José, R. J. Carrillo, C. Mccann, and . Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal, vol.179, issue.2, pp.217-263, 2006.

J. Antonio-carrillo, M. P. Gualdani, and G. Toscani, Finite speed of propagation in porous media by mass transportation methods, C. R. Math. Acad. Sci. Paris, issue.10, pp.338815-818, 2004.

P. Cattiaux, A. Guillin, and F. Malrieu, Probabilistic approach for granular media equations in the nonuniformly convex case. Probab. Theory Related Fields, pp.19-40, 2008.

A. Dembo, M. Shkolnikov, S. R. Varadhan, and O. Zeitouni, Large Deviations for Diffusions Interacting Through Their Ranks, Communications on Pure and Applied Mathematics, vol.122, issue.4, 2012.
DOI : 10.1093/acprof:oso/9780198569039.001.0001

E. Fernholz and T. Ichiba, Ioannis Karatzas, and Vilmos Prokaj Planar diffusions with rank-based characteristics and perturbed tanaka equations. Probability Theory and Related Fields, pp.1-32, 2012.
DOI : 10.1007/s00440-012-0430-7

E. and R. Fernholz, Stochastic portfolio theory, Applications of Mathematics, vol.48
DOI : 10.1007/978-1-4757-3699-1

A. Figalli, Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, Journal of Functional Analysis, vol.254, issue.1, pp.109-153, 2008.
DOI : 10.1016/j.jfa.2007.09.020

A. Friedman, Partial differential equations of parabolic type, N.J, 1964.

B. H. Gilding, Improved theory for a nonlinear degenerate parabolic equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.16, issue.42, pp.165-224, 1989.

T. Ichiba and I. Karatzas, On collisions of Brownian particles, The Annals of Applied Probability, vol.20, issue.3, pp.951-977, 2010.
DOI : 10.1214/09-AAP641

T. Ichiba, I. Karatzas, and M. Shkolnikov, Strong solutions of stochastic equations with rank-based coefficients. Probability Theory and Related Fields, pp.1-20, 2012.

T. Ichiba, S. Pal, and M. Shkolnikov, Convergence rates for rank-based models with applications to portfolio theory, Probability Theory and Related Fields, vol.75, issue.1, 2012.
DOI : 10.1007/s00440-012-0432-5

T. Ichiba, V. Papathanakos, A. Banner, I. Karatzas, and R. Fernholz, Hybrid Atlas models, The Annals of Applied Probability, vol.21, issue.2, pp.609-644, 2011.
DOI : 10.1214/10-AAP706

B. Jourdain, Diffusions with a nonlinear irregular drift coefficient and probabilistic interpretation of generalized Burgers' equations, ESAIM: Probability and Statistics, vol.1, pp.339-35597, 1995.
DOI : 10.1051/ps:1997113

B. Jourdain, Diffusion processes associated with nonlinear evolution equations for signed measures, Methodology And Computing In Applied Probability, vol.2, issue.1, pp.69-91, 2000.
DOI : 10.1023/A:1010059302049

B. Jourdain, Probabilistic approximation for a porous medium equation. Stochastic Process, Appl, vol.89, issue.1, pp.81-99, 2000.

B. Jourdain, Probabilistic Characteristics Method for a One-Dimensional Inviscid Scalar Conservation Law, The Annals of Applied Probability, vol.12, issue.1, pp.334-360, 2002.
DOI : 10.1214/aoap/1015961167

B. Jourdain, Equivalence of the Poincar?? inequality with a transport-chi-square inequality in dimension one, Electronic Communications in Probability, vol.17, issue.0, pp.1-12, 2012.
DOI : 10.1214/ECP.v17-2115

B. Jourdain and F. Malrieu, Propagation of chaos and Poincar?? inequalities for a system of particles interacting through their cdf, The Annals of Applied Probability, vol.18, issue.5, pp.1706-1736, 2008.
DOI : 10.1214/07-AAP513

I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol.113, 1991.
DOI : 10.1007/978-1-4612-0949-2

O. A. Lady?enskaja, V. A. Solonnikov, and N. N. , Ural ? ceva. Linear and quasilinear equations of parabolic type. Translated from the Russian by S, Smith. Translations of Mathematical Monographs, vol.23, 1967.

Q. Liu and C. Wang, Uniqueness of the bounded solution to a strongly degenerate parabolic problem, Nonlinear Analysis: Theory, Methods & Applications, vol.67, issue.11, pp.2993-3002, 2007.
DOI : 10.1016/j.na.2006.09.053

S. Pal and M. Shkolnikov, Concentration of measure for systems of brownian particles interacting through their ranks. Preprint available at http://arxiv.org/abs, 1011.

S. Pal and J. Pitman, One-dimensional Brownian particle systems with rank-dependent drifts, The Annals of Applied Probability, vol.18, issue.6, pp.2179-2207, 2008.
DOI : 10.1214/08-AAP516

D. Revuz and M. Yor, Continuous martingales and Brownian motion, 1999.

M. Shkolnikov, Large systems of diffusions interacting through their ranks, Stochastic Processes and their Applications, pp.1730-1747, 2012.
DOI : 10.1016/j.spa.2012.01.011

W. Daniel, S. R. Stroock, . Srinivasa, and . Varadhan, Multidimensional diffusion processes, Classics in Mathematics, 2006.

A. Sznitman, Topics in propagation of chaos, École d'Été de Probabilités de Saint-Flour XIX?1989, pp.165-251, 1991.
DOI : 10.1070/SM1974v022n01ABEH001689

H. Tanaka, Stochastic Differential Equations with Reflecting Boundary Condition in Convex Regions, Hiroshima Math. J, vol.9, issue.1, pp.163-177, 1979.
DOI : 10.1142/9789812778550_0013

C. Villani, Optimal transport, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 2009.
DOI : 10.1007/978-3-540-71050-9

URL : https://hal.archives-ouvertes.fr/hal-00974787

M. Von-renesse and K. Sturm, Transport inequalities, gradient estimates, entropy and Ricci curvature, Communications on Pure and Applied Mathematics, vol.108, issue.7, pp.923-940, 2005.
DOI : 10.1002/cpa.20060

Z. Wu, J. Zhao, J. Yin, and H. Li, Nonlinear diffusion equations, 2001.
DOI : 10.1142/4782