Propagation of chaos for rank-based interacting diffusions and long time behaviour of a scalar quasilinear parabolic equation

Abstract : We study a quasilinear parabolic Cauchy problem with a cumulative distribution function on the real line as an initial condition. We call 'probabilistic solution' a weak solution which remains a cumulative distribution function at all times. We prove the uniqueness of such a solution and we deduce the existence from a propagation of chaos result on a system of scalar diffusion processes, the interactions of which only depend on their ranking. We then investigate the long time behaviour of the solution. Using a probabilistic argument and under weak assumptions, we show that the flow of the Wasserstein distance between two solutions is contractive. Under more stringent conditions ensuring the regularity of the probabilistic solutions, we finally derive an explicit formula for the time derivative of the flow and we deduce the convergence of solutions to equilibrium.
Type de document :
Article dans une revue
Stochastic partial differential equations: analysis and computations, 2013, 1 (3), pp.455-506. <10.1007/s40072-013-0014-2>
Liste complète des métadonnées


https://hal-enpc.archives-ouvertes.fr/hal-00755269
Contributeur : Julien Reygner <>
Soumis le : lundi 24 juin 2013 - 12:32:24
Dernière modification le : lundi 29 mai 2017 - 14:25:57
Document(s) archivé(s) le : mercredi 25 septembre 2013 - 04:09:36

Fichiers

jourdain-reygner_revised.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Benjamin Jourdain, Julien Reygner. Propagation of chaos for rank-based interacting diffusions and long time behaviour of a scalar quasilinear parabolic equation. Stochastic partial differential equations: analysis and computations, 2013, 1 (3), pp.455-506. <10.1007/s40072-013-0014-2>. <hal-00755269v2>

Partager

Métriques

Consultations de
la notice

416

Téléchargements du document

127