An Interval Extension Based on Occurrence Grouping

Abstract : In interval arithmetics, special care has been brought to the definition of interval extension functions that compute narrow interval images. In particular, when a function f is monotonic w.r.t. a variable in a given domain, it is well-known that the monotonicity-based interval extension of f computes a sharper image than the natural interval extension does. This paper presents a so-called "occurrence grouping" interval extension [ f ]og of a function f . When f is not monotonic w.r.t. a variable x in a given domain, we try to transform f into a new function f og that is monotonic w.r.t. two subsets xa and xb of the occurrences of x: f og is increasing w.r.t. xa and decreasing w.r.t. xb . [ f ]og is the interval extension by monotonicity of f og and produces a sharper interval image than the natural extension does. For finding a good occurrence grouping, we propose a linear program and an algorithm that minimize a Taylor-based over-estimate of the image diameter of [ f ]og . Experiments showthe benefits of this new interval extension for solving systems of non linear equations
Type de document :
Article dans une revue
Computing, Springer Verlag, 2012, 94 (2), pp.173-188
Contributeur : Bertrand Neveu <>
Soumis le : mercredi 19 septembre 2012 - 17:25:28
Dernière modification le : vendredi 10 février 2017 - 12:30:30
Document(s) archivé(s) le : jeudi 20 décembre 2012 - 03:48:08


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00733855, version 1


Ignacio Araya, Bertrand Neveu, Gilles Trombettoni. An Interval Extension Based on Occurrence Grouping. Computing, Springer Verlag, 2012, 94 (2), pp.173-188. <hal-00733855>



Consultations de
la notice


Téléchargements du document