Managing uncertainties in urban runoff quality models: A benchmarking methodology

Abstract : In this paper we present a benchmarking methodology, which aims at comparing urban runoff quality models, based on the Bayesian theory. After choosing the different configurations of models to be tested, this methodology uses the Metropolis algorithm, a general MCMC sampling method, to estimate the posterior distributions of the models' parameters. The analysis of these posterior distributions allows a quantitative assessment of the parameters' uncertainties and their interaction structure, and provides information about the sensitivity of the probability distribution of the model output to parameters. The effectiveness and efficiency of this methodology are illustrated in the context of 4 configurations of pollutants' accumulation/erosion models, tested on 4 street subcatchments. Calibration results demonstrate that the Metropolis algorithm produces reliable inferences of parameters thus, helping on the improvement of the mathematical concept of model equations.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-00727149
Contributeur : Bruno Tassin <>
Soumis le : dimanche 2 septembre 2012 - 18:09:40
Dernière modification le : mercredi 4 septembre 2019 - 13:52:16
Document(s) archivé(s) le : lundi 3 décembre 2012 - 02:55:08

Fichier

Novatech04-kansobancs_d_essai_...
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00727149, version 1

Citation

Assem Kanso, Bruno Tassin, Ghassan Chebbo. Managing uncertainties in urban runoff quality models: A benchmarking methodology. Novatech 2004, Jun 2004, Lyon, France. pp.399-'06. ⟨hal-00727149⟩

Partager

Métriques

Consultations de la notice

329

Téléchargements de fichiers

138