Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Optimal linear estimator of origin-destination flows with redundant data

Abstract : Suppose given a network endowed with a multiflow. We want to estimate some quantities connected with this multiflow, for instance the value of an s-t flow for one of the sources-sinks pairs s-t, but only measures on some arcs are available, at least on one s-t cocycle (set of arcs having exactly one endpoint in a subset X of vertices with saX and ta parts per thousand X). These measures, supposed to be unbiased, are random variables whose variances are known. How can we combine them optimally in order to get the best estimator of the value of the s-t flow? This question arises in practical situations when the OD matrix of a transportation network must be estimated. We will give a complete answer for the case when we deal with linear combinations, not only for the value of an s-t flow but also for any quantity depending linearly from the multiflow. Interestingly, we will see that the Laplacian matrix of the network plays a central role.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Frédéric Meunier <>
Soumis le : mercredi 1 août 2012 - 10:14:28
Dernière modification le : vendredi 17 juillet 2020 - 17:08:53

Lien texte intégral



Frédéric Meunier. Optimal linear estimator of origin-destination flows with redundant data. Annals of Operations Research, Springer Verlag, 2010, 181 (1), pp.709-722. ⟨10.1007/s10479-010-0784-0⟩. ⟨hal-00722262⟩



Consultations de la notice