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Abstract

A fracture mechanics model for alkali-silica reaction (ASR) is presented that deals with the case of a concrete made
up of dense spherical aggregates. Chemistry and diffusion (of ions and gel) are not modelled. The focus is put on the
mechanical consequences of the progressive replacement of the aggregates by a less dense gel. A ring-shaped crack then
appears in the cement paste depending on the pressure build-up, according to an incremental energy criterion. The
stored elastic energy and deformation of each configuration are determined assuming that each aggregate is embedded
in an infinite cement paste matrix, through Finite Element Analysis. We note a very different behaviour of aggregates of
different sizes. Adding the contributions of different aggregates leads to an estimate of the free expansion of a concrete
of given aggregate size distribution. Parameters of the model are identified, providing a good fit to experiments taken
from Multon’s work.

Key words: Alkali-aggregate reaction, Free expansion, Linear Elastic Fracture Mechanics, Energy criterion, Pessimum
of aggregate size

1. Introduction

The alkali-silica reaction has been discovered in the
40’s in the USA by Stanton [26]. It affects a very small
fraction of concrete buildings, but it can be detrimental
to the affected structures. First models were proposed
in the 50’s, and its study improved gradually when new
experimental methods allowed to look inside the affected
concrete more precisely. It has been observed that for
the alkali-silica reaction to occur, three conditions need
to be simultaneously verified: presence of reactive aggre-
gates, high water content, and high alkali concentration.
However, no consensus was reached on most parts of the
reaction mechanisms. The alkali-silica reaction is visible
through expansion and/or superficial cracking of macro-
scopic parts. Resistance to traction is much more affected
than resistance to compression. The elasticity modulus
decreases and plastic deformation increases. Microscopi-
cally a network of microcracks grows because of swelling
of reactive sites where amorphous gels are created. One
can sometime observe reaction rims and decohesion at the
cement paste/aggregates interface.

These microcracks seem to play an important role in
the macroscopic expansion of concrete structures. ASR is
not always detrimental: when the gels find enough space
to expand without cracking the cement paste, almost no
macroscopic expansion is observed. Microcracks also play
an important role concerning the anisotropy of the expan-
sion when the concrete structure is loaded. Therefore in
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this article, we will focus on the initiation and propagation
of ASR microcracks, at the level of the reactive sites. First,
we recall the main points of existing ASR models. We then
explain briefly why we propose a new fracture model for
ASR and its differences with existing ones. Then follow
the description of the considered elementary volume and
the computation of the energies used in the energy frac-
ture criterion presented right after. The simple rule used
to sum the contributions of different elementary volumes
to macroscopic expansion comes next. Later, we explain
which parameters influence the results of the model, focus-
ing on aggregate size and the properties of the ASR gel.
Finally, we discuss the potential of our model for repro-
ducing experimental expansion curves.

2. Mechanical modelling of ASR

Amongst the mechanical models for ASR, the focus is
placed on different physical phenomena according to the
goal of the authors. For instance, Dormieux and Lemarc-
hand [15, 14, 6] have a microporomechanics approach. They
compare the mechanical consequences of the topochemi-
cal and through-solution reaction mechanisms in [15]. It
leads them to show that whether gelification occurs ho-
mogeneously in the porous space (through-solution mech-
anism), or mainly close to the sites of silica dissolution
(topochemical mechanism), the usual S-shaped (sigmoid)
expansion curve can be obtained. This expansion shape
is recovered both if the gel is created in a crack family
or homogeneously through the medium, but the charac-
teristic expansion times differ. They also show that the
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compressibility of the gel might be important to consider.
In [14, 6], they focus on the topochemical option and cre-
ate the gel in a family of cracks representing the interface
transition zone (ITZ) around aggregates. The effect of
an external stress (isotropic or not) on the expansion is
studied. They assume that the gel production stops when
a crack is closed due to external stresses. This allows a
good reproduction of Larive’s tests [13] which show an
anisotropy of swelling under anisotropic stresses, and the
diminution of total swelling above a certain load.

Ichikawa’s model [12, 11] is original because it takes
into account the different role of different kind of pre-
cipitates according to their calcium content and hydra-
tion. This model is restricted to homogeneous and dense
siliceous aggregates, in which the attack takes place gradu-
ally from the surface to the center. The expansion mecha-
nism is related to reaction rim cracking, not paste cracking.
Associated with a diffusion model for calcium and alkali
ions, this fracture model reproduces aggregate fraction and
size pessimum effects. They mention a thermodynamical
evaluation of the expansion pressure that the gels can de-
velop of 400 MPa.

The model of Suwito [28] considers the attack of a ho-
mogeneous and dense aggregate (crushed glass) by alkali
hydroxides during the 14 days accelerated test ASTM C-
1260. It aims at reproducing the pessimum size effect.
The model is divided into two parts: an application of the
composite theory to characterise the expansion and inter-
nal pressure generated by ASR with aggregates of different
sizes, and an application of diffusion theories to describe
the chemical attack and the gel flow in the cement paste
porosity. This problem is finally solved analytically using
the unknown pressure at the surface of the aggregate as
boundary condition. This formalism allows reproducing
the aggregate pessimum size effect.

Sellier [24] proposed a model involving many physi-
cal phenomena and taking into account the probabilistic
dispersion of various parameters. Diffusion in the porous
space, cement paste cracking, capillary gel permeation are
taken into account. The macroscopic swelling is estimated
through the created crack volume. The model gives a
good estimate of the pessimum aggregate volume fraction.
In the same spirit as Capra in [5], the macroscopic part
of the model reproduces the anisotropic swelling under
anisotropic stresses, and the effect of the material hetero-
geneity.

The strictly mechanical model of Bažant [2] (as op-
posed to [1] which deals with other physical phenomena)
aims at reproducing the pessimum effects when crushed
recycling glass is used in concrete, in the ASTM C-1260
mortar bar accelerated test. The gel swelling is attributed
to water imbibition. The cracking around spherical ag-
gregates is calculated from an analytical stress intensity
factor. The gel permeation in the connected porosity is
taken into account. This procedure leads to a good re-
production of the pessimum size effect on expansion, and
the calculated resistance in traction after ASR presents

the same pessimum size as the measured compression re-
sistance, but there is no quantitative agreement between
predictions and measurements. Most parameters are ob-
tained by curve fitting.

Multon gave a model [16] aiming at explaining the role
of aggregate size and alkali content observed in two se-
ries of experiments [17], [16] and Poyet’s work [21]. The
volume of gel produced by each aggregate size is deduced
from its volume fraction and alkali content. It is then cor-
rected to take into account the escape of a part of the gel
into the porosity of the surrounding cement paste. Finally,
the average deformation is related linearly to the aggregate
volume variation through a parameter to be identified, but
no computation of fracture mechanisms is proposed. How-
ever the pessimum size behaviour is well reproduced. In a
previous model [18], the damage of the cement paste sur-
rounding the aggregate under attack reproduces the mi-
crocracking induced by the pressure build-up in the gel.
Our model is from many points of view connected to this
model, the main difference being that we consider explicit
crack growth where they use damage.

Despite the number and variety of microscopic models
for ASR, we thought that the description of cracking of
the cement paste under ASR and its consequences could
be improved. The models of Lemarchand and Dormieux
[15, 14, 6] are the closest to be able to reproduce the
anisotropy of swelling effects, but we are interested in mod-
elling cracking around aggregates, which they do with a
geometry with which the way cracks grow is not satisfac-
tory to us. Itchikawa [12, 11] deals with the probabilistic
aspects of fracture in such a way that it seems too compli-
cated to be extended to anisotropy. Suwito [28] considers
swelling of aggregates and diffusion of gel, but no cracking
occurs. Sellier [24] considers the cracks as penny-shaped,
not taking into account the fact that they develop around
aggregates. The approach of Bažant [2] is very interesting
to us, but we are not fully satisfied with some assumptions
such as the fact that the aggregates are placed on a peri-
odical grid, and his estimation of the average deformation.

3. Restrictions of the model proposed in this paper

In this first attempt to understand the behaviour of an
aggregate submitted to an attack, we only study a sim-
plified mechanical problem related to ASR. Our goal is to
understand the role of cracking of the cement paste in the
swelling of concretes submitted to ASR. Therefore, we re-
strict our model to the simplest elements leading to the
appearance of a crack in the cement paste under gel pres-
sure. We want to understand how the sizes of aggregates
influence cracking and hence, ASR expansion. The model
follows many ideas of Bažant mechanical model for ASR
[2]. Let us explain the main differences here. First, in our
model, no assumption is made about the periodicity of the
aggregates in the cement paste. Instead, each aggregate
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is assumed to be embedded in infinite cement paste. Sec-
ond, the basis for crack propagation is a Finite Element
Analysis (FEA), instead of an interpolation between ana-
lytically known stress intensity factors. On this point, our
approach is close to that of Xiao [31] where the authors
study, through FEA, the evolution of stress intensity fac-
tors for ring cracks surrounding inclusions when varying
various parameters, except that we work directly on ener-
gies. We also compute the volume available to the gel by
FEA which makes it simpler than what is done for exam-
ple in [2] where it is deduced from the cracked medium’s
compliance which is obtained by integration (with respect
to the crack size) of the stress intensity factor. Then, our
determination of average deformations far from the reac-
tion sites is quite simple. Finally we make no assumptions
about the compressibility of the ASR products relatively
to the cement paste and we briefly discuss its importance
(like in [15]). Our goal in this article is to build a reliable
method to create and propagate cracks that we’ll be able
to use under external loadings to study the anisotropy of
expansion, later on. We plan to use this methodology to fi-
nally be able to extract macroscopic information about the
anisotropy of swelling and decrease of material properties
that can be used in structure-size FEA.

4. Description of the behaviour of an elementary

volume

Sound aggregate

Gel in attacked zones of

aggregate (volume fraction: ρ)

Gel around aggregate and in ITZ

Gel-free ITZ

Sound cement paste

(1− α)Rp Rp

Figure 1: Typical reaction site

In this section we study in detail the behaviour of an
aggregate surrounded by the infinite cement paste matrix,
under stress-free outside boundary conditions (at infinity)
(Fig. 1). The main assumptions and weaknesses of the
model her are:

• the aggregates are spherical

• the attack occurs homogeneously from the surface
of aggregates, but only a fraction ρ of the aggre-

gate is dissolved, which represents the volume frac-
tion of reactive silica contained in the aggregate.
This is an important assumption which could be
completely wrong for some aggregates which con-
tain pockets rather than homogeneously spread re-
active silica. This choice is related to the decision to
model the behavior of rapidly reacting aggregates, as
those tested for example by Giaccio [10] in his two
first concrete mixes: a highly reactive siliceous or-
thoquartzite and a natural sand containing volcanic
glass. For these two types of aggregates, the reaction
mostly takes place at the surface of the aggregates,
inducing a pressure build-up and crack propagation
into the cement paste. Ponce also classifies aggre-
gates as rapid-reacting and slow-reacting [20]. He
explains the mechanism of dissolution of the reac-
tive siliceous phase (opal, chalcedony) in an ortho-
quartzite aggregate where the reactive silica plays
the role of a cement for less reactive part of aggre-
gates (quartz grains). Hence, when it is dissolved,
the aggregates looses its cohesion with the cement
paste. The case of slow-reactive aggregates, where
reactive phases are usually embedded in non reac-
tive ones inside the aggregate, is completely differ-
ent. Some examples are given in the two just cited
works [20] and [10] and a detailed description of the
expansion mechanism for such aggregates is given
in Ben Haha’s work [4] and [3]. Dunant [7] and [8]
has built a numerical model for alkali silica reaction
where the reactive zones are placed inside the ag-
gregates. Their expansion induced damage in the
aggregate. Reinhardt [22] has built a model for ASR
which is focused on the fracture of aggregates under
the internal pressure of the gel.

• the first layer of cement paste around the aggregate
represents the Interface Transition Zone (ITZ), of
thickness lc (order of magnitude: 1µm), which is a
zone of large porosity compared to the rest of the ce-
ment paste. Therefore, we assume that the produced
gel doesn’t penetrate in the cement paste porosity,
except for the interface transition zone which is as-
sumed to be of porosity 1. However, since we think
that some pressure is required for the gel to invade
the ITZ’s porosity, the filling of this zone will be as-
sumed to increase with pressure, until it is full. The
presence of this zone of higher porosity and reduced
mechanical properties, where the gel concentrates,
supports the idea that as far as expansion is con-
cerned and once attack has begun, everything is as if
the aggregate was unbounded from the cement paste.

• the aggregates don’t see each other mechanically:
cracking happens as if each of them was embedded
in an infinite cement paste matrix. This assumption
is highly disputable, due to the high aggregate con-
centration of concretes (half of the total volume is
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common). We intend to improve the micromechan-
ical description of the concrete sample in a further
article in order to better take into account the large
aggregate concentration and estimate the reduction
of macroscopic elastic properties.

We call Rp the radius of the cavity in the cement paste.
It is also the radius of the aggregate before the attack.
The aggregate is chemically attacked in such a way that
a fraction ρ of its volume is replaced by a gel, starting
from the outside. The degree of attack is described by the
parameter α ∈ [0; 1]. The undeformed radius of the sound
part of the aggregate (that is if the pressure is released)
at the degree of attack α is Rg(α) = (1−α)Rp. The total
undeformed remaining volume of aggregate is the sum of
the volume of sound aggregate plus the remaining volume
in the attacked parts, representing a volume fraction of
(1 − ρ) relatively to the original aggregate. Therefore it
writes:

Va0(α) =
4

3
πR3

p

[

(1 − α)3 + (1− ρ)
[

1− (1− α)
3
]]

(1)

The aggregate and cement paste are considered linear isotropic
elastic of Young’s modulus and Poisson’s ratio (Ea, νa) and
(Ec, νc). The gel bulk modulus is Kgel.

If we assume that the chemical reaction is expansive
and the products occupy a volume δ times bigger than
the aggregate, the volume of gel at the reaction extent α,
under zero pressure, is:

V0(α) =
4

3
πδρR3

p

[

1− (1− α)3
]

(2)

Let us stress that δ could be an effective value of the
ratio of the gel volume to the aggregate volume accounting
for physical phenomena such as the water imbibition by
the gel, which is not explicitly described here. To keep
our model simple, we consider it as a constant. We also
assume that the gel is at constant pressure (whether in the
aggregate, at the surface, or later in the ITZ and cracks),
since ASR is a slow process. We study the cracking of the
cement paste under the increasing pressure created by gel
accumulation around the aggregate. Quantities relative to
the gel, the aggregates, and the cement paste, respectively
have the indexes gel, a, and c.

4.1. Study of the situation right after the appearance of an

axisymmetric crack

We suppose that the crack breaks the spherical symme-
try of the system but keeps a cylindrical symmetry. The
cement paste is cracked by a penny-shaped crack in the
plane (0, ex, ey). The crack is concentric with the aggre-
gate (Fig. 2).

We assume that when in the uncracked state the pres-
sure reaches a critical value (yet unknown), a crack of fi-
nite length is instantaneously created. Hence, the crack
inside radius is Rp and its outside radius is (1 + x)Rp in
undeformed configuration. x is a dimensionless parameter

p

p

Rp xRp

Figure 2: Crack considered

representing the size of the crack. The area of the created
crack is:

S(x) = πR2
p

[

(1 + x)2 − 1
]

(3)

4.1.1. Gel pressure

This instantaneous crack creation leads to an increase
of the volume accessible to the compressible gel and hence,
a decrease of its pressure. We write the gel pressure P (α, x),
to make explicit its dependence on the attack degree and
crack size, keeping implicit other dependencies (on mate-
rial and geometrical fixed parameters). We will use the
same notation for volumes and energies.
Point of view of the gel
These quantities are related through the state law of the
gel:

Vgel(α, x) = V0(α)

[

1− P (α, x)

Kgel

]

(4)

Point of view of the solid
In this cracked configuration, no analytical expression is
available to compute the volume variation of the cavity de-
pending on the length of the crack, pressure, ... However,
we can use dimensional analysis to have as few different
cases to compute through finite elements analysis (FEA)
as possible.

Let us consider the simple problem explained on Fig. 2
where the cracked cement paste is submitted to a pressure
P on the cavity surface and the crack lips. We are inter-
ested in the volume change of the cavity when pressure is
applied. It shall depend on the pressure P , the cavity ra-
dius Rp, the relative crack size x and the Young’s modulus
and Poisson’s ration of the cement paste (Ec, νc).

First, due to the linearity of this elasticity problem, the
volume variation of the cavity is proportional to the load-
ing pressure P . Second, dimensional analysis allows us to
write the volume variation in the form ∆Vc = R3

pf(
P
Ec

)g(x, νc).
Where the functions f and g are dimensionless. Recall-
ing that it is proportional to the loading pressure, we get
∆Vc = R3

p
P
Ec

g(x, νc).
For convenience of the expression, we write it in the fol-

lowing way, where α and x are the two variables describing
the system:
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∆Vc(α, x) =
4

3
πR3

p

P (α, x)

Ec

∆v(x) (5)

Where 4
3π∆v(x) is the volume change when a pore of unit

radius surrounded by a crack of dimensionless length x in
a material of unit young modulus and Poisson ration νc is
loaded by a unit pressure. Strictly speaking, ∆v depends
on νc but we don’t write it explicitly since it is easy to
fix νc once and for all and to perform the calculations for
this value. This function is know by FEA, by relating it
to the stored elastic energy in the medium, as explained
in §4.1.2.

When there is no crack, it is easy to write a closed
form expression of the dimensionless volume variation of
the cavity:

∆v(0) =
3

2
(1 + νc) (6)

The volume accessible to the gel can then be written as
the sum of four terms:

• first, the volume left free by the aggregate erosion:

4

3
πR3

pρ
[

1− (1− α)3
]

(7)

• second, the volume corresponding to the hydrostatic
compression of the sound part of the aggregate and
the remaining proportion (1−ρ) in the attacked zone
(see Eq. 1), easily written using the bulk modulus of
the aggregate Ka = Ea

3(1−2νa)
:

P (α, x)

Ka

Va0(α) (8)

• the contribution of the cement paste explained above,
equal to ∆Vc(α, x) (see Eq. 5)

• the volume of gel which could permeate into the ITZ,
which we choose to depend linearly on the pressure
until a threshold pressure P0 is reached (when the
ITZ is full) and to be proportional to the external
surface of the considered aggregate:

V ITZ = 4πR2
plc min(1,

P

P0
) (9)

Adding these contributions (Eqs. 7, 8, 5, 9):

Vgel(α, x) =
4

3
πR3

p

{

ρ
[

1− (1− α)
3
]

+
P (α, x)

Ka

[

(1 − α)3 + (1− ρ)
[

1− (1− α)3
]]

+
P (α, x)

Ec

∆v(x) +
3

Rp

lc min(1,
P

P0
)

}

(10)

And finally the pressure right after cracking is deter-
mined by solving the piecewise linear equation in P (α, x)

obtained by saying that our two expressions for the vol-
ume of gel Vgel (Eqs. 4 and 10) are equal (again using the
aggregate bulk modulus Ka = Ea

3(1−2νa)
):

If P > P0, P (α, x) =

(δ − 1)ρ
[

1− (1− α)3
]

− 3lc
Rp

δρ[1−(1−α)3]
Kgel

+ ∆v(x)
Ec

+
(1−α)3+(1−ρ)[1−(1−α)3]

Ka

(11)

If P < P0, P (α, x) =

(δ − 1)ρ
[

1− (1− α)3
]

δρ[1−(1−α)3]
Kgel

+ ∆v(x)
Ec

+
(1−α)3+(1−ρ)[1−(1−α)3]

Ka
+ 3lc

P0Rp

(12)

These two expressions are identical for P = P0. There-
fore, switching from Eq. 12 to Eq. 11 leads to no discon-
tinuity of pressure with respects to the variations of the
attack degree α. And we define the dimensionless pressure

p(α, x) = P (α,x)
Ec

. The dependence in Rp passes through
the presence of x which depends on Rp and is explicit in
the term related to the ITZ.

4.1.2. Stored elastic energy

The stored elastic energies in the aggregate and gel are
computed in closed form:
Elastic energy stored in the gel

Eel
gel(α, x) =

1

2

P 2(α, x)

Kgel

V0(α)

=
2π

3

ρδR3
p

Kgel

[

1− (1 − α)3
]

P 2(α, x)

(13)

Elastic energy stored in the aggregate

Eel
a (α, x) =

2πR3
p

[

(1− α)3 + (1 − ρ)
[

1− (1 − α)3
]] 1− 2νa

Ea

P 2(α, x)

(14)

Elastic energy stored in the cement paste
For the cement paste matrix, no closed form expression
is available. We use the same approach as for the vol-
ume variation of the cavity in cracked cement paste. We
are interested in the elastic energy stored in the cement
paste under pressure P . It shall depend on P , Rp, x, and
(Ec, νc). Dimensional analysis leads to write the elastic
energy in the following form: Eel

c = R3
p

Pa

E
a−1
c

g(x, νc) where

a ∈ R and the function g is dimensionless. Then due to
the linearity of the problem, the deformation and stress
tensors are proportional to the loading pressure P . The
elastic energy, which is the integration of the contraction
of those tensors over the full domain is finally proportional
to P 2, that is a = 2. Finally we write it in the following
manner:

Eel
c (α, x) = 2πR3

p

P 2(α, x)

Ec

e(x) (15)
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Where 2πe(x) represents the stored elastic energy under
unit pressure, unit cavity radius, and a unit Young’s mod-
ulus of the material. Again, the dependence on νc is not
written explicitly. We also have the analytical expression
of this quantity when there is no crack:

e(0) =
1 + νc

2
(16)

And the numerical values of this function for x > 0 are
determined using FEA (Fig. 3). At the same time the
numerical values for ∆v(x) are known thanks the equality
of the stored elastic energy and work of the pressure:

Eel
c (α, x) =

1

2
P (α, x)∆Vc(α, x) (17)

Hence,
∆v(x) = 3e(x) (18)

We see on this curve that there is a horizontal tangent in

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

e(
x
)

[-
]

↙ 1 + νc
2

x [-]

Figure 3: FE estimate of the stored elastic energy.

x = 0: ∂e(x)
∂x

(x)
x→0−→ 0

Total elastic energy in the cracked configuration

Eel
total(x, α) = 2πR3

p

[

δρ(1− (1 − α)3)

3Kgel

+ e(x)

+
[

(1− α)3 + (1− ρ)(1− (1− α)3)
] 1− 2νa

Ea

]

P 2(α, x)

(19)

5. Thermodynamical study of the possible instan-

taneous initiation of a crack of finite length.

Crack propagation. Energy criterion

5.1. Energy balance

The creation of the crack requires a certain amount
of energy that is supplied by the release of elastic energy.
This released energy is simply written:

ERel(α, x) = Eel
total(α, 0)− Eel

total(α, x) (20)

Using Eq. 19, we can see that the released energy ERel(α, x)
is proportional to R3

p, that is ERel(α, x) = πR3
pe

Rel(α, x)

where eRel(α, x) is independent of Rp.

eRel(α, x) = 2

[

(

P 2(α, 0)− P 2(α, x)
)

(

δρ(1− (1− α)3)

3Kgel

+

[

(1 − α)3 + (1− ρ)(1 − (1− α)3)
]

(1− 2νa)

Ea

)

+
1 + νc

2
P 2(α, 0)− e(x)P 2(α, x)

]

(21)

Assuming that the energy required to create a crackEdiss(x)
is proportional to the crack surface, we realize it is propor-
tional to R2

p, so it can be written Ediss(x) = πR2
pe

diss(x)

where ediss(x) is independent on Rp and writes:

ediss(x) = Gc

[

(1 + x)2 − 1
]

(22)

For the creation of a crack to be possible at the degree of
attack α, it is necessary that:

∃x ∈ ]0,+∞[, ERel(α, x) ≥ Ediss(x) (23)

We consider this necessary condition as sufficient and there-
fore, we use the equality of released energy and dissipated
energy as a crack initiation criterion. Now that we know
how to obtain the expressions for all the energies needed,
lets discuss the shape of these curves to understand better
the conditions for cracking (Fig. 4 and 5). The analytical
expression of Ediss is known (Eq. 22). ERel(x) has the
following limits at constant α:

• ERel(α, x)
x→0−→ 0 because if no crack appears at con-

stant α, there is no energy release

• ∂ERel

∂x
(α, x)

x→0−→ 0 because it is proportional to ∂e(x)
∂x

(x)
(see Eqs. 21, 18, 11, and 12) which has a horizontal
asymptote in x = 0 (see Fig. 3)

• ERel(α, x)
x→+∞−→ Eel

total(α, 0) and ∂ERel

∂x
(α, x)

x→+∞−→ 0
because the stored elastic energy in a configuration
with a crack of infinite size is zero.

At constant x, ERel increases with increasing α. We dis-
play the shape of ERel(x) for different values of α (see
Fig. 4).

Let us explain the initiation of a crack:

• Originally, α = 0 so ERel = 0

• The attack begins, so α starts increasing. Hence,
Eel

total(α, 0) > 0 and ERel(α, x) > 0. However, since
dEdiss

dx
(x = 0) > 0 while ∂ERel

∂x
(α, x = 0) = 0, at

the beginning of attack we have ∀ x , ERel (α, x) <
Ediss (x)

• From now on, since we decided to use an energy cri-
terion for crack initiation, a crack of length xc will
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x [−]

Ediss(x)

Erel(α, x)Eel
total(α, 0)

α ↗

xc

Figure 4: Dissipated and released energies when a crack of length x

is created

be created as soon as we reach a critical degree of
attack α such as:

∃x | ERel (α, x) = Ediss (x) (24)

Since α ≤ 1, this may never happen. In this case
even at full attack, no crack will be created. We
discuss this in § 5.2. Moreover, since the loading
increases continuously, the first attack degree lead-
ing to the creation of a crack of length xc is also
characterized by the fact that ERel and Ediss are
tangent at this point, that is for a given initial ag-
gregate radius Rp, the solution (αc(Rp), xc(Rp)) is
fully characterized by:

{

ERel (αc(Rp), xc(Rp)) = Ediss (xc(Rp))
∂ERel

∂x
(αc(Rp), xc(Rp)) =

dEdiss

dx
(xc(Rp))

(25)

These two conditions translate in terms of energy
rates by the equality of the two grey surfaces on
Fig. 5.

• Once the crack has been initiated, it is important to
study how it evolves, since the final goal is to mix dif-
ferent sizes of aggregates which will crack their sur-
rounding cement paste at different times. We assume
that the existing crack doesn’t modify the spheri-
cal symmetry of the attack of the grain. Therefore,
this attack is still fully described by the parameter
α. Starting from (αc, xc), the propagation of the
crack when α further increases is governed by the

energy rate equation ∂ERel

∂x
(α, x) = dEdiss

dx
(x). Since

∂2ERel

∂x2 (α, x) < 0 and d2Ediss

dx2 (xc) > 0 around the

current point (α, x) (see Fig. 5), and ∂ERel

∂x
(α, x) is

continuous in α, x evolves continuously with α when
the latter further increases. Hence, the propagation
is stable.

x [−]

dEdiss

dx
(x)

∂Erel

∂x
(α, x)α ↗

xc

Figure 5: Dissipated and released energies rates when a crack of
length x is created

5.2. Smallest aggregate radius that can lead to the failure

of the cement paste

All other parameters fixed (Kgel, δ, lc, P0, ρ, (Ec, νc),
(Ea, νa)), since Ediss(x) = πR2

pe
diss(x) and ERel(α, x) =

πR3
pe

Rel(α, x) (where ediss and eRel are independent of
Rp), and at given attack degree α, the aggregates sizes
for which cracking is possible are such as ∃x | Ediss(x) ≤
ERel(α, x), or equivalently ∃x | ediss(x)

eRel(α,x)
≤ Rp. Therefore,

at given α the smallest aggregate size for which cracking
is possible is:

Rp = inf
x

ediss(x)

eRel(α, x)
= inf

x
Q(α, x) (26)

Therefore, there exists an aggregate radius Rinf below
which cracking is impossible which means that the pres-
sure created by the full attack of the aggregate is not high
enough to crack the cement paste matrix. Below this ra-
dius Rinf ,

∀x, ERel(1, x) ≤ Ediss(x) (27)

Hence the smallest radius for which the cement paste will
be cracked before full attack depends on Gc

Ec
, Ec

Kgel
, νc, δ,

lc, P0, ρ,
Ec

Ea
, and νa .

We can plot the ratio Q(1, x) = ediss(x)
eRel(1,x) which is used

to determine Rinf (Fig. 6), in the simplifying case where
ρ = 1, lc = 0 (in this case P0 has no influence). We also
obtain the corresponding relative crack size xinf (which is
not the smallest possible crack size, but the crack size cor-
responding to Rinf ). We take Ec = 20 GPa, Eg = 60 GPa,
νc = νg = 0.25, Gc = 40 J.m−2, Kgel = 1 GPa, and
δ = 1.03. The Poisson’s ratios and Young’s modulus are
classical for cement paste and aggregates, the fracture en-
ergy is taken from Wittmann [30], and the two last param-
eters are chosen arbitrarily, since they are not well-known,
which will be discussed later on.

Now, starting from the knowledge of the volume frac-
tion of each aggregate size at the macroscopic level and
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that of the pressure and the crack size for each aggregate
size at the microscopic level, we need to define a macro-
scopic deformation.

6. Study of the macroscopic deformation

First we consider one aggregate in infinite cement paste
and a domain Ω including the aggregate. Its current state
is described by the couple (x, P (α, x)). Let us consider
U =

∫

∂Ω

(u⊗ n)
s
dS where u is the displacement field, n

the outward normal to Ω , ∂Ω is the domains border, and
s is used to take the symmetric part of the tensor. Takana-
Mori’s theorem [29] states that if Ω is a sphere, U does
not depend on its size and position as long as it includes
the cavity. Suppose there is only one aggregate size Rp

representing a volume fraction f throughout the concrete.

Then the sphere Ω has to be chosen such that f =
4

3
πR3

p

|Ω| to

make sure that the volume fraction of the aggregate in the
domain used to compute the average deformation due to
the attack is equal to the volume fraction in the concrete
considered. Finally we define the macroscopic deformation
E = 1

|Ω|U = f
4

3
πR3

p

U .

Then, we need to take into account the aggregate size
distribution. To each aggregate size Rp,i corresponds a
volume fraction fi in the concrete. Each aggregate class
contributes to the macroscopic deformation through a par-
tial average deformation defined as:

E
i
=

fi
4
3πR

3
p,i

U
i

(28)

where U
i

is computed relatively to the aggregate of size
Rp,i, a crack of size xi, and a pressure Pi = P (αi, xi) .
The macroscopic deformation is then defined as:

E =
∑

aggregate

size i

E
i

(29)

A corollary of Takana-Mori’s theorem [29] for which we
will give our own proof in a later paper relates the volu-
metric part of U

i
to the dimensionless stored elastic energy

in the cement paste surrounding the considered aggregate
(defined in Eq. 15) through the expression:

trU
i
=

R3
p,iP (αi, xi)

Ec

4π

3

1 + νc
1− νc

[1− 2νc + e(xi)] (30)

Eq. 30 finally gives us access to the macroscopic volumet-
ric deformation:

E =
∑

aggregate

size i

fi
P (αi, xi)

Ec

1 + νc
1− νc

[1− 2νc + e(xi)] (31)

7. Numerical results: effect of aggregate size on

crack initiation and volume changes

In this section, we strictly study the behaviour of the
fracture model. To focus on this part of our work, we set
lc = 0 and ρ = 1. As soon as the gel is created, a significant
pressure build-up is observed. We want to apply our model
to see if it allows explaining the expansions observed in
ASR. To do so, we need some reliable values of the different
parameters involved. Recalling that xinf depends on Ec

Kgel
,

νc, δ,
Ec

Ea
, νa and Rinf depends on theses quantities plus

Gc

Ec
, we are going to study the influence of the aggregate

radius Rp, the ratio of gel to aggregate volume δ and the
gel compressibility Kgel on first cracking and crack length
at full attack. The other parameters which vary less or
are easier to determine for a given concrete will be set to
the values of Ec = 20 GPa, Eg = 60 GPa, νc = νg = 0.25,
Gc = 40 J.m−2.

7.1. Study of the first and final cracking

7.1.1. Smallest aggregate size that can lead to the fracture

of the cement paste: Rinf

Let us first study how Rinf varies when changing δ
and Kgel. Is is important to study this behaviour, because
the swelling of the gel and its compressibility are not well
known. In 2005, Phair claimed to publish the first mea-
surements of ASR gel bulk modulus [19]. The measured
values are of the order of 10 GPa. His experimental set-
up seems to measure the undrained bulk modulus of the
gel. The gel is porous, so its drained modulus might be
very different, and it seems that since gel creation is very
slow, water movements have time to occur during the pres-
sure build-up. However the instant of cracking might be
very short. Hence, it is possible that the effective bulk
modulus of the gel during cracking is closer to high values
such as reported by Phair. Moreover, the different sorts of
gel that are produced in different chemical environments
might also have very different and time-dependant values
of these parameters as observed on the storage and loss
moduli of synthetic alkaline-calcium silica gels by Gabo-
riaud [9]. Since the swelling of the gel is often explained
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by water absorption, they might also differ significantly
according to the saturation degree of the concrete. Hence,
in a predictive model, they would probably have to be de-
termined by an optimization procedure.
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Figure 7: Minimum radius to crack the cement paste: Rinf (δ,Kgel)

We can see on Fig. 7 (which is build using Eq. 26 for
various values of Kgel and δ) that increasing the coeffi-
cient of expansion δ or the compressibility Kgel decreases
the radius of the smallest aggregate that leads to fracture
initiation. When δ −→ 1, cracking becomes impossible, as
well as when the gel is too soft (Kgel −→ 0).

7.1.2. First and final crack sizes varying Rp, Kgel, and δ

These three parameters are very important to correctly
determine the crack initiation and propagation around an
aggregate as can be seen on Fig. 8, 9, 10 where we represent
the first (xc) and final (xmax) crack size when changing
these parameters. The final crack size xmax is defined as
the crack size x at full attack of the aggregate α = 1. The
two unchanged parameters (out of 3) in each case have the
values Kgel = 1 GPa, δ = 1.03 and Rp = 1.5 mm.

A similar behaviour observed varying Rp, Kgel, or δ
(Fig. 8, 9, 10): for small values, cracking is impossible even
at full attack (α = 1) then, cracking becomes possible.
The initial crack size (xc as defined by Eq. 25) further
decreases, and the final crack size (xmax) increases when
increasing δ, Kgel or Rp.
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Figure 8: Relative initial (xc) and final (xmax) relative crack size as
a function of aggregate size. Kgel = 1 GPa and δ = 1.03

0 0.5 1 1.5 2 2.5 3

x 10
9

0

0.5

1

1.5

2

2.5

 

 

x
c

x
max

x
[-
]

Kgel [Pa]
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1 GPa and Rp = 1.5 mm

7.1.3. Degree of attack corresponding to crack initiation

when varying the aggregate radius

Based on the energy criterion explained above (§ 5), we
determine the degree of attack that leads to the initiation
of a crack.
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Figure 11: Degree of attack at first cracking. Kgel = 1 GPa and
δ = 1.03

First, we see that the degree of attack at crack ini-
tiation decreases with increasing aggregate size (Fig. 11).
The pressure at first cracking decreases with increasing ag-
gregate size, as well as the pressure jump (Fig. 12). The
order of magnitude of the pressure reached seems to be cor-
rect, thinking that Struble [27] has shown that synthetic
gels can develop pressures of the order of 10 MPa, which is
also the pressure chosen by Shin in his image-based FEA
of alkali-silica reaction [25].

It is interesting to study the value of αRp at first crack-
ing for each aggregate size, since later in the article we as-
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Figure 12: Pressure right before and after first cracking. Kgel =
1 GPa and δ = 1.03

sume that when various sizes of aggregates are attacked si-
multaneously, the attack depth is the same for all (Fig. 13).
In this case, a crack initiates around aggregates of inter-
mediate size first, here around 3.6 mm . We study as well
the first cracking and final values of the absolute crack size
xRp. Very interestingly, once cracking has occurred, the
absolute crack size is approximately affine with respect to
the initial aggregate radius Rp (Fig. 14).
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Figure 13: Attack depth at first cracking. Kgel = 1 GPa and δ = 1.03
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7.2. Study of the complete evolution of the crack. Influ-

ence of an initial flaw

Once the crack is initiated, we can follow its evolution
when degree of attack increases further. We still are in the
approximation of a spherical attack, even if the presence
of the crack increasingly leads this assumption to become
wrong. In this article we mostly study the situation where
there is no initial flaw (all crack sizes are initially zero),
but we will show in this section a few evolutions of cracks
with non-zero initial size.

For one aggregate size, here Rp = 1.5 mm, we try dif-
ferent initial relative crack sizes, ranging from zero to the
aggregate size. We represent the crack size x, the pressure
P and the volumetric deformation trE as functions of α,
the relative attack depth. We consider 10 different cases:
initial flaws ranging from x = 0 (blue dotted line) to x = 1.
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Figure 15: Relative crack size x(α) (initial flaws ranging from x = 0
(dotted line) to x = 1). Kgel = 1 GPa, δ = 1.03, and Rp = 1.5 mm
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Figure 16: Pressure P (α) (initial flaws ranging from x = 0 (dotted
line) to x = 1). Kgel = 1 GPa, δ = 1.03, and Rp = 1.5 mm
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Figure 17: Volumetric deformation trE(α) (initial flaws ranging from
x = 0 (dotted line) to x = 1). Kgel = 1 GPa, δ = 1.03, and
Rp = 1.5 mm

We see the existence of a critical flaw size above which
no jump in crack size occurs any more (Fig. 15), here ap-
proximatively x = 0.4. Other simulations showed that
this critical flaw size depends on the aggregate size. The
smaller the flaw, the bigger the pressure has to be to prop-
agate a crack (Fig. 16). If cracking occurs, expansion is
ultimately the same, but a significantly different behaviour
is observed at the beginning (Fig. 17). At early times, ex-
pansion is roughly doubled if a large flaw is considered,
compared to the case with no initial crack. This effect
seems very important here, when we only have one aggre-
gate size involved. In next section, we discuss the same
question with a full aggregate size distribution.
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8. Numerical results: application to a given aggre-

gate size distribution

8.1. Discussion about the existence of an original flaw

Still focusing on cracking alone (ρ = 1, lc = 0), we
plot the comparative evolution of the different aggregate
sizes of a typical 0 − 4 mm Seine sand. Again we use
the values Kgel = 1 GPa (around half that of water) and
δ = 1.03. We compare the case with no initial flaw to the
case where around each aggregate exists an original flaw
of size x = 0.5 (chosen arbitrarily). See the cumulative
volume fraction of this sand (Fig. 18). For these material
properties, Rinf = 0.93 mm, so some aggregates shall not
induce cement paste cracking during this experiment.
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Figure 18: Seine sand

We plot the evolution of the crack size (Fig. 19) and
the pressure (Fig. 20) for 5 aggregate sizes out of the 140
computed, and volumetric deformation (Fig. 21) for this
Seine sand as functions of the attack degree α. The curves
corresponding to the case with an original flaw are the
dashed curves.

When small aggregates are fully attacked and there
was no original flaw, the pressure reaches the high value of
27 MPa without fracture of the cement paste. The max-
imum pressure is slightly lower with initial flaws. Suc-
cessive cracking leads to the irregularity of the expansion
curve (Fig. 21) which is artificial since due to aggregate
size discretization.

Finally, we see that the results are not too different.
The expansion is slightly higher with initial flaws, because
some aggregates were able to propagate an existing crack
but were not able to create one from scratch. This is a
good thing because it allows us to consider that there is
no original flaw and hence to avoid the discussion about
the size that should be given to this original flaw. This
conclusion contrasts with the approach of Reinhardt in [22]
where the original flaw size controls the fracture behaviour
of aggregates submitted to ASR. Expansion is the fastest
at the beginning of the attack. It progressively slows down.
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Figure 19: Evolution of crack size x(t) for different aggregate sizes
(written on the right of the plot) and initial crack lengths: x = 0
(solid curves) and x = 0.5 (dashed curves)
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8.2. Comparison with experimental ASR results

8.2.1. Experimental results used

We must keep in mind that usual ASR expansion curves
have a sigmoid shape characterized by a latency time, a
characteristic time and an asymptotic expansion value [13].
We can wonder if our model can reproduce experimental
results by identification of some of its parameters. We
have chosen experimental data from Multon’s article [18].
In this article the author presents a microscopic model and
a set of swelling experiments of mortar bars containing dif-
ferent sizes of reactive sand. His model accounts for the
diffusion of alkali in the aggregates whereas ours doesn’t.
He considers that no pressure is required to fill the ITZ
with gel. The pressure build-up that occurs when the ITZ
is full of gel leads to damage of the cement paste.

His mortars contain three aggregate size ranges:

• small: 80− 160 µm, 30 % mass of the aggregates

• medium: 315−630 µm, 40 % mass of the aggregates

• large: 1250− 3150 µm, 30 % mass of the aggregates

The reactive phase is siliceous limestone and is in the
small or large size range in different proportions. In small
aggregates, the reactive proportion of the aggregate is 9.4 %
mass. In the large ones, this proportion is 12.4 %. Hence
for small aggregates we have ρ = 9.4, for large aggregates
ρ = 12.4. We don’t consider the experiments with mixed
proportions of reactive aggregates, because our model is in-
trinsically unable to reproduce the couplings between dif-
ferent aggregate sizes. With our model, the expansion of a
mix of two aggregate size is exactly the weighted average of
the expansions of the two sizes alone, but his experiments
show a more complex behaviour.

The total sand content is 1613.4 kg/m3, the cement
content 537.3 kg/m3, the water to cement ration 0.5, and
the adjusted (by adding NaOH in the mix) alkali content

is 6.2 kg/m3 in the first set of experiments, 13.4 kg/m3 in
the second one.

In the 2 samples chosen for identification, first all the
small fraction of aggregates is reactive, then all the large
aggregates are reactive.

8.2.2. Attack kinetics

We have two choices to explain the end of expansion:
scarcity of reactive phase in the aggregates, or scarcity of
chemical products to attack the aggregates. The experi-
mental results show a very important role of the quantity
of alkali since the expansion is much faster and reaches
greater asymptotic values with a greater initial alkali con-
tent. However since we don’t model the chemical part of
the reaction, we are not able to predict the slowing down
of the reaction due to lack of alkali hydroxides.

Concerning the attack kinetics, following Bažant [2],
we assume that at a given time, the attack depth is the
same for all aggregate sizes.

α(Rp, t) =
r(t)

Rp

(32)

Then we need a simple assumption to determine the shape
of r(t). Assuming that the invasion of the aggregate by the
interstitial solution is driven by diffusion, we choose the
attack depth common to all aggregates to be proportional
to the square root of time (also following Multon [16] on
this point):

r(t) = fr
√
t (33)

8.2.3. Optimization

We then perform a least square optimization procedure
over 5 parameters:

• the bulk modulus Kgel of the gel, which is unknown
and might depend on gel composition

• the expansion coefficient δ of the gel, which is also
unknown and might depend on gel composition

• the thickness of the expansion reservoir taking the
ITZ into account lc which shall not depend on the
type of gel

• the pressure P0 at which the ITZ is considered to be
full, which is a mixed property of the ITZ and the
gel

• the coefficient fr, which represents the speed of the
attack. It might change when the alkali concentra-
tion changes, but not with aggregate size

Therefore, we first identify 5 parameters using the two
expansion curves at 6.2 kg/m3: f6.2

r , K6.2
gel , δ

6.2, P0, and
lc. Then we fix the two last parameters P0 and lc, and
identify the 3 remaining unknowns: f13.4

r , K13.4
gel , δ13.4.

The fits (see Fig. 22 and Fig. 23) are obtained with the
following values of the parameters: f6.2

r = 0.66max(Rp),
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Figure 22: Fit of the expansion curves obtained with a total alkali
content of 6.2 kg/m3
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Figure 23: Fit of the expansion curves obtained with a total alkali
content of 13.4 kg/m3

K6.2
gel = 70 MPa, δ6.2 = 1.4, P0 = 2.7 MPa, lc = 0.42 µm,

f13.4
r = 0.4max(Rp), K13.4

gel = 183 MPa, and δ13.4 = 1.7.
The expansion curves related to the greater alkali content
(Fig. 23) is less good, probably because it was performed
second, using values of P0 and lc identified on the two
other curves.

More physics is needed. The greater quantity of alkali
leads to a higher expansion. Since we don’t model the al-
kali, the increase in asymptotic expansion is obtained by
an increase of Kgel and δ. Moreover, since no experiments
are available concerning the swelling and elastic properties
of gels formed at different alkali content, we don’t know
if the large variations of Kgel and δ keep with the physics
of real gels. Some experiments are in progress concern-
ing their stiffness. We hope to be able to comment the
values identified here in a further article. To limit initial
expansion, fr (which is expressed relatively to the greatest

aggregate size) is lead to decrease, but the initial expan-
sion is still overestimated.

With both alkali contents, no crack appears around the
smallest fraction of aggregates. For the large aggregates,
it reaches sizes as large as x = 4, which is a few millimetres
depending on the aggregate size.

8.2.4. Pessimum size behaviour

Pessimum effects are systematically observed with ASR.
Both the aggregate total volume fraction and size distri-
bution play an important role. Many existing models can
predict part of these pessimum effects. Concerning our
model:

• The pessimum concentration effect, according to which
there is an aggregate volume fraction that leads to
maximum expansion cannot be reproduced since the
volume fraction of aggregates only plays a role in a
summation, there is no notion of chemistry presently
in our model, so no risk of scarcity of reactants to
attack the aggregate or produce the gel. Even as-
suming for example that only a certain volume of ag-
gregate can react and testing different total volume
fraction, we obtain no total concentration pessimum
effect.

• A transitory pessimum size effect is observed with
our model. We study this effect on a granulometry
ranging from 0 to 5 mm (no important pessimum size
effect can be expected if all aggregate sizes are over
Rinf , since the effect of earlier cracking of middle-
sized aggregates is very short-lasting). We still are
in the assumption that the attack depth is the same
over all aggregate sizes at a given time. Here, we
have a transitory pessimum effect related to the fact
that at a given experiment time (that is in our model
at a given attack depth), different aggregate sizes
lead to different expansions (at identical volume frac-
tion) (Fig. 24). Starting from the bottom, each curve
correspond to a given attack time. The black solid
curve represents full attack while other curves (from
bottom to top) are spaced by increments of 5% rela-
tively to this final time. As we can see, the pessimum
size is roughly around 2 mm and varies during the
experiment. Reaching greater attack times, no more
pessimum size exists: bigger aggregates are respon-
sible for bigger expansion, at equal volume fraction.
Notice the resemblance of our description of the pes-
simum size effect to Multon’s [16]. The main differ-
ence is that in our model, the smallest aggregates
lead to non-zero expansion since some pressure is re-
quired to fill the ITZ. Therefore even if the cement
paste is uncracked, we predict some expansion.
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Figure 24: Pessimum size effect: expansion due to a given aggregate
size at unit volume fraction. Kgel = 70 MPa, δ = 1.4, P0 = 2.7 MPa,
lc = 0.42 µm, and Rp ∈ [0mm; 5mm]. Each curve represent a given
instant by 5% time increments relatively to final time (solid curve)

9. Conclusion

A model for Alkali-reaction was proposed. It is a strictly
mechanical model, partly inspired by that of Bažant [2]
and [18]. Aggregates are supposed to behave as if they
were embedded in an infinite cement paste. The chemical
attack is modelled by progressively replacing the aggregate
by a less dense gel. The subsequent pressure increase leads
to cracking of the surrounding cement paste. The initia-
tion and propagation of the crack are governed by energy
balance only.

An interesting behaviour is observed. Aggregates of
different sizes have a different impact on the overall ex-
pansion. First of all, even fully attacked, smaller aggre-
gates are shown not to lead to any cracking of the cement
paste. The pressure reached for these aggregates is im-
portant, but according to our energy criterion the cement
paste can take such pressures when there is no (or a very
small) initial crack, because the elastic energy stored in the
cement paste around a small aggregate is not sufficient to
provide the energy needed to create a crack.

The model is then used to discuss the importance of the
initial flaw considered. We show that even if the presence
and the size of an initial flaw is important for the expansion
due to a single aggregate size, after summation of different
sizes, the effect is not enormous. This conclusion is linked
to the fact that we only considered an energetic fracture
criterion.

Finally we apply the model to try to reproduce the ex-
pansion obtained by Multon [18] and identify the param-
eters introduced. No attempt was made to predict other
expansion curves using the identified parameters because
we are aware that some physics still lacks for the model to
be predictive.
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