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1 Introduction

Treating wall boundary conditions is one of the most challenging parts of the
Smoothed Particle Hydrodynamics (SPH ) method and many different approaches
have been recently developed (see e.g. [1, 2, 3, 4, 5, 6]). Accurate boundary con-
ditions are essential since in many applications where precise loading on walls
is required such as forces on floating bodies or shoreline structures, tank walls,
wind-wave exchanges, fluid-structure interactions in power-plants etc. It is an
obvious prerequisite to improve turbulence modelling near walls.

Many methods for implementing solid walls in SPH have been developed
over the past two decades. Among the most popular and commonly used include
three broad categories:

1. Repulsive forces such as Lennard-Jones potential [7],

2. Fictitious particles (or alternatively ghost particles) which fill the empty
area of the kernel support behind a boundary with artificial particles with
prescribed physical quantities (such as pressure and velocity) to enforce
no slip or free slip condition,

3. Semi-analytical boundary conditions based on a variational formulation
introduced by Kulasegaram et al. [1] where a wall renormalization of the
equations is made with respect to the missing area of the kernel support.
We will describe a variant of this method in § 3, where intrinsic gradient
and divergence operators are employed that ensure conservation proper-
ties.

All of these methods have advantages and drawbacks. The Lennard-Jones
potential force originally describes the interaction between pairs of atoms and
is used to model the repulsion between a fluid particle and a boundary particle.
This method is easy to implement, even for complex geometries and compu-
tationally cheap. However, it leads to spurious behaviour: for instance it is



impossible to maintain particles fixed along a vertical wall in the presence of
gravity.

The fictitious particles recommended in [8] prevents such a non-physical
behaviour. However, the positioning of ghost particles in complex geometries
can be particularly unwieldy, particularly in 3D. Moreover, the computational
effort required is not negligible, given that we increase the number of particles
to take into account in the discrete summations (1) and (3).

Finally, the semi-analytical approach is attractive thanks to its variational
derivation which means that some physical quantities such as momentum will
be automatically conserved. Unfortunately, the original attempt did not present
a clear and simple way to compute renormalization terms introduced. Further-
more, the formulation proposed was not able to reproduce hydrostatic pressure
fields or to take into account the shear stress along a wall.

This paper therefore takes the semi-analtycial approach of [1] and extends
it so that the accuracy of the physical field such as the pressure next to walls
is considerably improved, and the consistent manner developed for wall-correct
operators allows us to perform simulations with turbulence models. This work
will present three key advances:

e The time integration scheme used for the continuity equation requires par-
ticular attention, and as already mentioned by Vila [9], we prove there is
no point in using a dependence in time of the particles’ density if no kernel
gradient corrections are added. Thus, by using a near-boundary kernel-
corrected version of the time integration scheme of the form proposed in
[9], long-time simulations ideally suited for turbulent flows in the context
of accurate boundary conditions are possible.

e To compute the kernel correction, Feldman and Bonet [10] use an ana-
lytical value which is computationally expensive whereas Kulasegaram et
al. [1] and De Leffe et al. [6] use polynomial approximation which can be
difficult to define for complex geometries. We propose here to compute
the renormalisation term of the kernel support near a solid with a novel
time integration scheme, allowing us any shape for the boundary.

e All boundary terms issued from the continuous approximation are given
by surface summations which only require information from a CAD mesh
file of the boundary. The technique developed here allows us to correct the
pressure gradient and viscous terms and hence provide a physically correct
wall-shear stress so that even the diffusion equation of a scalar quantity
can be solved accurately using SPH such as the turbulent kinetic energy
or its dissipation in a k — € model of turbulence.

This paper is organised as follows: In the next Section we introduce the for-
mulations for weakly compressible SPH introducing the basic discretisations for
operators, viscous forces, and turbulence modelling. In the Section following,
we then develop the consistent boundary conditions with improved time inte-
gration and a position-dependent technique to compute the density. The paper
then presents the computation of the renormalization terms using a novel time
integration scheme before presenting the enhanced behaviour in the Section on
numerical results.



2 Basic SPH formulations for weakly compress-
ible Newtonian fluid

2.1 Conservative governing equations

The slightly compressible Newtonian fluid is modelled by a set of particles de-
noted by the subscripts (.), and (.), in a domain . The set of all the fluid
particles is denoted by F where each particle a € F possesses information such
as its mass m, (assumed constant), its position r,, its velocity u, (the La-
grangian derivative of the position), its density p,, its volume V, = 2« and its
pressure p,. The spatial discretization is based on a weighting interpz)lation or
kernel function, w, with compact support. £, then refers to the support of the
kernel function centred or r, of radius R. We generally denote by the subscripts
(\)ap the difference of a quantity between the positions a and b. For instance
Ugp = Uy — U and rgp = 1y — . Two exceptions are made with the following
notations wep = w (rep) and Vwg, = V,w (rgp). Here, the symbol V,, denotes
the gradient at the point r, '. With these notations, a commonly used form of
the continuity equation is (see e.g. [11]):

dp,

- Z My VWep.Ugp (1)
beF
where % denotes the Lagrangian derivative, that is to say the derivative along

the particle path. It can be derived from the following definition of the density:

Pa = Z MpWab (2)
beF
The inviscid momentum equation can be written as follows:

du, a
” = — Z myp <p2 + pg) Vwep + g (3)
beF a P

where g is gravity. The equation of state links density and pressure:

o)

where pq is the reference density of the fluid, ¢ is the speed of sound and v =7
is generally chosen for water.

2.2 Viscous forces

The viscous term is used in this work in SPH for computing the viscous term
1

—V.(V u) is due to Morris et al. (see [12]):

p

1 Pa + [ Uap
—V.(uVu), = Z my———— —Taqp. VWap (5)
Pa beF PaPb Tap
1 . . _ 0 0 .
the gradient operator is defined by V, = e, + ey +e.— , (ex, ey, €;) being

Oz, OYa 0zq
the basis vector triad of the Cartesian coordinate system in 3D.



where the dynamic viscosity p is given by:
p=vp (6)

and v is the kinematic molecular viscosity.

Operator definitions: For later analysis, we define discrete operators gradi-
ent (Grad,{A}), divergence (Div,{A;}) and Laplacian (Lap, ({Bs}, {As}))
of arbitrary discrete scalar ({4} and {By}) or vector fields ({Ap}) as:

A, A
Grad, {4y} = pa Z my <2 + pzb) Vwap

beF a b
1

Div,{A;} = —p— Z mpAgp.Vwgy (7)
YbeF

Lap, ({Bs}, {Av})

Trab.vwab

B, + By Ay
pa Y mp———
beF PaPb Tap

where A, = A, — Ap. They are approximations of the continuous gradient,
divergence and Laplacian operators (respectively denoted by V,, V. and V.V).
Thus the equation of continuity (1) and the momentum equation (3) can be
rewritten as follows:

dpa

= —pyDivg{up}
[ 1 ®
a - —L
n o Grad,{ps} + g+ o ap, ({im}, {w})

The operators Grad, and Div, are said to be skew-adjoint. It is possible to

define variants of these three operators conserving this property of adjunction
(see [13]).

2.3 Turbulence modelling in SPH

The Reynolds approach consists in considering only the mean part®> denoted by
u of the velocity field u in the equation of Navier Stokes, then modelling the
effects of the fluctuating part of the velocity field on the mean velocity.

The k — e turbulence model developed by Launder et al. [14] add two trans-
port equations of k, the turbulent kinetic energy, and e, its dissipation, to the
momemtum equation (8) which is modified as follows:

Dpq L
Dpt = —p.Div.{u,}
Du, 1 o, B
= —Grad{p, + 5pkp} + Lap, ({u + o}, {W}) + g
Dt (9)
Dkq L rap, (s + 228 (k) ) + P
= - a — €a
Dt a Pa Ho or ’ b
De, 1 UTb €a
= —L HToy re €4 (O Py — Cune
Dt e ap, ({,U'b + Py }7 {Gb}) + ke (Cel a 0626(1)

2in the stochastic point of view.
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D
where the derivative — = — + u.V is the Lagrangian derivative along the

Reynolds averaged field {u,}. The k — e model links the turbulent kinetic
viscosity vp = ILTT to the turbulent kinetic energy k and its dissipation € by:

ke
VUTq = Oﬂ: (10)

a

with constants o, o, Ce1 and Ceo given by [14].
The production term of k, P,, is defined by:

P, = v7,5?2 (11)

where S2 = 2S,, : S, is the scalar mean rate-of-strain. The tensorial strain rate
of the mean velocity field is given by S, = 1 (V,u+ V,u”); Violeau and Issa
[8] discretized in the SPH form the velocity gradient:

1
Grad,{u,} = —— Z MpUagp @ Vwep (12)
YherF

In the following, for sake of simplicity we will drop all overbars to denote

d
velocity and pressure, and thus denote Lagrangian derivatives TR The reader

should keep in mind that under turbulent conditions, the latter quantities are
considered as Reynolds-averaged and the Lagrangian derivative is along the
Reynolds averaged velocity field.

3 New boundary conditions and accurate time
stepping

3.1 Derivation of wall boundary terms using continuous
interpolation

3.1.1 Kulasegaram et al.’s renormalisation:

Instead of assuming that p, ~ Z myWep, which underestimates p, when the

beF
particle a is close to a boundary (see Figure 1), Kulasegaram et al. [1] renor-

malise the estimation using a function ~,:

1
Pa = — Z mpWap (13)
Yo yeF
where 7, is defined by:
Vo = / w(r' —ry)dV’ (14)
QnQ,

In general, 7, is an Eulerian field depending only on the position of the
particle a with respect to boundaries of Q. Far from a solid boundary ~, = 1.



Figure 1: Kernel-boundary interaction.

The introduction of ~, into the derivation of the governing equations leads
to some key differences such as the new continuity equation [1] where starting
from (13) is rewritten:

dpg 1 a
QPa _ 2 Z mpV Wap-Wap — p—V'ya.ua (15)
dt Ya beF Ya

This can be compared with (1). Accordingly, the gradient, V~, is defined by:

Ve = / Vaow (r' —r,)dV' = / w(r' —r,)ndS’ (16)
nQ, 29NQ,
where the second integral is obtained using the Gauss theorem and where n is
the inward boundary normal.

In order to evaluate the new internal forces and contact forces, Kulasegaram
et al. [1] derive the internal energy using the equation of Lagrange. They obtain
a new internal force due to the pressure. The correction of Kulasegaram et al.
can be expressed in terms of new compatible (in a variational sense) operators
gradient and divergence. Indeed, one can define:

A, A A
Gradf{Ab} = pa Z mp < >+ _l’2> Vway — —=V7,
YaPyq Yo Py Ya
bif . (17)
Divf{Ab} = — Z mpAap-Vwey + —A4. V7,
Yaba S Ya

Thus the operators (17) verify the skew-adjonction property and variational
calculus still holds, thus proving the consistency between the momentum equa-
tion and the continuity equation. The final term of GradX{A4,} was used
by Kulasegaram et al. as a boundary force. In the following, we propose an
enhanced form of the latter model, giving a more accurate representation of
gradients on the wall.

3.1.2 General shape of the boundary:

For boundaries of arbitrary shape, their shape, 92 of the domain 2, is approx-
imated with straight segments in 2D denoted by the subscript (.)s which have
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(a) Boundary with edge semi (b) Sketch of the volume of an
particles e (in green) and with edge particle.

segments s which have a sur-

face Ss and an inward normal

ns.

Figure 2: Boundary property definitions.

a normal ng and a surface area S, (see Figure 2(a)). The set containing all the
segments is denoted by S. Each segment is defined by two edge points denoted
by the subscript (.)e1 and (.)2 which have an initial volume V, given by V, = "
where pq is a reference density. The initial volume of edge particles is a fraction
of the initial volume of fluid particles V. For instance, for a plane V., = %Vf.
More generally, for an edge particle on a wedge with an angle 6 displayed on
the Figure 2(b), V. = %Vf.

The set containing all the edge particles is denoted by £. These edge particles
(also called semi particles in this article) are of particular interest for recording
the pressure field at the solid boundary (and hence for fluid and structure cou-
pling for example). They are also useful to improve accuracy of the continuity
equation, as they mimic a wet wall. It is important to notice that they are
taken into account in the continuity equation and in the momentum equation
(i.e. £ C F), even if they are Eulerian particles, that is to say they are fixed if
the wall is motionless and does not depend on the momentum equation.

Next we define the contribution of the segment s in the value of V+, to be:

Ve = ( / w (r) dl) n, (18)

and then V~, can be decomposed in:

Ve =Y Vas (19)
seS

The description of the boundary geometry can be extended to 3D by sub-
stituting the segments by triangles. In this case this volume V. of edge particles
would use the solid angle of the wedge.

3.1.3 Wall corrected gradients:

The main disadvantage of previous techniques to evaluate V-, is that the gradi-
ent operator defined by (17) is not accurate near a boundary or the free-surface.
Indeed, we can see that gradients of constants are non zero: if we simulate uni-
form overpressure in a periodic pipe without any body force, the gradient (17)



of the pressure is not zero everywhere and particles rearrange themselves (see
Figure 3(a)). To correct that, we can go back to the continuous interpolation
of an arbitrary integrable function f at a point r:

1
N = [ fE e (20
7 (r) QNQ,.
where 7 = |r — r'| and , is the kernel support centred in r. By interpolating
the gradient of the function f in the same way, it becomes:

1 ’ ~ ’
VA = / ) vu@av

1
7 (r)
where the right-hand-side is obtained by an integration by parts and n is the
inward normal of the domain at the position r’. Hence, we can see that the
boundary conditions appear naturally through the second integral of (21).
Moreover, if we consider that the gradient defined by (7) is a discrete approx-
imation of the continuous gradient V f = pV% + %Vp (to obtain a symmetric
formulation), we obtain (see also [6]):

(21)
/ f @) w(F)ndS’
o0NQ,-

(V) (r)

1
P
=
b
+
SN AN
=
<
\/
=

- - [ Lwpm e Lwpw)| vomar e

/mmr {J; () p(x) + % (r)p (r’)] w (7) ndS’

—_

v (r)

Once again the boundary conditions appear naturally, and we can now set
the following discrete operator gradient for an arbitrary field {4} as:

—~ A, A Aa | As
Grad, {4} = Pa Z my (; + 2b> Vwa, — Pa Z (; + 2> PsVYas
“berF Pa P @ses \Pa s

(23)
The method to compute Vv, will be discussed in § 3.5 whereas the computa-
tion of ps and A, will be investigated in the paragraph on dynamic boundary
conditions 3.2.1. Notice that the discrete gradient (23) differs from Kulasegaram
et al.’s defined by (17) only next to a boundary, which means that conservation
properties are still valid "far from" the walls.

Let us now correct using the same idea the SPH gradient of a vectorial field
which appears in the velocity gradient (12) for instance. The latter quantity
plays a key role in the & — € turbulence model as it is responsible for the pro-
duction of kinetic energy. Given the fact that in a channel flow the strain rate
is the largest in the vicinity of the boundary, it is important to be accurate in
this area. This formula needs to be corrected with respect to the boundaries,
given that it tends to underestimate the strain rate next to a wall. To correct
that we propose in a similar way as (23):

1 1

al;lﬁa{ub} = - Z MyUgp @ Vwgy +

beF

Z PsUgs @ V'Yas (24)

ala seS

arra
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(a) Kulasegaram et al.’s gradient op- (b) The present gradient operator (23)
erator (17) is unable to maintain uni- isable to almost maintain uniform pres-
form pressure field. Particles move to sure field as an equilibrium.

an non-physical equilibrium.

Figure 3: Comparison of gradient operators (17) and (23) in an over-pressurized
periodic pipe.

Hence, with the corrected components the strain rate S is computed according
to the definition given by (24).

3.1.4 Laplacian:

The Laplacian (7) resulting from the Morris model (5) can be seen as a discreti-
sation of the continuous interpolation (V.uV f) (r) (where f is the continuous
scalar field and u the continuous viscosity field):

(A, ) () =(V.uV[) (x) = (Vo (V) () + (V) E)]) (r)

1 / / /
- =/ BTN @)+ ) )] T e x)av
1

() /amm (V1) (x) + (V) (r/)(]Q.:)w (r—r')ds’

combined with the finite difference approximation:

V). (r—r) = (f(r) - f(') ~ =V (). (" = 1) (26)

As in § 3.1, the boundary terms appear naturally in the second line of (25)
from an integration by parts. Again, n is the inward normal of the domain
at the position r’. Wall contributions vanish when the position r is far from
the boundary since the kernel w has a compact support. Thus, the proposed
wall-corrected Laplacian operator is:

Ba + Bb Aab
mp————

3 I'ab.V’u}ab—
PaPb rab YaPa

> (B.VA, + BiVA,) Vs
seS8S

Lap, ({Ba}. {4} = = Y
Pa Ve yer
(27)
The same calculus still holds with an arbitrary vector field {A;} and is used

to correct the diffusion term (e.g. (5)) in the Navier-Stokes equation.



3.2 Wall corrected operators in the discrete Navier-Stokes
equations

3.2.1 Dynamic boundary conditions on the pressure:

The gradient operator (23) applied to the pressure field gives:

Grada{pb} = pi Z my (pg + pg) Vwab - & Z (p; + p;) psV’yas
Ya beF pa pb pa ps
(28)
Hence, we are left to compute the pressure ps; and the density ps on the wall
nodes defined in Figure 2(a). A robust way but first order dynamic condition is
% = 0. This condition is consistent with the renormalization done in equation
(13). In the presence of gravity and motion the analogous condition on the

pressure field is written as:

0 (p* u?
(£ 4 = = 0 29
. ( AR ) (20)
where p* = p — pg.r and u is the magnitude of the velocity.

To compute the pressure and the density at the wall an SPH interpolation

can be used for the edge particles in £, the choice made is to average in space
to give a wall value:

1
Pe = ;e Z ‘/bpbwbe
be F\&
Pe 1 P up —u? 30)
- = GT Z Vi) — — 8. Tpe + 9 Wpye
Pe e be F\E Pb

where the set F \ £ denotes all fluid particles F, excluding particles in £ and
where a. is defined by:

Qe = Z %wbe (31)

A description of the Shepard filter c. is given in § 3.4.1 (see Equation 47)).

Here, it is important to note that the interpolation done is based on fluid
particles in F which do not belong to the set of edge particles £. For simplicity,
we remain in 2D and define the density and the pressure at the wall elements s
to be:

Pel + Pe2
= Ty
(32)
pi _ pel/pel + peQ/peQ
Ps 2

where the wall nodes (or edge particles) el and e2 are defined in § 3.1.2. This
strategy to evaluate quantities at the wall will be reused to compute the wall
shear stress in § 3.2.2 and also the wall value of a scalar transported by the flow
in Appendix A. There is no theoretical restriction to the spacing of the wall
nodes.



3.2.2 Wall shear stress:

The wall-corrected formula (27) applied to the field u gives:

1 — 1 g + Uy Ugp 1
—Lap, ({m}, {w}) = — > mp T By Vg —— 37 Vsl (1 Vg + s V)
Pa YherF PaPb Tap aPa ;=5

(33)
and should be used in place of Lap, in (8-9).

The boundary terms are then treated using the friction velocity u,; defined
by:

= puru, (34)

wall

which represents the shear stress at the wall. In the present article, by conven-
tion, u, is chosen to have the same direction as the local velocity field. This then
replaces (uVu), .n, in the boundary term of (33) as in classical finite element
or finite volume Navier-Stokes codes:

(WVu), ng =~ pursurg (35)

Computation of the friction velocity in a laminar case: The friction
velocity u, is a quantity defined at the boundary. To compute it in a Compu-
tational Fluid Dynamic (CFD) code, instead of using its definition, we usually
take the advantage of knowing the physical behaviour of the velocity field in the
vicinity of the boundary. For example, in a laminar test case, the velocity pro-
file is expected to be linear close to the wall and then the following relationship
between distance to the wall z and velocity along the wall u holds:

uru, = lim A (36)
z—0 2

The main advantage is that we do not need to estimate the derivative of
the velocity field next to the wall, where it is difficult to compute. Another
advantage is that we can extend the definition of the friction velocity in the area
where particles interfere with the boundary, that is, when the kernel support
intersects the walls. Hence, we define:

vug

(37)

UrqUWrq =
Zq
where z, is the distance to the wall for a particle a.

Eventually, to evaluate psu-su,s we use again the continuity of stresses (35)
to establish:

1
PelUreUre = 0{7 Z %pbuTbuwabe (38)
“heF\E

and rhosursu,s is the average value between the edge particles el and e2 defined
in § 3.1.2. These formulae are similar to (32).

The same wall treatment is extended to a transport equation of a scalar such
as k or € in the k — e turbulence model in the Appendix A.



3.3 Conservation issues: time integration for the continu-
ity equation
The original time integration scheme used in previous work [13], [8] was a simple

first-order symplectic scheme where an implicit velocity value was used in the
updated values of the position and density:

ot
it o= up - ijradZ{p?} +g
a
it = %4 Gtut Tt (39)
ptl = pnyst Z mp V wepuly !
beF

n
where the superscript (.)" refers to the time step n and to the time t = Z ot.
i=1
In this semi-implict scheme the velocities are explicit, whereas the positions
are implicit. In the continuity equation, positions are explicit whereas the ve-
locities are implicit; for this reason we do not write the r.h.s. of Equation (39)
as p,Div{up} .

3.4 Improving the time integration of the continuity equa-
tion

To adapt the previous time integration scheme to the method of Kulasegaram
et al. and the present modified one, the following scheme is possible:

41 ot n
up ™ = ug— —Grad, {p;} + g
a
"t = %4 stulttt (40)
ot ,
pntl = pn 4 pry Z mp V" wep w5 — pt Ve, !
a

beF

where the operator Grad, is either (17) or (23). Experience of the authors
has shown this approach seems to give satisfactory results for a dam break case
in a basin where the solid walls are kept impermeable with a relatively small
time step. However, when running long-time simulations in a channel with a
relatively large time step, particles near the wall move vertically downwards
slowly and eventually pass through the boundary as we see in Figure 4(a) (a
relatively big time step is set by decreasing the numerical speed of sound cp) .

The problem is caused by the continuity equation: when particles near the
boundary are oscillating, ie moving back and forth, their densities decrease,
and then the pressure, related to the density by the equation of state, becomes
insufficient to create a repulsive force to balance the other forces.

The origin of this phenomenon is the term %PZV"%.uZH in the time
discretized continuity equation (40). Indeed, if we consider a single particle
moving towards the wall between the times ¢,, and ¢,4+1 (from the distance z,
to zn+1), the exact variation of the density is not reproduced by the discrete
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Figure 4: Comparison of the pressure field and the water depth in a periodic
open channel flowing from left to right for two different time schemes after the
same physical time.

form [15]. This systematic error of the time discretization of the continuity
equation is undesirable .

Many other integration time schemes can be considered, such as a leap-frog
time scheme, which would reduce the errors in the integration of the continuity
equation. The choice made in the present work is to consider an approach that
gives the density explicitly as a function of the particles’ positions. This is a
more robust approach, especially if there is a wall repulsive force function of the
pressure field (and hence of the density field in compressible flows).

3.4.1 A completely position-dependent way to compute the density:

If we return to the main idea of correcting the incomplete kernel support, we
can see that the corrected continuity equation comes from:

d('Yapa) d
T = & Zmbwab

beF
I I (41)

dpa dva
Yorqy tPagy = > 1y Vwap g
beF

In a similar way, Vila [9] stated that the continuity equation (1) is strictly
dpq d

= — mpw if time is considered a continuous vari-
At dt b; bTab

able. Equation (41) gives us a way to integrate exactly in time the quantity v,pq
if the particles’ positions move from {r}} to {rl’f“}. This prevents systematic
time integration errors, and makes p! depend only on the positions of particles

equivalent to



at the same time (this property, together with simplectic time-stepping, ensures
the conservation of a given energy, see [16] for details).
This leads to the following time integration scheme:

ntl n 5t —~—T"N n
u, =u, — ﬁGrada{pb}+g

a

Tl =r" 4 ftut ! (42)
+1 3
(Vapa)"" = (Vapa)" + Z mp (wZI;H - wgb)
beF

Figure 4 shows the result obtained by reducing the time-step (and hence
the systematic error in the density equation) in the time scheme (40) with the
result we obtain with the time-scheme (42) with a larger time step®. By doing
s0, scheme of (40) is forced to be stable and to converge but it is clear that we
have lost density during the stabilisation time: the water depth has decreased
(see 4(b)) whereas it is not the case on the Figure 4(c) with the new scheme.

Initialization of the density field: The time-scheme (42) requires initial
values for the density field. Many choices are possible. First of all a particle a
can have the reference density pg as initial value, i.e.

Pa = Po (43)

This was done previously with the continuity equation of (39). The advantage
is that the continuity equation only measures the variation of density and not
the initial disorder of the particles. However, the main drawback is an inhomo-
geneity between particles could lead to non-physical behaviour, such as particles
originally at the free-surface creating a region of repulsion when surrounded by
others later in the simulation. Hence, the initial density field, {0}, is initialized
according to:

1
Po = 0 Z mywey (44)
Ta be Fo

This initialization has the advantage to maintain homogeneity between particles,
but then requires a free-surface correction.

Free-surface correction: The  correction presented so far does not take
into account any free-surface correction. The variable p, = E mpwWep depends

beF
only on the particles positions which is useful for conservation properties. The

problem is that p, measures two different quantities:

1. the divergence of the particles , which is a quantity of interest, and

2. the presence of voids within the kernel support of a particle.

1

3We have reduced the time step by setting the speed of sound at 100m.s~! instead of

20m.s~ 1.



It is required that the flow is corrected with v, next to a wall, but not next
to the free-surface. To achieve this, we use the following Shepard filter defined
by:

m

ar)=> —Lw(r—r) (45)

per PP
so that for a fluid particle a € F\ € we have:

Qg = Z @Iwab (46)

For an edge particle e € £ and for the middle of a segment s € S two different
definitions of « are used:

Qe = Z ——Web (47)

bere PP

since o, is used to evaluate quantities such as the density or the pressure at
the wall, hence we have chosen not to take into account edge particles and have
interpolation using only the fluid particles of the physical quantities (such as
the density p or the pressure p) at the walls (see § 3.2.1).

The aim is to apply the Shepard filter (46) on the density field at each time
step but only next to the free-surface such that the density field is not corrected
everywhere with o, . Thus, in the vicinity of a free-surface there is a continuous
mix to correct the continuity equation :

pa Ve + (1= B)aa] = pa =D mpwap (48)
beF
where )
8 = exp [—K <min{:a; 1}—1) ] (49)
In(0.05)

and K is taken to be an arbitrary high value of “ 002 ~ 30000, so that

(3 < 0.05 when 3—2 < 0.99. Note ( is in fact a surface-marker: inside the fluid
its value is almost one whereas it tends to zero as we approach the free-surface.
3.5 Computation of the renormalization terms

The formal definitions of the geometrical quantities «, and V+~, for a particle
a are:

Ya

/ w(r—r,)dr

QNQ,

/ Vow(r—r,)dr = / w(r —r,)ndS
QNQ,

o0NQ,

(50)
V7

We recall that V', represents an approximation of the normal to the wall for a
particle located at the position r,. with previous approaches using polynomial
approximation [1, 6], an analytical solution [10] , and a discrete summation over
boundary points [17].



These approaches all had advantages and disadvantages discussed earlier.
Herein, computation of the renormalization term of the kernel support near
a solid wall is obtained with a time integration scheme, thereby more easily
accounting for any shape of boundaries presented in § 3.1.2.

3.5.1 Analytical value of V~,:

With the boundary of the domain composed of segments denoted with the sub-
script (.)s, each segment has an inward normal ng, a beginning point r.; and an
ending point r.o (see Figure 2(a)). Then we can compute the analytical value
of the contribution V7, (defined by 18):

VYas = </ ’ w(r)dl) n

Figure 5: Schema showing the definitions of the geometrical parameters used to
compute the analytical value of V-, with (51).

which gives for the quintic Wendland kernel used in this work:

N cona Ccos &
h/ w(r)ydl = upqo (¢2) — Mpqo @)
Tel T -
sign (ge cosaz)In w
+ﬁ (105+35q2) , =
T\ 64 5127 ) S N
—sign (g cosap)In [ — 20
|90
(51)
where the polynomial function P, is defined by:
T s 21, 355 35, 7
qu (X) - 192X 64X +32X 24X +4
5 7 105 35
™ w6 e R 52
+45 (768 Xt 12) 52)

35 7
0 (512X - 8)

where ¢ = |r“;1'“5‘, g = ‘r‘;:'il and ¢; cosq; (i € {1, 2}) are displayed in Figure

d.



These analytical values enable estimates of the error due to the approxima-
tions. In Figure 6 we compare the analytical and approximate values of V-,
against the distance to a plane wall. The discrete approximation used is given
by:

V’}/a,s = wa,sSsns (53)

where it is assumed that the kernel is constant on a segment s.

5
The kernel used is the quintic kernel (see [18]) and the ratio % = 2 where or

is the initial distance between two fluid particles and h is the smoothing length.
The absolute errors are defined as:

\V4 analytical N v discrete
vy, = [V 0| (54)

analytical
a

(We consider only the component of V+, orthogonal to the wall). In Figure 6,
the error for the discretization of V4, is very good for such a poor discretiza-

or
tion ratio N for a plan wall (less than 0.1%) whereas the discretization has a

systematic error for the approximation of the value of 7, on the order of 3%.

1.0
1.0%
V4
0.5 0. 5% -
Z
R
0.0 : '
0 0.5 1.0
(a) Values of the Vv, function against the distance of (b) Values of the error function ey
the wall. tance of the wall.
Figure 6: Analytical in red and computed values in of the functions against

the distance to a plan wall.

If the discretization error of V~, in the presence of a complex boundary
such as a wedge it was found that the error is larger. Moreover, the error is
systematic, so that the magnitude of V~, is always underestimated. Within
a simulation, this leads to non-physical behaviour, i.e. particles slide towards
along wedge boundary since the gravity is not balanced completely by the wall
repulsive force proportional to V-,.

Ya

against the dis-



3.5.2 Governing equation for ~,:

Herein, a method to compute ~y, for a particle a near a solid boundary is sug-
gested without the need for fictitious particles and is therefore simpler than an
analytic computation. The main idea of the present method is to use a governing
equation of v,:

dva

i = V7v,.u,

d (55)
Yo = 1 if 00N Q, =0

dr,

where the definition of the gradient is combined with the fact that = u,.

Another way to consider this equation is to remark that (55) is equivalent to:

e _ 0
ot (56)
Yo = 1 if0QNQ, =0

This means that the v, field does not depend on the time*, but only on position,
and is therefore an Eulerian field. Thus, it gives us a means to compute v, to
be coherent with V~, which is easier to compute, since it can be expressed as
a surface integral.

The relation (55) can be extended for moving boundaries. Recalling the
boundary defined by Figure 2(a), if we have a moving deformable wall (in the
sense that each segment or triangle composing the wall is moving with its ve-
locity) the following formula is obtained:

de R.
v = 2 Vieur
seS (57)
Yo = 1 ifoaNQ, =0
where u’s is the velocity of the particle a in a reference frame R, where the

segment s is fixed. The field v, is now computed by solving the above equation,
based on the knowledge of Vs, computed from (51).

3.5.3 Initialization of the ~, field:

The initialization step of 7 is done by imaging a virtual transformation. For
each particle initially next to a solid wall (a criterion is [V~2| > 0), we move
it from its starting position r? to an area where the function v (r) = 1. For
instance:

Ve
Ve

where the length [ is taken to be 2R, ( R is the radius of the compact kernel
support).

A sketch of the proposed method is displayed in Figure 7. For example, the
circled particle in Figure 7 is placed behind the dashed line where the value of

r, = 1‘2 +1 (58)

4if the wall does not move.



v is 1, and is moved back to its initial position along the path of the large black
arrow updating the value of ~, with respect to the governing Equation (57).

Figure 7: Sketch of the initialization of the ~ field next to a solid wall.

Note that the equation of v, is integrated in time with a second-order time
integration scheme to prevent systematic integration errors (see § 3.4), leading
to:

1 n n n n
{ T = A 5 (Ve V) (i ) (59)
if the solid boundary is motionless. The general formula for a moving deformable
wall is:
ot

5 2 (Vs + V" ). (uf)"™ (60)

{m’}“ = Y+
sES

A condition on the time step is required, to keep the integration of v, stable:
1

max { ‘V”*yas. (ufS)n‘ }

a€F;s€S

5t S Ctﬂ (61)

where C; , = 0.005, from numerical experience. This is a natural condition, in
the sense that the time step decreases when particles posses a fast velocity when
approaching a boundary such as splashing against a wall. The latter condition
is considered in addition to the usual time-stepping (CFL) conditions in SPH

(see e.g. [7])-

4 Numerical results

4.1 Laminar channel flow test case

To test the friction terms and validate the wall shear stress formulation, laminar
Poiseuille flow in a closed-channel with periodic open boundaries is simulated
. The channel has a diameter of 1m while the viscosity v is set at 107 'm?2.s~*
so that the Reynolds number is 10. The viscous term is modelled with the
wall-corrected model of Morris (33) combined with (37) to compute the friction
velocity. Figure 8 shows that the horizontal velocity profile is in good agree-
ment with the analytical solution (62) even in the vicinity of the wall, thus
demonstrating that the wall shear stress correctly balances the body force.
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Figure 8: Poiseuille flow in a periodic pipe with a Reynolds number of 10.
Coloured dots represent the velocity of particles at the steady state whereas the
black dots e are the analytical profile (62).

Computation of the strain: The laminar case allows us to validate formula
(24), since there is no influence of the strain rate on the flow itself because the
viscosity is constant. Thus, such a test case allows us to compare the value
of the computed strain rate to its analytical value. The analytical profile of
velocity is:

vz z
U (2) = 4 Re 5 (1 - 5) (62)
which leads to the following analytical value of S:
v,z
S(z)—4Reﬁ‘25—1’ (63)
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(a) Standard model (12) (b) Correction of Standard model (24)

Figure 9: Comparison of the strain rate for different models in a laminar channel
flow.

We notice in Figure 9 that in this theoretical test case, the corrected method



(24) gives a satisfactory reproduction of the shear stress next to the wall unlike
the previous methods.

4.2 Still water and dam break in a tank with a wedge

In this section, the proposed scheme is tested on a more complex geometry
which consists of a basin of approximately 2m length and 1m height with a
wedge of 5 rad angle and %m of height in the bottom middle of the tank. This
geometry was chosen specifically since the wedge features both a discontinuous
point and a sloping profile which tests the correction of the kernel in the presence
of gravity. A comparison is made between different models in a still water case
and a dynamic case where the viscosity v is set at 1072m?2.s~ L.

4.2.1 Still water case:

Some treatments for solid boundaries suffer from an inability to reproduce cor-
rectly a still water case. Here we compare the results obtained when the basin
is filled with 0.5m of water for three cases: the Lennard-Jones repulsive forces
(see [7]), the fictitious particles method (see [8]) and then new proposed method.
As expected, the repulsive forces produce poor results (see the Figures 10(b))
in the sense that particles keep sliding along vertical wall. That is due to the
fact that the missing area in the kernel support is not compensated, and thus
the gravity is not balanced sufficiently. The plot of the pressure of particles
against the depth is therefore noisy and badly reproduced next to the bottom.
The fictitious particles method (see Figure 10(a)) gives better results, but the
condition (29) is not ensured and so the pressure profile is still noisy. Moreover
this approach is problematic to describe in complex geometries and requires
additive particles to mimic the boundary, which increase the computation cost.
The present method gives superior results: a linear pressure profile even near
the bottom and a zero velocity field as shown in Figure 10(c).

4.2.2 Dynamic case:

A simulation of a dam break with the same geometry has been performed for the
two boundary techniques previously described and the present one. The water
is initially a column of 1m height and 0.5m width on the left-hand side of the
basin. In the results shown in Figure 11 , all approaches ensure impermeable
boundaries, but both of repulsive forces method and fictitious particles method
give a noisier pressure field. Furthermore, a simulation with finer resolution
has been computed by doubling resolution and hence the number of particles.
Snapshots of the pressure field at the same physical time are plotted on the
Figure 11.

The comparison with a VOF simulation (done with Finite Volume open-
source code OpenFoam) of the pressure on the left side of the wedge is perfomed
and displayed on Figure 12.
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Figure 10: Comparison of the vertical velocity for still water in a tank with a
wedge for different boundary conditions after 20s.

4.3 Comparison of the k — ¢ model with SPH and Finite
Volumes: simulation of a fish pass

Once a dam is built on a river, the continuity of the flow is disrupted and the
migration of fish is interrupted. For species such as some salmon, the life cycle
requires the fishes to migrate far upriver. To restore the migration process,
fish passes are installed which consist of many repeating elements and can be
considered as a periodic flow. The dimensioning of these components requires
a detailed knowledge of the turbulent flow within each section since the size of
the large eddies affects the ability of the fish to swim upstream.
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Figure 11: Comparison of the pressure field for a dam break test case in a tank
with a wedge for different boundary conditions.
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Figure 12: Comparison of the time evolution of the pressure along the left side
of the wedge between the present SPH formulation and the finite volume code
OpenFoam at different spacial discretization.

Although the behaviour of the flow though a fish pass is a 3D free-surface
flow, we consider here 2D simulations where the vertical variation are assumed
to be negligible. We repeat here the simulations presented in Violeau et al. [19].
The geometry of the z—periodic simulation is presented in Figure 13(a). The
results obtained by SPH are compared to simulations done with Code_ Saturne,
a widely validated Finite Volume code developed by EDF R&D (see [20]). The
aim of such a comparison is to evaluate the performance of SPH for a turbulent
simulation. The computation is compared effectively solving the same equations



(the Reynolds-averaged Navier Stokes with the k — e model) with the same
pressure gradient responsible driving the flow (pAA—px = 1.885m.52) but with two
different approaches (Lagrangian and Eulerian) with two different discretization
approaches (SPH and Finite Volume).

The velocity profiles at locations Py, P, and Ps defined in Figure 13(a) are
plotted in Figure 14. The results show that the mesh-based code gives profiles
close to the ones obtained with the present SPH scheme. It should be noted that
with the standard SPH method [19], the predicted velocity and eddy viscosity
distributions did not fit the Finite Volume ones. With the present model, one
can see that the agreement is very satisfactory.

5 Conclusion

The present article has presented a new approach to deal with solid boundary
condition which is both simple and robust. The simplicity lies in the manner
we compute the Eulerian renormalization term 7, with a integration in time
which only requires the computation of its gradient V~,. The robustness is due
to the integration in time of the continuity equation which makes the density
field depend only on the particles’ positions. This allows a long time simulation
with a relatively higher time step and is a major advantage for conservation
properties.

The definition of new boundary corrected gradient and Laplacian operators
gives us the opportunity to fix boundary conditions and fluxes on the pressure
field, the wall shear stress and even the scalar fields such as k and € in a model
of turbulence.

However, numerous issues still require investigation and development, namely:

1. Validate the present formulation on different test case such as a periodic
turbulent bump.

2. Adapt the wall renormalization to 3D; the main challenge is to find an
analytical formula for the computation of the contribution of a surface
element s over the value of V+, of a fluid particle a (which is denoted by
V9as), O a way to compute accurately an approximated value of it.

3. Study the theoretical conservation (or non-conservation) of momentum
and angular momentum, and especially in periodic cases.

4. Combine the present approach with non-periodic entrance conditions.

A Turbulent wall conditions in SPH

A.1 Computation of the friction velocity in a turbulent
case

We can apply the same wall correction of the diffusion term of the momentum
equation as the laminar one, noticing that (u + pr) S.n ~ pu-u, in the vicinity
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Figure 13: Comparison of the k — € model (9) with Lagrangian SPH approach
and an Eulerian Finite Volume method in a schematic fish pass.

of a wall>. Unlike the Equation (37) which links friction velocity to the mean
velocity, in the turbulent case, we need another wall function. The viscosity is
not constant anymore, and is supposed to be linear in the vicinity of a wallf.
Then it can be shown that the velocity profile in that area is a logarithmic
shape: this zone is called the log layer. If we consider the particle a to be in

5Formally, at a wall k£ = 0 and then v = 0 so that we recover the laminar case. However,
the viscous sub-layer where the laminar viscosity is more important than the turbulent one is
usually, for environmental flows, very thin so that we do not enforce k to be zero at a wall.
6In a channel flow, this assumption is well verified in 10% of the channel depth.
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Figure 14: Profiles of the velocity magnitude in three different plans in the fish
pass.The k — ¢ model (9) in red and the k — ¢ model with Code_ Saturne in

the log layer of a smooth wall, u, can be obtained from the following wall law,
with an iterative algorithm:

lug|

1
=—1In

( RZalra
Urq K

14

)+5.2 (64)

To be valid, Equation (64) must verify that the non-dimensional distance to the
wall Zerre is greater than 11. We could also use log laws for rough walls, or use
laws which hold both in the laminar and the log layer such as Reichards’ law,
but then the k¥ — ¢ model (9) must also be modified for low Reynolds effects.
For more information see [21].

A.2 Velocity at the wall

We observe in the formula (24) that the velocity at the wall ug is considered
in the boundary term. Formally, the no-slip condition would impose that the
velocity at the wall is the velocity of the wall itself (i.e. 0 for a motionless wall).
This is imposed for a laminar flow. In the turbulent case, it is preferable to not
do so: the slope of the velocity profile is much larger at the wall than in the
log layer where fluid particles are assumed to be. Thus if we want to evaluate
accurately S, next to the wall, we need to interpolate the velocity at the wall.
To do so, we let the velocity u. of edge particles balance the viscous and friction
terms:

due ,UfTe + HTb ueb 2“‘7’6“7’6
- — E ’I" Tep- Vweb - - E |V7€S| (65)
“beF PelPb eb Te s
viscous term friction term

We notice here that Equation (65) is the momentum equation applied to an
edge particle with neither gravity nor pressure gradient. And we define ug to
be the average value between wall particles el and e2 defined in § 3.1.2. This
tactic to allow a kind of "slip" velocity at the wall in a high Reynolds number
simulation is also used in many CFD codes such as TELEMAC-3D in Finite
Elements (see Hervouet [22]). Eventually, we have to bear in mind that the edge
particles in £ are in fact Eulerian points and do not move with the velocity u,
but with the wall velocity. That is to say we only use the velocity u. to update
viscous forces of fluid particles interacting with the wall, and to compute the
strain rate S.



A.3 Flux conditions on the kinetic energy

The Laplacian operator (27) applied to the turbulent kinetic energy reduces to:

1 — 1 2 a ke
;Lapa ({,U,b + %,1:}’ {kb}> =N Z ey . +'LLT /Jk ha NTb/O—k Jrab'vwab

o Papy Tab
(66)

ok
because it is assumed that there is no flux of k from the boundary, i.e. — =

0 at the wall. Equation (66) should be used in place of Lap, in (9). %he
physical meaning is that the turbulent kinetic energy is only created by the
mean flow. Moreover, instead of specifying boundary conditions at the wall,
the "wall function" approach describes the balance of terms in the vicinity of

ok
the wall where it is assumed that P = e: this implies that the condition — =0

is valid not only at the wall, but in the whole vicinity of the solid boundz;lry.

If we assume the flow to be highly turbulent, that is to say, with a thin
viscous sub-layer, we can use high Reynolds number laws for k£ — €. In fact we
do not solve the k — ¢ model up to the wall, where k is theoretically expected to
be 0, but up to a small distance ¢ from the wall, where the turbulence is fully
established (v > v). The main advantage of the present Lagrangian approach
compared to an Eulerian one is that all the Lagrangian fluid particles in F\ &€
will be at least at a distance of the order of dr from any wall. It is one of
the main advantages compared to the mesh-based methods where the boundary
elements are supposed to be at a virtual distance to the actual wall, here we only
focus on particles which are effectively at a non-zero distance from the walls.

To estimate k at the wall we can evaluate as we did for the density, the
pressure or the wall shear stress:

1
kj = —
e o E ka:bwbe (67)
be F\&

ok
We notice that this approximation is consistent with the assumption o 0.
n
Finally:
k k
ks _ el"; e2 (68)

A.4 Flux conditions on the dissipation of kinetic energy

The Laplacian operator (27) applied to € requires the value for d¢/0n. Once
again, if we assume that the flow is highly turbulent, then every single particle
in the area of influence of a wall (i.e. Is € §/|V7qs| > 0) is in the log layer
where”:

*2
k ~ u
v Cy
u*3
e — (69)
Kz
vr = Ku*z

7All the Equations (69) can be derived from the equilibrium P = e.



where z is the distance to the wall (if a particle a is interacting with a surface s,
we state z = max (rys.ng; dr)), where or is the particle averaged initial spacing,
 is the Von Karman constant with the value of 0.41, and u* is a friction velocity
measuring the turbulence:

.V

uy = — (70)
ci

Then, from Equation (69) we can deduce a value for the flux of e:

vra O€a 2uxt

(71)

o Ong OckOT a5

The factor 2 is provided by a first-order approximation (i.e the flux is evaluate
at the distance ). This accuracy is needed especially here because e is supposed
to vary as % where z is the distance to the wall.

Thus the Laplacian (27) becomes:

1 — LT 1 2004+ e /0e + LT/ 0 €ap
—Lapa ({ru’b + /i}7 {Gb}) = Z mp : ah / T / Trab.Vwab
Pa O @ per PaPb Tab
4 u*4
- VvV s S#
YaPa Zs €S | i |p 0€H67.a5
(72)

which is used in place of Lap, in (9).
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