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The transit bottleneck model 

Fabien Leurenta*, Ektoras Chandakasa 
aUniversité Paris-Est, Laboratoire Ville Mobilité Transport, Ecole des Ponts ParisTech  

6-8 avenue Blaise Pascal, 77455, Marne la Vallée, Cedex 2, France 

 

Abstract 

This paper addresses the issue of passenger waiting and being stored at a station platform, from which point they plan to 
board route services towards egress stations. Route services are operated using dedicated vehicles of limited capacity. 
Each route service has a specific set of downstream egress stations and is operated at given frequency using 
homogeneous vehicles of limited available capacity. The model yields individual waiting time by egress station and the 
assignment of vehicle capacity to the flows by egress station. 

 
Keywords: mingled queuing 

1. Introduction 

In large urban areas the transit network is frequently submitted to heavy congestion, especially at the peak 
hours on working days. Under these circumstances, various links of the network may provide insufficient 
capacity to the passenger demand. Transposing to traffic flow characteristics, a bottleneck may be created, 
where these passengers perceive an extended waiting at the station until boarding a vehicle of the service.  

The scientific community has provided many approaches to model the total person’s capacity constraint 
through queuing theory; in Gendreau (1984) an unbounded increasing convex delay function is formulated 
within a theoretical model. Kurauchi et al (2003) approached queuing through a fail-to-board probability, 
adjusting the waiting time. A bottleneck has been also introduced in dynamic transit assignment models, 
such as Poon et al (2004), where the queuing time is calculated for a passenger at each time increment 
through the difference between cumulative arrival and departure curves at a platform node. 

The objective of the paper is the formalization of the transit bottleneck model and the mathematical 
demonstration of the equilibrium. The model is based on the explicit representation of the average number of 
passengers waiting on a platform for a given egress station.  From these passenger stocks is derived the 
individual probability to board a vehicle of limited capacity that service a given route. The waiting time is 
calculated after the service competition at the platform from the stock’s probability to board a vehicle of the 
service.  

The rest of this paper is in four parts. We begin by formulating the queuing model and developing the 
necessary mathematical formulas which correspond to a fixed point problem. Then, a mathematical analysis 
of the fixed point problem is made, by defining the objective function and demonstrating the existence and 
uniqueness of the solution. Finally, an application instance is used to demonstrate the main characteristics of 
the transit bottleneck model; the influence of passenger flows on average journey time and destination 
coordination. 
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2. The queuing model 

2.1. Definitions 

Let i  be the access station, iS  the set of egress stations j  that are serviced by route services iZz∈ . The 

subset of services that dwell at j  coming from i  is denoted as }),({ jiz∈ . During the period H , service z  

is operated at frequency zf ′  by vehicles of residual capacity zk′  at station i  (after the egress of the 

passengers destined to i ), yielding an available capacity of zzz kf ′′=′κ  in the period. We assume that a 

passenger arrives at i  under exogenous flow ]:[ iij Jjq ∈+ , yielding entry volumes +
ijqH.  by egress station. 

Let ∑ ∈≡ ),( jiz ijij ff l  be the combined frequency between i  and j  of the services in iZ . It is assumed 

that the platform is shared by the services and that no vehicle can overtake another one, meaning that a time-
minimizing passenger is eager to board a relevant vehicle as soon as it has some place available. Notation l  
designates this set of services where the routes and egress stations make up a connected component in the 

bipartite graph in ll

ii JZ ×  that links the services to the stations that they serve. 

2.2. The unqueued case 

If capacity is available to each passenger as soon as he would like from his instant of arrival, then he can 
board the first relevant vehicle and the average wait time for destination j  is: 

 
l
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ijz ff /  of the +
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This must be checked to ensure that there is no queuing – at least no remaining stock of passengers that 
keep waiting just after a vehicle relevant to them has left. 

2.3. The queued case 

If some passengers cannot board the first vehicle relevant to them, then they have to wait for other 
vehicles to arrive and to supply them with some capacity. Let us assume that there is a fictive, stationary 
state of passenger traffic on the platform, with a number jv  of passengers waiting for destination j . When a 

vehicle of service z  arrives with available capacity zk′ , there are candidate passengers in number of 

 ∑ ∈= zj jz vn  (3) 

Their individual probability to board, assuming equity among them, is 

 },1{min
z

z
z n

k ′
=π  (4) 
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Then the number of passengers boarding a vehicle of service z  to exit at j  is jzvπ , and the passenger 

flow during H  to j  via z  is 

 jzzijz vfq π′=−  (5) 

The total flow to j  during H  is (throughput rate) 

 jzj zzzj ijzij vfqq )(∑∑ ∈∈
−− ′== π  (6) 

Let us denote ∑ ∈ ′≡ zj zzj ff ππ )( . 

Queuing may eventually occur when at least one service has 1<zπ , meaning saturation of a service 

route. Let us derive necessary conditions on the zπ  and jv  variables that characterize waiting and queuing. 

A bottleneck model is assumed by egress station j , with arrival rate +
ijq  on ],0[ H  and discharge rate −ijq  on 

0jw , in which 0jw  is the mean wait time between arriving at the queue front end in eligible place and the 

arrival of a relevant vehicle. A reasonable value could be l

ijj fw /10 = ; let us keep 0jw  for the moment to 

have a degree of freedom. 
 

 

Fig. 1. Cumulative flows at bottleneck 

Figure 1 depicts the dynamics of the waiting queue: if +− < qq  then there is a ‘triangle of waiting’ that 

lies between the cumulated curve of passenger arrival, xqy ij .+= , shifted to the right due to the minimum 

waiting 0jw , and the cumulated curve of passenger departure, )( 0jij wxqy −= −  for ],0[0 jj Hwx ∈− . Flow 

conservation implies that:  

 −+ == ijjijj qHqHN .. . (7) 

The average number of passengers waiting for destination j , jv , is equal to the total time spent at 

waiting, l

ijW , divided by the time interval, jjj HwH +=′ 0 . Letting −+=′ ijjjj qwNN 0  and 

N 

w0 q
- 
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∑ ∈ ′≡ zj zzj ff ππ )( , the total wait amounts to the area between the two large triangles minus the area of the 

small triangle: 
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On replacing l

ijW  with )( 0 jjjjj HwvHv +=′  and jN′  with −+ ijjj qwN 0 , we get that 

)2(
2

1
)( 2

0

2
2
00

2

0
−

+
−

−− −−++=+ ijj
ij

j
ijjjj

ij

j

ij

j
jj qw

q

N
qwNw

q

N

q

N
wv  

)
)(

(
2

1

)(

1
0

0
+−=−+
ij

j

jj

j
j

jj

j
j

q

N

fv

N
w

fN

w
v

ππ
 after dividing by jN  and replacing −

ijq  by jj fv )( π  

j
j

ij
jj

j

ij

j

jj
j f

v

q
wf

N

q

HN

wf
v )(])(1[2

)(
2 0

0 ππ
π

−=−+
++

 after multiplying by jjij Nfq /)(2 π+  

At this stage, let us set jj fw )/(10 π=  so as to simplify into 

 j
j

ij
j

j
f

v

q
v

HN
)(

2 π−=
+

. (9) 

This model is taken for all traffic regimes, including the unqueued state in which the left hand side is 

negligible, yielding −+ =≈ ijjjij qvfq )( π . We expect that 
j

ij
j

j v

q
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HN

+
<<2

, i.e. 222 jjijj NHNqv =<< + , or 

 jj Nv
2

1<< . (10) 

Referring to (3) and (7), the zπ  depend on the jv  through the zn . Thus there is a circular dependency 

between our variables, in other words a Fixed Point Problem (FPP) with respect to vector ]:[ ij Jjv ∈=v . 

In the next section, it is shown that the FPP (3), (7) and (9) has a solution, which is unique. Also included 
is a computation scheme. 

Definition. FPP },0{)( 2
jHNj
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3. Mathematical analysis of the Fixed Point Problem 

The Fixed Point Problem is shown to be equivalent to the first order optimality conditions of a 
minimization program which is strictly convex. As such program has a solution that is unique, this is also the 
unique solution to the FPP. 

3.1. Admissible set 

Denote ]:[ ij Jjv ∈=v  a vector of passenger stocks by egress station (from entry station i ) . Define the 

feasible set as })(and,:0{ +≤≤∈∀≥= ijjjjji qvfNvJj πvV . 
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Lemma 1. Set V  is (a) closed and (b) compact. 

Proof. (a) Let jjjj vfGG )()(: π=vv a . This is a continuous function as ∑ ∈= ),( jiz jz vnav  is 

continuous, as is },1{min
z

z
zz n

k
n

′
=πa  for 0>zn  and 1 at 0=zn . Thus jf )( πav  is continuous as a 

linear combination of continuous function, and its product by jv , i.e. jG , is continuous too. As jG  is 

continuous and the sets ],0[ +
ijq  are closed, the reciprocal sets ]),0([1 +−

ijj qG  are closed. Therefore V  is 

closed as the intersection of a finite number of closed sets ]),0([1 +−
ijj qG  or ],0[ jN . 

(b) As ],[ N0V ⊂  with ]:[ ij JjN ∈=N , the multidimensional interval ],[ N0  is bounded hence 

compact. So is V , a closed subset of ],[ N0 . 

 
Lemma 2. Any solution to the FPP must belong to the admissible set. 

Proof. From (9) and 0v ≥ , 0*)( * ≥−+
jjij vfq π . 
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3.2. Objective function 

Let: 
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These functions have been designed so as to yield cross derivatives that are symmetrical in ),( rj vv , 

meaning that there are potential functions f  and f
~

 from which they are derived: 
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Theorem 1. (i) The potential function f  is convex on V . (ii) The potential function f

~
 is strictly convex 

on V . 

Proof. (ii) stems from (i) in a straightforward way, since ∑ −+= r rr
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This ensures that the Hessian matrix of f  is positive, hence f  is a convex function. 

3.3. Existence and uniqueness of solution 

Theorem 2. (i) Function f
~

 has a unique minimum on V . (ii) The FPP has a solution on V , which is 

unique. 
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Proof. (i) V  being a closed and compact set, a strictly convex function on it admits a minimum value at 
some unique point *v . There, the first order optimality conditions are that 

0*).(
~

* ≥−∇ vvvf   *Vv ∈∀ ,  *V  being a restriction of V  in the vicinity of *v . 

iJj ∈∀ , *
jv  cannot be zero since at zero the j-th component of the gradient would be very much negative, 

indicating that an increase in jv  would enable one to decrease f
~

 . 

Similarly, the condition *.*)( jjij vfq π=+  cannot be achieved because in that case 0*)(
~ >vjF , meaning 

that a decrease in jv  would enable one to decrease f
~

. Lastly, condition jj Nv =*  cannot hold because at 

such a point 0)(
~ 12 ≥+−= jHHj fF π , meaning that a decrease in jv  would enable one to decrease f

~
. 

Thus the minimum point of f
~

 must be interior to V , which implies that 0
~

=∇f  at *v , hence *v  

satisfies the FPP problem. The uniqueness of solution stems from the strict convexity of f
~

. 

3.4. Solution algorithm 

A Newton algorithm is appropriate to solve the minimization program, since the first and second order 
derivatives are easy to evaluate at each current point. The convergence criterion only involves the norm of 

the gradient function, ]:
~

[
~

ij JjFf ∈=∇ . 

Formula: 

nn xxnn ffxx )
~

.(]
~

[: 12
1 ∇∇+= −
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[ 2
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r
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∂
=∇  the Hessian matrix. 

3.5. Solution revision 

If the basic solution to the FPP involves some components *
jv  that are quite small with respect to jN , 

then an adapted FPP with jF
~

 replaced by jF  on these components will yield a revised solution with the 

corresponding egress stations in an unqueued state. 
 

4. An application instance 

A classroom instance is used to demonstrate the behaviour of the transit bottleneck model. The example is 
similar to that developed in Leurent and Askoura (2010) for the comparison of various assignment models 
under capacity constraints. Three parallel lines connect an origin A with a destination D. The two (ML2, 
ML3) also serve node B, as shown in figure 2. The following table resumes their operational characteristics. 
 

Table 1. Operational characteristics of the service routes 

Route Frequency (veh/h) Vehicle Capacity Service Capacity 

ML1 5 200 1000 

ML2 10 250 2500 

ML3 5 300 1500 
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 B 
D 

ML1 

ML2 

ML3 

18’ 

10’ 

12’ 12’ 

10’ 

Fig. 2. The service network of the application instance 

4.1. Passenger traffic flow states 

The model presented calculated the expected travel time of an access – egress station couple in the basis of 
the passenger stock (for the waiting time) and the weighted average of the flow assigned to the transit 
services under strict capacity constraints. Therefore, when dealing with at least two parallel routes, we can 
observe three distinct flow states which are illustrated in the figures 3(a) and 3(b), where the dashed line 
corresponds to the in-vehicle travel time and the continuous line to the average journey time (in-vehicle 
travel time + waiting time). 
 
( I ) The uncongested state (0A), where a weak passenger flow is not facing any capacity constraints 
( II ) The semi-congested state (AB), when at least one of the services is saturated, while others have 

some available capacity to accommodate the additional flow. Even though, the access – egress flow +
ijq  

can be transferred within the reference period H , there is an impact in both the expected waiting time and 
the in-vehicle travel time. 

( III )  The congested state (B+), where all the services are saturated and the access – egress flow +
ijq  

cannot be served within the reference period, H . The insufficient capacity results in a significant increase 
of the expected waiting time for the access – egress couple.  

 

 

Fig. 3. Average Expected Travel Time and In-vehicle travel time per (a) stock of passengers waiting and  (b) exogenous passenger flow 

The passenger stock for each destination is calculated by a Newton – Raphson algorithm with a slight 
underestimation. That is attributed the objective function developed due to some mathematical 
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approximation of the queue. Nonetheless, the difference observed is insignificant for the calculation of the 
expected waiting time and the flow share of the transit services. 

4.2. Destination coordination 

When multiple access – egress flows share the same transit service, we observe a competition among their 
respective partial passenger stocks at boarding. At unsaturated conditions, it corresponds to the relative 
proportion of the frequencies. When at least one of the routes is saturated, the passenger flows are reassigned 
while there is a coordination of the partial passenger stocks per egress station. The behavior of the bottleneck 
model at congested regime is demonstrated using the three route network described previously. While the 
exogenous passenger flow of the A->D access – egress station couple is constant at a low level 

( 2000=+
ADq ), we increase the A->B passenger flow, +

ABq , until all routes are saturated. 

We focus on the share of each transit service for the A->D flow, illustrated in the following figure. At 
unsaturated conditions the routes ML1, ML2, ML3 are assigned the 25%, 50%, 25% of the A->D flow, 
according to the route frequencies. Nevertheless, once a transit route is at capacity, an increase in the waiting 
time and a change in the flow proportions is observed. At the example developed, ML2 is the first to be 

saturated for passengersqAB 2250=+  to destination B, and its flow proportion for the +
ADq  flow is reduced 

( 45,02 =ML
ADp  for 2582=+

ABq ). The saturation of ML3 creates a competition between the B and D partial 

stocks at A for the transit routes ML2 and ML3. Therefore, ML1 accommodates the flow unable to board to 

the other routes and its flow proportion increases from 27,01 =ML
ADp  (for 2582=+

ABq ) to 51,01 =ML
ADp  (for 

3300=+
ABq ). When all services are at capacity, the boarding competition reduces the probability of the 

stock to board ML2 and ML3 and therefore the proportion of +
ADq  passing from ML1 increases to 

57,01 =ML
ADp  for  5000=+

ABq . 

 

 

Fig. 4. The cumulative passenger flow share of each transit service 

 

5. Conclusion 

The paper develops a model for taking account of the effect of a vehicle’s total capacity to a passenger’s 
route choice and travel time. The effects are considered explicitly through the formation of a passenger stock 
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per egress station at a platform. Even though there is not an exact physical explanation, it portrays an average 
mingled passenger queue at the arrival of a vehicle. Congestion occurs when the stock cannot be absorbed 
during the reference period, so that a passenger is unable to access the first vehicle that arrives after his 
joining the queue. 

The transit bottleneck model is used within a flow assignment model in a transit network such that 
described in Leurent et al (2011). As part of an elaborate cost-flow function, it is used to evaluate the effect if 
the exogenous flow on the average waiting time and the route share – by extension the average in-vehicle 
travel time – by imposing strict capacity constraints. The bottleneck does not guarantee the conservation of 
flow even though the difference is insignificant. Nevertheless, the flow assignment is made at a network 
level, with a relaxation of the strict capacity constraints, where the conservation of flow at each node is 
guaranteed. 

We proved that the transit bottleneck model can be treated as a fixed point problem, of which we have 
shown the existence and uniqueness of a solution. Moreover, we proposed an outline of a solution algorithm, 
using the Newton Raphson algorithm. Finally, an application instance is provided in order to analyse the 
behaviour of the model. We determined three traffic flow states – uncongested, semi-congested and 
congested state – with different characteristics and we illustrated how the destination coordination may alter 
the route share of all connected routes in saturated conditions.  
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