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@Université Paris-Est, Laboratoire Ville Mobilité ansport, Ecole des Ponts ParisTech
6-8 avenue Blaise Pascal, 77455, Marne la Vallé&geX 2, France

Abstract

This paper addresses the issue of passenger waitthpeing stored at a station platform, from whpoimt they plan to
board route services towards egress stations. Rmuteces are operated using dedicated vehicleBnited capacity.
Each route service has a specific set of downstregness stations and is operated at given frequesayy

homogeneous vehicles of limited available capadibe model yields individual waiting time by egresation and the
assignment of vehicle capacity to the flows by sgr&ation.

Keywords: mingled queuing

1. Introduction

In large urban areas the transit network is freyesubmitted to heavy congestion, especially atpghak
hours on working days. Under these circumstancasows links of the network may provide insuffidien
capacity to the passenger demand. Transposingffic tlow characteristics, a bottleneck may beatee,
where these passengers perceive an extended waiitihg station until boarding a vehicle of thevim.

The scientific community has provided many appreacto model the total person’s capacity constraint
through queuing theory; in Gendreau (1984) an unfled increasing convex delay function is formulated
within a theoretical model. Kurauchi et al (200@peoached queuing through a fail-to-board probihili
adjusting the waiting time. A bottleneck has betso antroduced in dynamic transit assignment mqdels
such as Poon et al (2004), where the queuing tameaiculated for a passenger at each time increment
through the difference between cumulative arrivel departure curves at a platform node.

The objective of the paper is the formalizationtloé transit bottleneck model and the mathematical
demonstration of the equilibrium. The model is loasa the explicit representation of the average bemof
passengers waiting on a platform for a given egstaon. From these passenger stocks is derived t
individual probability to board a vehicle of limitecapacity that service a given route. The waitingg is
calculated after the service competition at thef@ien from the stock’s probability to board a vdhiof the
service.

The rest of this paper is in four parts. We beginfdrmulating the queuing model and developing the
necessary mathematical formulas which corresporadfixed point problem. Then, a mathematical analys
of the fixed point problem is made, by defining thigective function and demonstrating the existesuce
uniqueness of the solution. Finally, an applicaiimstance is used to demonstrate the main chaistaterof
the transit bottleneck model; the influence of pager flows on average journey time and destination
coordination.
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2. The queuing model
2.1.Definitions

Let i be the access statiof;, the set of egress statiorjsthat are serviced by route services Z;. The
subset of services that dwell @atcoming fromi is denoted a$z[(i, j)} . During the periodH , servicez
is operated at frequency, by vehicles of residual capacity, at stationi (after the egress of the
passengers destined i, yielding an available capacity &f, = f,k} in the period. We assume that a

passenger arrives atunder exogenous fIO\[\qij+ 1 j 03], yielding entry volume$H .qij+ by egress station.

Let fijZ Ezzﬂ(i 0 fj be the combined frequency betweieand j of the services iry;. It is assumed

that the platform is shared by the services andrntbarehicle can overtake another one, meaningathiate-
minimizing passenger is eager to board a relevahicle as soon as it has some place available tibiota
designates this set of services where the routésgress stations make up a connected componéme in

bipartite graph inZiz X Jiz that links the services to the stations that $eyye.

2.2.The unqueued case

If capacity is available to each passenger as asdre would like from his instant of arrival, thesm can
board the first relevant vehicle and the average timae for destinationj is:

, 1
W == (1)
Each service ir¢ gets a share, / fif of the Hqi}r volume. The resulting passenger flo(/viqi}' fo)/ fif ,

yields a numbe(HqiT)/ fijﬂ' of passengers destined joby vehicle of servicez . The assumption that there
remains available capacity is that

Qi}r ,
H Y — <k ()
iZ3G,5) fij

This must be checked to ensure that there is nailggie- at least no remaining stock of passengets th
keep waiting just after a vehicle relevant to theams left.

2.3.The queued case
If some passengers cannot board the first vehilevant to them, then they have to wait for other

vehicles to arrive and to supply them with someacép. Let us assume that there is a fictive, ctetry
state of passenger traffic on the platform, witiuanberv; of passengers waiting for destinatign When a

vehicle of servicez arrives with available capacity,, there are candidate passengers in number of
n, = szZVj (3)

Their individual probability to board, assuming gg@among them, is

7T, = min{ ll:]—'z} (4)
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Then the number of passengers boarding a vehictervicez to exit atj is 77,vj, and the passenger

flow during H to j via z is
Gijz = fomv; (5)
The total flow to j during H is (throughput rate)
Qij_ = Zjl:lz qij_Z = (ZjDZ fZ’ﬂ-z)vj (6)

Let us denotg( f77) ; = ZjDZ
Queuing may eventually occur when at least onei@evasz, <1, meaning saturation of a service
route. Let us derive necessary conditions onstheand v; variables that characterize waiting and queuing.

fom, .

A bottleneck model is assumed by egress statiowith arrival rateqi}' on [0,H] and discharge ratg; on

Wjo, in which wjq is the mean wait time between arriving at the guieant end in eligible place and the

arrival of a relevant vehicle. A reasonable valoeld bew;q =1/ fif ; let us keepwjo for the moment to

have a degree of freedom.
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Fig. 1. Cumulative flows at bottleneck

Figure 1 depicts the dynamics of the waiting quetig;” <q* then there is a ‘triangle of waiting’ that

lies between the cumulated curve of passengeradryv= qi}’.x, shifted to the right due to the minimum

waiting wjo , and the cumulated curve of passenger deparfureg; (X —wjg) for x=w;jq O[0,H ]. Flow

conservation implies that:
Nj =H.gj =H,.qj. 7)
The average number of passengers waiting for de&tmj, v;, is equal to the total time spent at

waiting, W,-‘/ , divided by the time interval,H=wjo+H; . Letting Nj=N;+wjoq; and
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(fm); = ZJDZ ,7T, , the total wait amounts to the area between tleldwge triangles minus the area of the

small triangle:

1 N'2 NJZ
S + WjOQu) (8)
j

On replacing\/\/,f with vjH =vj(wjo+H;) and Nj with N; +wjqq; , we get that

Nj. 1 N? _N? _
Vj(Wjo +—=) =5 (= +2WjoN,; + WG —— ~WioGj)
Gij 0 Gij
i JO ! —W-O:1 N J) after dividing byN; and replacingy; by v;(f7);
i N; (fn)j 072Nty g b
frz
(17, wio +2q” [1-(fm)wjo] = q” —(fm); after multiplying by2q; (f7); / N}

2 HN; N;
At this stage, let us satjo =1/(f77); so as to simplify into
2 qu
—v; =——(f 9
HNJ_ (fr); . 9)
This model is taken for all traffic regimes, incing the unqueued state in which the left hand &de

negligible, yieldingqj = (fm)jv; = qgj . We expect thaﬁv << %

,i.e. 2v2<<qIJ HN; —N
i Vi

Referring to (3) and (7), ther, depend on the; through then, . Thus there is a circular dependency

between our variables, in other words a Fixed PRinblem (FPP) with respect to vector[v; : j0J;].

In the next section, it is shown that the FPP (B)and (9) has a solution, which is unique. Alscuded
is a computation scheme.

Definition. FPPq” ~(tm); 0{0, 3~ v} Where[q” ~(fm); ][q” ~(fm); - HN vj]=0

3. Mathematical analysis of the Fixed Point Problem

The Fixed Point Problem is shown to be equivalentthe first order optimality conditions of a
minimization program which is strictly convex. Asch program has a solution that is unique, thase the
unique solution to the FPP.

3.1.Admissible set

Denotev =[v; : j1J;] a vector of passenger stocks by egress statiom @ntry stationi ) . Define the

feasible seta¥ ={v=0: 0j0J;, v; <N; and(f7n);v; sqi}’}.
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Lemma l. SetV is (a) closed and (b) compact.
Proof. (a) LetGj:vi>Gj(v)=(fm)jv;. This is a continuous function ast> n, :zﬂ(i Vi is

1

: . .k . .
continuous, as i®, > 77, =min{L,—%} for n, >0 and1 atn, =0. Thusv — (fm); is continuous as a
nZ

linear combination of continuous function, and p®duct byv;, i.e. Gj, is continuous too. AS; is

continuous and the sef$, qi}'] are closed, the reciprocal seﬁq’l([o, qi}']) are closed. Therefor¥ is

closed as the intersection of a finite number o$etl setst_l([O, qij+]) or [O,N;].

(b) As V O[O,N] with N=[N; :jOJ;], the multidimensional interva]O,N] is bounded hence
compact. So i9/, a closed subset ¢0,N] .

Lemma 2. Any solution to the FPP must belong to the adblsset.
Proof. From (9) andv 20, qj —(f7#) ;v] 20.

Furthermore%vJ q” hencevJ <% N; meets the second requirement fér to belong toV

j V] j

3.2.0bijective function

q” andF(v)‘ 2 vj - q” +(fm);
Vi HN; Vj

These functions have been designed so as to yieks alerivatives that are symmetrical(in,v; ),

Let: Fj(v)=(fm); -

meaning that there are potential functiohsand f from which they are derived:
Of (v) =[Fj(v): j0J;] and Of (v) =[|5j(v): jg0g].

Lemmaa3. Let J;, =1if j=r or J; =0 otherwise. Then:

oﬁwzﬁﬂﬂ_z (T
aVr Vj2 I Ajnr z nz(V)
oF; (v) _ 2 5.+ oF; (v) ,
ov; HN; : ov,

Wherein 7,(v) = 75,(V). X, (v)<ky} -

Proof Zﬂz =imin{lﬁ} is equal to 0 if ky=n,(v) meaning 77,(v)=1 or else to
VI’ r I"IZ
0 ki __k'zanz___
o n,  n2ov ]{ZDr}

On combining, it holds thaL ——]{ZDr} whatever the case. Consequently,
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a(f7); | AT N VT
J =Zfz Z:_Zfz_Z]{ﬂr}z_ Z f,—=.
mj Mz

ov; ] ov, Djar Nz

aF' oF an 6'5
Thus bothF; and F have derivatives that are symmetrical, el =""T agnd—L =T

oV, 0V ov,  ovj
The associated potential functions may be defindtieé following way, from a reference poing:
(v P of of =
f(v)= Zj:IVo Fi(v)dv; and f(v)= Zj:jVo Fj(v)dv; . By construct,a =F anda =F.

Theorem 1. (i) The potential functionf is convex onV . (ii) The potential functionf is strictly convex
onV.

Proof. (ii) stems from (i) in a straightforward way, sind = f +Zrﬁ(vr —VOr)2 in which the first
r
term is convex and the second is strictly convex.

(i) Let us show that the Hessian éf is a positive matrixCv' =[v; :r 0J;],

2
%f . SOF
Z6v v, Vi =2, v, Vi
[ S| rj r
Q'+ 2 T,
— Ir ! ot ] Z
'Z_z vie-Yvivi > fy
Vy r,j Zljnr nZ(V)

_Z c1|r -y fé%(n'z)z inwhich nj, =Y v; :ZV'J'
r j

r Vr 213 z

As v belongs toV, qij 2 (fm)jv; andv; <n, for zU(, ), hence
Zﬂl’ fZ’ z 12

ZQir Z vi2 = Z f”zz_

r Vr Vi 2z roz v
On the other hand
,2 Iv
Vr 2

<[Z ][Z ZL smcez

to which weapply theCauchy Schwarznequality

rDznZ rdz Vy rDz r0dz n;
a f ] ] ] = V;’ 12
Z Vi Vi 2 Z f2 (1, _ﬂz)(z_)nz
Thus: = 0V, 0V A0, Oz Vr

>0 sincerm, 21,
This ensures that the Hessian matrixfofis positive, hencef is a convex function.

3.3.Existence and uniqueness of solution

Theorem 2. (i) Function f has a unigue minimum o¥i . (i) The FPP has a solution on, which is
unique.
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Proof. (i) V being a closed and compact set, a strictly corivegtion on it admits a minimum value at
some unique point* . There, the first order optimality conditions énat

0f | v-(V=Vv) =0 OvOV*, V* being a restriction o¥/ in the vicinity of v* .

g0y, v]E cannot be zero since at zero the j-th componetiteofradient would be very much negative,
indicating that an increase iy would enable one to decrease.

Similarly, the conditionqij+ = (fﬂ‘)j.v? cannot be achieved because in that déﬁe/*) >0, meaning
that a decrease mj would enable one to decrease Lastly, conditionv} =N; cannot hold because at
such a poinﬂ;j :%—ﬁﬂfﬂ)j =0, meaning that a decreasevj would enable one to decrease

Thus the minimum point off must be interior tov , which implies thatOf =0 at v* , hencev*

satisfies the FPP problem. The uniqueness of solstiems from the strict convexity df .

3.4.Solution algorithm

A Newton algorithm is appropriate to solve the mirzation program, since the first and second order
derivatives are easy to evaluate at each currant.pthe convergence criterion only involves themaf

the gradient functioan~ :[IEJ- RN
Formula:

~ - -~ OF.
Xn+1 = Xn +[D2f]_1‘ Xn.(Df )‘Xn , denoting by[sz] =[a—J: r,vOJ;] the Hessian matrix.
V,

]
3.5.Solution revision

If the basic solution to the FPP involves some comemtsy; that are quite small with respect ko ,

then an adapted FPP Wit% replaced byF; on these components will yield a revised solutiath the
corresponding egress stations in an unqueued state.

4. An application instance

A classroom instance is used to demonstrate thaviomir of the transit bottleneck model. The exaniple
similar to that developed in Leurent and Askour@1@ for the comparison of various assignment nsdel
under capacity constraints. Three parallel linesneot an origin A with a destination D. The two (RIL
ML3) also serve node B, as shown in figure 2. Tdilfing table resumes their operational charastes.

Table 1. Operational characteristics of the seriocges

Route Frequency (veh/h) Vehicle Capacity ServicpaCay
ML1 5 200 1000
ML2 10 250 2500
ML3 5 300 1500
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Fig. 2. The service network of the application amste

ML1 18’
ML2 100 L1
B
D
ML3 12 12
A4 A4

4.1.Passenger traffic flow states

The model presented calculated the expected ttamelof an access — egress station couple in this lo&
the passenger stock (for the waiting time) and wieéghted average of the flow assigned to the ttansi
services under strict capacity constraints. Theesfashen dealing with at least two parallel routgs, can
observe three distinct flow states which are itlastd in the figures 3(a) and 3(b), where the dadime
corresponds to the in-vehicle travel time and tbetiouous line to the average journey time (in-ekhi
travel time + waiting time).

(1) The uncongested state (0A), where a weak passéages not facing any capacity constraints
(m) The semi-congested state (AB), when at least otieeaervices is saturated, while others have
some available capacity to accommodate the addititow. Even though, the access — egress fqiw

can be transferred within the reference peribd there is an impact in both the expected waitimg tand
the in-vehicle travel time.

(1)  The congested state (B+), where all the servicesaturated and the access — egress ﬂ@SW
cannot be served within the reference peridd, The insufficient capacity results in a signifitémcrease
of the expected waiting time for the access — egresple.

Average Expected Travel Time Average Expected Travel Time
per passenger stock per arriving passenger flow

i) @

E E
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0 A B A B
Stock of passengers waiting Arriving passenger flow

Fig. 3. Average Expected Travel Time and In-vehicdeel time per (a) stock of passengers waitind) &m) exogenous passenger flow

The passenger stock for each destination is caézlilay a Newton — Raphson algorithm with a slight
underestimation. That is attributed the objectivenction developed due to some mathematical
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approximation of the queue. Nonetheless, the diffee observed is insignificant for the calculatidrthe
expected waiting time and the flow share of thaegitaservices.

4.2.Destination coordination

When multiple access — egress flows share the samsit service, we observe a competition amoniy the
respective partial passenger stocks at boardingun&aturated conditions, it corresponds to thetivela
proportion of the frequencies. When at least orghefroutes is saturated, the passenger flowseassigned
while there is a coordination of the partial paggzrstocks per egress station. The behavior dbdteeneck
model at congested regime is demonstrated usinghtiee route network described previously. While th
exogenous passenger flow of the A->D access — ®gséstion couple is constant at a low level
(gAp = 2000), we increase the A->B passenger flaykg , until all routes are saturated.

We focus on the share of each transit serviceHerA->D flow, illustrated in the following figureAt
unsaturated conditions the routes ML1, ML2, ML3 assigned the 25%, 50%, 25% of the A->D flow,
according to the route frequencies. Neverthelesse @ transit route is at capacity, an increashdrwaiting
time and a change in the flow proportions is obsénAt the example developed, ML2 is the first ® b

saturated forgag = 2250passengergo destination B, and its flow proportion for togp flow is reduced

( pX'D‘2 = 045 for qag =2582). The saturation of ML3 creates a competition lsetwthe B and D partial

stocks at A for the transit routes ML2 and ML3. fdfere, ML1 accommodates the flow unable to board t
the other routes and its flow proportion increasem p,',\("gl = 027 (for qag =2582) to p,'lf”ﬁl = 051 (for

dag =3300). When all services are at capacity, the boardiompetition reduces the probability of the
stock to board ML2 and ML3 and therefore the prtipar of gap passing from ML1 increases to
pM5t = 057 for ghg =5000.

Flow share for A->D QD pair

1
09
08
7
06
05
04
03
02
01

Flow share of transit service

20000 2250 2582 3 000 3300 3500 4000 4500 5000
Passenger flow for A->B QD pair

Fig. 4. The cumulative passenger flow share of éatsit service

5. Conclusion

The paper develops a model for taking account efefifiect of a vehicle’s total capacity to a passeisg
route choice and travel time. The effects are dmrsd explicitly through the formation of a passgjock
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per egress station at a platform. Even though tisemet an exact physical explanation, it portragsaverage
mingled passenger queue at the arrival of a veh@bagestion occurs when the stock cannot be aédorb
during the reference period, so that a passengenable to access the first vehicle that arrivaeraiis
joining the queue.

The transit bottleneck model is used within a flassignment model in a transit network such that
described in Leurent et al (2011). As part of a@betate cost-flow function, it is used to evaluht effect if
the exogenous flow on the average waiting time tiedroute share — by extension the average in-kehic
travel time — by imposing strict capacity consttaiThe bottleneck does not guarantee the congamvat
flow even though the difference is insignificanteértheless, the flow assignment is made at a mktwo
level, with a relaxation of the strict capacity stmints, where the conservation of flow at eactens
guaranteed.

We proved that the transit bottleneck model cariréated as a fixed point problem, of which we have
shown the existence and uniqueness of a soluti@nmedWer, we proposed an outline of a solution étigor,
using the Newton Raphson algorithm. Finally, anliappon instance is provided in order to analykse t
behaviour of the model. We determined three traffaav states — uncongested, semi-congested and
congested state — with different characteristiah \aa illustrated how the destination coordinatioayralter
the route share of all connected routes in satiedaditions.
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