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A Conservative Coupling Method for Fluid-
Structure Interaction in the Compressible Case

Laurent Monasse, Virginie Daru, Christian Mariotti, and Serge Piperno

Abstract We propose a general explicit coupling method between a Finite Volume
method for compressible fl w and a rigid body. The coupling strategy is based on
the idea of Embedded Boundary methods (Pember et al., J. Comput. Phys. 120:278–
304, 1995). The flu es are computed everywhere in the Cartesian grid, and are
modifie at the solid boundaries to enforce flui mass conservation. The coupling
between the flui and the solid is designed to ensure a balance in momentum and
energy. We prove the exact numerical conservation of several simple uniform fl ws.
An illustrative example of the liftoff of a cylinder by a shock wave is presented and
compared with existing results.

1 Introduction

For fluid-structur interaction problems, two main types of methods were devel-
oped. The Arbitrary Lagrangian-Eulerian method (ALE) was firs developed in the
late seventies [4]. However, as a body-fitte method, the ALE technique requires
remeshing of the flui domain when the solid is subjected to large deformations
or breaking, which can be computationally demanding. In order to avoid body-
fittin and remeshing, Peskin [14] proposed the Immersed Boundary method for the
coupling of incompressible biological flui fl ws with moving elastic boundaries.
Penalization type method have been applied to compressible fluid-structur inter-
action [1], but the stiff condition on the time-step as the penalization parameter is
increased is unsatisfactory. Direct forcing methods, which modify the values of the
flui cells in the vicinity of the solid boundary, have been widely applied [6, 10, 12],
but still do not ensure the conservation of physical quantities at the interface.
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Conservative methods for Finite Volumes with complex geometries have been
developed, such as the Embedded Boundary method [13]. Several procedures were
proposed to avoid the stability condition restriction due to cut cells with small vol-
ume. We adopt here the solution consisting in merging the small cut-cells with their
stable neighbors, that were successfully applied for compressible fluid-structur
interaction [8].

In the sequel the equations for flu modificatio remain similar to [8]. The
main difference lies in the coupling approach. Ultimately, our aim is to couple
the compressible fl w with a Discrete Element method for the solid. As the Dis-
crete Element method is computationally expensive, we use an explicit coupling
method. In this paper, we restrict ourselves to rigid solids, but the method also
applies for deformable bodies. The algorithm is carried out in a partitioned way:
the flui pressure makes the solid move, and the updated position of the solid
induces a modificatio of the flui flu es at the new boundary. The flui solver
is based on the time splitting high order scheme developed in [3]. However the
theoretical analysis of the coupling algorithm does not depend on the scheme that
is used.

2 Description of the Method

The position of the solid in the flui domain is taken into account using the Embed-
ded Boundary method [5, 7–9, 13]. At time t , the solid occupies a volume fraction
αi of cell i , and all variables are assumed to be uniform in the cell. The conserva-
tive quantities contained in the cell are therefore equal to their value at the center
of the cell times the volume of the cell and the volume fraction of flui 1 − αi .
In the same way, the computed flu es are assumed to be constant on cell faces.
If we denote κi j the surface fraction of the face between cells i and j occupied
by solid, we set the effective flu between i and j as the computed flu times
the surface of their interface and the surface fraction of flui 1 − κi j . Additional
flu es come from the presence of the solid boundary, and are computed in order
to yield exact conservation of flui mass and of total momentum and energy of the
system.

We now describe the algorithm we developed, which preserves the fully conser-
vative properties of the Finite Volume method combined with the Embedded Bound-
ary method. At the beginning of a time step, at time n�t , the known quantities are:

• The position of the center of mass of the solid particle Xn and the rotation matrix
Qn

• The velocity of the center of mass of the solid particleVn and the angular quantity
of movement matrix Pn

• The flui state: density $n , velocity un and pressure pn .

The general algorithm is as follows:

2



SOLID FLUIDCOUPLING

Xn, Qn, Vn, Pn n, un, pn

(1) Computation of fluxes F num

,̃ ũ, p̃
(2) Pressure is transferred
to the solid boundary

(3) Solid step (using
boundary pressure)

Xn+1, Qn+1, Vn+1, Pn+1

(4) Update of the boundary
position, computation of the
αn+1 and κn+1

(5) Fluid update :
⎧
⎨

⎩

n+1 = n + Δ
n+1un+1 = nun + Δ( u)
n+1en+1 = nen + Δ( )

n+1, un+1, pn+1

The pressures prefx and prefy transferred to the solid boundary are chosen to be
the temporal average of the reference pressures used during the partial steps of the
flu computation (1) in the x and y directions (in our case, due to the splitting
method; these steps could also be the steps of a Runge-Kutta method). The solid
is advanced in step (3) using a classical second order Verlet scheme for translation
and a second order RATTLE scheme for rotation. Details can be found in [11]. The
solid rigid body is supposed to be of general polygonal shape, and the computation
of intersections in step (4) is straightforward.

Let the indices l, r , b and t denote the respective left, right, bottom and top faces
of a cell C . Following [8], the cut-cells computation in step (5) is written as follows
in the 2D case:

• For each solid boundaryF , compute the quantity �wnF swept by boundaryF ,
such that :

∑
F

�wnF =
∑
C

(
αn+1C − αnC

)
wnC (1)

where w denotes alternately density $, momentum $u or energy $e. In practice,
we compute�wnF as the integral ofwn in the quadrangle define by the positions
ofF at time n�t and (n + 1)�t .

• Compute the numerical flu es FnumF at the solid boundary using prefx and prefy
stored in the boundaryF . The flu es are given by:

– If w = $, FnumF = 0

– If w = $u, FnumF = 1
SF

∫
F
prefx n

x
F
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– If w = $v, FnumF = 1
SF

∫
F
prefy n

y
F

– If w = $e, FnumF = 1
SF

Vn+
1
2

F ·
∫
F

(
prefx nxF
prefy n

y
F

)

• Compute �wC for each cell C :

(
1− αn+1C

)
�wC =�t

(
1− κn+1C l

�x
FnumC l −

1− κn+1C r
�x

FnumC r +
1− κn+1C b

�y
FnumC b

−1− κn+1C t
�y

FnumC t

)
+
∑

F∈C

�t SF
�x�y

FnumF +
∑

F∈C
�wnF (2)

• Update the value of wC in every cell :

wn+1C = wnC +�wC (3)

To ensure stability of the method for small cut-cells, we follow the procedure
described in [8], with minor changes due to the impossibility to defin a normal
vector in a cell occupied by two boundaries. We defin small cells as αC > 0.5. If
we mix cell C with a target cell Ct , so that the fina valuew of the two cells is equal,
we have to exchange the quantities MC Ct = αCt

αC+αCt

(
wCt − wC

)
and MCtC =

αC
αC+αCt

(
wC − wCt

)
, and we easily check that wC + MC Ct = wCt + MCtC . In

the 2D case, we have to make a choice for the target cell Ct . We f x Ct to be the
fully-flui cell (αCt = 0) nearest to cell C , such that the path between the two cells
does not cross a solid boundary. A recursive subroutine find such a target cell after
few iterations.

Let us note that the mixing procedure is entirely conservative, and ensures that
the significan volume for a cell is consistent with the usual CFL condition based on
standard cell size.

3 Theoretical Results

The following results were theoretically proven:

• Mass, momentum and energy conservation:
When there is no infl w into or outfl w from the domain, conservation of flui
mass is ensured. For periodic boundary conditions, the momentum is exactly
balanced between flui and solid during each time-step. For periodic or reflectin
boundary conditions, the energy received by the flui from the solid is exactly
balanced by the work of flui pressure forces on the solid during each time-step.
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• Frame indifference:
Let an arbitrary shaped rigid body moving at constant velocity and no rotation,
be immersed in a uniform flui fl wing at the same velocity. The uniform motion
of both the solid and the flui is preserved by the coupling algorithm.

• Free slip along a straight boundary:
A uniform fl w parallel to a rigid semi-infinit half-plane is preserved by the
coupling algorithm.

The last result shows that no numerical boundary layer or artificia boundary
roughness appear at the solid boundary, even when it is not aligned with the Carte-
sian mesh.

4 Numerical Results

Due to space limitations, we only present here a moving boundary benchmark that
was firs proposed in [7] and also treated in [8]. A rigid cylinder of density 7.6 kg
m−3, initially resting on the lower wall of a two-dimensional channel fille with
air at standard conditions, is driven and lifted upwards by a Mach 3 shock wave.
The results obtained on a 1,600 × 320 grid are shown in Fig. 1. We observe good
agreement with the results shown in [2, 8]. Small differences in the position of the
shock waves can be noticed but no reference solution exists for this case. We also
observe a strong vortex under the cylinder which is much weaker in [8]. This vortex
seems to be associated with a Kelvin-Helmholtz instability originating at the contact
discontinuity present below the cylinder.

In addition, when considering the fina position of the center of mass of the cylin-
der, we observe a fast grid convergence of the method. The position we obtain on
a 400 × 80-grid is comparable to that obtained on a 1,600 × 320-grid in [8]. With
increasing resolution on grids 400 × 80, 800 × 160 and 1, 600 × 320 [8] gives
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Fig. 1 60 contours of flui pressure from 0 to 28 at different times, �x = �y = 6.25× 10−4
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positions (0.659, 0.132), (0.649, 0.145) and (0.641, 0.147); on the same grids, we
obtain (0.64375, 0.1463), (0.64278, 0.1471) and (0.64253, 0.1471).
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